1
|
Ujike M, Suzuki T. Progress of research on coronaviruses and toroviruses in large domestic animals using reverse genetics systems. Vet J 2024; 305:106122. [PMID: 38641200 DOI: 10.1016/j.tvjl.2024.106122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/24/2024] [Accepted: 04/14/2024] [Indexed: 04/21/2024]
Abstract
The generation of genetically engineered recombinant viruses from modified DNA/RNA is commonly referred to as reverse genetics, which allows the introduction of desired mutations into the viral genome. Reverse genetics systems (RGSs) are powerful tools for studying fundamental viral processes, mechanisms of infection, pathogenesis and vaccine development. However, establishing RGS for coronaviruses (CoVs) and toroviruses (ToVs), which have the largest genomes among vertebrate RNA viruses, is laborious and hampered by technical constraints. Hence, little research has focused on animal CoVs and ToVs using RGSs, especially in large domestic animals such as pigs and cattle. In the last decade, however, studies of porcine CoVs and bovine ToVs using RGSs have been reported. In addition, the coronavirus disease-2019 pandemic has prompted the development of new and simple CoV RGSs, which will accelerate RGS-based research on animal CoVs and ToVs. In this review, we summarise the general characteristics of CoVs and ToVs, the RGSs available for CoVs and ToVs and the progress made in the last decade in RGS-based research on porcine CoVs and bovine ToVs.
Collapse
Affiliation(s)
- Makoto Ujike
- Laboratory of Veterinary Infectious Diseases, Faculty of Veterinary Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan; Research Center for Animal Life Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan.
| | - Tohru Suzuki
- Division of Zoonosis Research, Sapporo Research Station, National Institute of Animal Health, NARO, Sapporo, Hokkaido 062-0045, Japan
| |
Collapse
|
2
|
Xu X, Wang L, Liu Y, Shi X, Yan Y, Zhang S, Zhang Q. TRIM56 overexpression restricts porcine epidemic diarrhoea virus replication in Marc-145 cells by enhancing TLR3-TRAF3-mediated IFN-β antiviral response. J Gen Virol 2022; 103. [PMID: 35503719 DOI: 10.1099/jgv.0.001748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Infection with the porcine epidemic diarrhoea virus (PEDV) causes severe enteric disease in suckling piglets, causing massive economic losses in the swine industry worldwide. Tripartite motif-containing 56 (TRIM56) has been shown to augment type I IFN response, but whether it affects PEDV replication remains uncharacterized. Here we investigated the role of TRIM56 in Marc-145 cells during PEDV infection. We found that TRIM56 expression was upregulated in cells infected with PEDV. Overexpression of TRIM56 effectively reduced PEDV replication, while knockdown of TRIM56 resulted in increased viral replication. TRIM56 overexpression significantly increased the phosphorylation of IRF3 and NF-κB P65, and enhanced the IFN-β antiviral response, while silencing TRIM56 did not affect IRF3 activation. TRIM56 overexpression increased the protein level of TRAF3, the component of the TLR3 pathway, thereby significantly activating downstream IRF3 and NF-κB signalling. We demonstrated that TRIM56 overexpression inhibited PEDV replication and upregulated expression of IFN-β, IFN-stimulated genes (ISGs) and chemokines in a dose-dependent manner. Moreover, truncations of the RING domain, N-terminal domain or C-terminal portion on TRIM56 were unable to induce IFN-β expression and failed to restrict PEDV replication. Together, our results suggested that TRIM56 was upregulated in Marc-145 cells in response to PEDV infection. Overexpression of TRIM56 inhibited PEDV replication by positively regulating the TLR3-mediated antiviral signalling pathway. These findings provide evidence that TRIM56 plays a positive role in the innate immune response during PEDV infection.
Collapse
Affiliation(s)
- Xingang Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Lixiang Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yi Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xiaojie Shi
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yuchao Yan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Shuxia Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Qi Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| |
Collapse
|
3
|
Kong Q, Liu S, Li A, Wang Y, Zhang L, Iqbal M, Jamil T, Shang Z, Suo LS, Li J. Characterization of fungal microbial diversity in healthy and diarrheal Tibetan piglets. BMC Microbiol 2021; 21:204. [PMID: 34217216 PMCID: PMC8254304 DOI: 10.1186/s12866-021-02242-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/26/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Diarrhea is an important ailment limiting the production of the Tibetan pig industry. Dynamic balance of the intestinal microbiota is important for the physiology of the animal. The objective of this work was to study fungal diversity in the feces of early weaning Tibetan piglets in different health conditions. RESULTS In the present study, we performed high-throughput sequencing to characterize the fungal microbial diversity in healthy, diarrheal and treated Tibetan piglets at the Tibet Autonomous Region of the People's Republic of China. The four alpha diversity indices (Chao1, ACE, Shannon and Simpson) revealed no significant differences in the richness across the different groups (P > 0.05). In all samples, the predominant fungal phyla were Ascomycota, Basidiomycota and Rozellomycota. Moreover, the healthy piglets showed a higher abundance of Ascomycota than the treated ones with a decreased level of Basidiomycota. One phylum (Rozellomycota) showed higher abundance in the diarrheal piglets than in the treated. At genus level, compared with that to the healthy group, the proportion of Derxomyces and Lecanicillium decreased, whereas that of Cortinarius and Kazachstania increased in the diarrheal group. The relative abundances of Derxomyces, Phyllozyma and Hydnum were higher in treated piglets than in the diarrheal ones. CONCLUSIONS A decreased relative abundance of beneficial fungi (e.g. Derxomyces and Lecanicillium) may cause diarrhea in the early-weaned Tibetan piglets. Addition of probiotics into the feed may prevent diarrhea at this stage. This study presented the fungal diversity in healthy, diarrheal and treated early-weaned Tibetan piglets.
Collapse
Affiliation(s)
- Qinghui Kong
- College of Veterinary Medicine, Huazhong Agricultural University, 430070, Wuhan, People's Republic of China. .,College of Animal Science, Tibet Agricultural and Animal Husbandry University, 860000, Nyingchi, People's Republic of China. .,Tibetan Plateau Feed Processing Engineering Research Center, 860000, Nyingchi, People's Republic of China.
| | - Suozhu Liu
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, 860000, Nyingchi, People's Republic of China.,Tibetan Plateau Feed Processing Engineering Research Center, 860000, Nyingchi, People's Republic of China
| | - Aoyun Li
- College of Veterinary Medicine, Huazhong Agricultural University, 430070, Wuhan, People's Republic of China
| | - Yaping Wang
- College of Veterinary Medicine, Huazhong Agricultural University, 430070, Wuhan, People's Republic of China
| | - Lihong Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, 430070, Wuhan, People's Republic of China
| | - Mudassar Iqbal
- College of Veterinary Medicine, Huazhong Agricultural University, 430070, Wuhan, People's Republic of China.,Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100, Bahawalpur, Pakistan
| | - Tariq Jamil
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, 07743, Jena, Germany
| | - Zhenda Shang
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, 860000, Nyingchi, People's Republic of China.,Tibetan Plateau Feed Processing Engineering Research Center, 860000, Nyingchi, People's Republic of China
| | - Lang-Sizhu Suo
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, 860000, Nyingchi, People's Republic of China
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, 430070, Wuhan, People's Republic of China. .,College of Animal Science, Tibet Agricultural and Animal Husbandry University, 860000, Nyingchi, People's Republic of China.
| |
Collapse
|
4
|
Lu Y, Su X, Du C, Mo L, Ke P, Wang R, Zhong L, Yang C, Chen Y, Wei Z, Huang W, Liao Y, Ouyang K. Genetic Diversity of Porcine Epidemic Diarrhea Virus With a Naturally Occurring Truncated ORF3 Gene Found in Guangxi, China. Front Vet Sci 2020; 7:435. [PMID: 32793651 PMCID: PMC7393948 DOI: 10.3389/fvets.2020.00435] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 06/16/2020] [Indexed: 11/13/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is one of the major enteric pathogens, causing severe enteric disease, resulting in enormous economic losses. The ORF3 gene encodes an accessory protein which is related to the infectivity and virulence of PEDV. In this study, 33 PEDV positive field samples were collected from Guangxi, from 2017 to 2019, and the genetic diversity of ORF3 was investigated. Thirty-eight strains of ORF3 were obtained, and these were composed of five strains of ORF3 named Guangxi naturally truncated strains that were 293 bp in length, with continuous deletions from 172 to 554 bp. The Guangxi naturally truncated strains encoded a truncated protein of 89 amino acids, which had clustered into a new group referred to as Group 3, and these might be involved in the variations of virulence. Three genotypes (G1-1 subgroup, G1-3 subgroup, and Group 3) existed simultaneously in Guangxi based on the genetic and evolutionary analysis of the ORF3 gene. The sequence information in the current study will hopefully facilitate the establishment of a diagnostic method that can differentiate the PEDV field stains. Continued surveillance will be useful for monitoring PEDV transmission. Differentiation of the ORF3 genes in PEDV field strains can help us to choose an appropriate PEDV vaccine candidate in the future and prevent outbreaks of PED more effectively.
Collapse
Affiliation(s)
- Ying Lu
- Laboratory of Animal Infectious Disease and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Xueli Su
- Laboratory of Animal Infectious Disease and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Chen Du
- Laboratory of Animal Infectious Disease and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Liyuan Mo
- Laboratory of Animal Infectious Disease and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Purui Ke
- Laboratory of Animal Infectious Disease and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Ruomu Wang
- Laboratory of Animal Infectious Disease and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Lian Zhong
- Laboratory of Animal Infectious Disease and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Cui Yang
- Laboratory of Poultry, Guangxi Institute of Animal Science, Nanning, China
| | - Ying Chen
- Laboratory of Animal Infectious Disease and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Zuzhang Wei
- Laboratory of Animal Infectious Disease and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Weijian Huang
- Laboratory of Animal Infectious Disease and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yuying Liao
- Laboratory of Poultry, Guangxi Institute of Animal Science, Nanning, China
| | - Kang Ouyang
- Laboratory of Animal Infectious Disease and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
5
|
Than VT, Choe SE, Vu TTH, Do TD, Nguyen TL, Bui TTN, Mai TN, Cha RM, Song D, An DJ, Le VP. Genetic characterization of the spike gene of porcine epidemic diarrhea viruses (PEDVs) circulating in Vietnam from 2015 to 2016. Vet Med Sci 2020; 6:535-542. [PMID: 32159913 PMCID: PMC7397879 DOI: 10.1002/vms3.256] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 01/02/2020] [Accepted: 02/13/2020] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Porcine epidemic diarrhea (PED) is a highly contagious swine disease caused by the PED virus (PEDV), which is a member of the family Coronaviridae. Since the first outbreaks in Belgium and the United Kingdom were reported in 1971, PED has spread throughout many countries around the world and causing significant economic loss. This study was conducted to investigate the recent distribution of PEDV strains in Vietnam during the 2015-2016 seasons. METHODS A total of 30 PED-specific PCR-positive intestinal and faecal samples were collected from unvaccinated piglets in Vietnam during the 2015-2016 seasons. The full length of the spike (S) gene of these PEDV strains were analysed to determine their phylogeny and genetic relationship with other available PEDV strains globally. RESULTS Phylogenetic analysis of the complete S gene sequences revealed that the 28 Vietnamese PEDV strains collected in the northern and central regions clustered in the G2 group (both G2a and G2b sub-groups), while the other 2 PEDV strains (HUA-PED176 and HUA-PED254) collected in the southern region were clustered in the G1/G1b group/sub-group. The nucleotide (nt) and deduced amino acid (aa) analyses based on the complete S gene sequences showed that the Vietnamese PEDV strains were closely related to each other, sharing nt and aa homology of 93.2%-99.9% and 92.6%-99.9%, respectively. The N-glycosylation patterns and mutations in the antigenic region were observed in Vietnamese PEDV strains. CONCLUSIONS This study provides, for the first time, up-to-date information on viral circulation and genetic distribution, as well as evidence to assist in the development of effective PEDV vaccines in Vietnam.
Collapse
Affiliation(s)
- Van T Than
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Se-Eun Choe
- Animal and Plant Quarantine Agency, Gimcheon, Gyeongsangbukdo, Republic of Korea
| | - Thi T H Vu
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Ha Noi, Vietnam
| | - Tien D Do
- Nong Lam University, Ho Chi Minh City, Vietnam
| | - Thi L Nguyen
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Ha Noi, Vietnam
| | - Thi T N Bui
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Ha Noi, Vietnam
| | - Thi N Mai
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Ha Noi, Vietnam
| | - Ra M Cha
- Animal and Plant Quarantine Agency, Gimcheon, Gyeongsangbukdo, Republic of Korea
| | - Daesub Song
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Dong-Jun An
- Animal and Plant Quarantine Agency, Gimcheon, Gyeongsangbukdo, Republic of Korea
| | - Van P Le
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Ha Noi, Vietnam
| |
Collapse
|
6
|
Wang XW, Wang M, Zhan J, Liu QY, Fang LL, Zhao CY, Jiang P, Li YF, Bai J. Pathogenicity and immunogenicity of a new strain of porcine epidemic diarrhea virus containing a novel deletion in the N gene. Vet Microbiol 2019; 240:108511. [PMID: 31902508 PMCID: PMC7173345 DOI: 10.1016/j.vetmic.2019.108511] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 10/25/2022]
Abstract
Since late 2010, highly virulent PEDV G2-genotype strains have emerged globally extracting heavy losses on the pork industries of numerous countries. We investigated the characteristics of a field strain of PEDV (PEDV strain SH) isolated from a piglet with severe diarrhea on a farm in Shanghai China. Whole genome sequencing and analysis revealed that the SH strain belonged to subtype G2b and has a unique 12-aa deletion (aa 399-410) including the antigenic epitope NEP-1C9 (aa 398-406) of the N protein. PEDV SH strain is highly pathogenic to challenged newborn piglets, resulting in 100 % morbidity and mortality. Pathological examination revealed significant villus atrophy in the jejuna of infected piglets. Mice inoculated with inactivated PEDV SH produced antibodies against the N protein, but no antibodies against the deletions. These results illustrated that deletion of the NEP-1C9 epitope had no effect on the immunogenicity or pathogenicity of PEDV, providing evidence of the necessity to monitor the genetic diversity of the virus. Our study also contributes to development of candidate for vaccines and diagnostics that could differentiate pigs seropositive due to vaccination by conventional strains from wild virus infection.
Collapse
Affiliation(s)
- Xian-Wei Wang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| | - Mi Wang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing Zhan
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Qian-Yu Liu
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Lin-Lin Fang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Chen-Yao Zhao
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ping Jiang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Yu-Feng Li
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Juan Bai
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| |
Collapse
|
7
|
Chen P, Wang K, Hou Y, Li H, Li X, Yu L, Jiang Y, Gao F, Tong W, Yu H, Yang Z, Tong G, Zhou Y. Genetic evolution analysis and pathogenicity assessment of porcine epidemic diarrhea virus strains circulating in part of China during 2011-2017. INFECTION GENETICS AND EVOLUTION 2019; 69:153-165. [PMID: 30677534 PMCID: PMC7106134 DOI: 10.1016/j.meegid.2019.01.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/24/2018] [Accepted: 01/16/2019] [Indexed: 11/19/2022]
Abstract
In recent years, the outbreaks of porcine epidemic diarrhea (PED) caused by the highly virulent porcine epidemic diarrhea virus (PEDV) variants occurred frequently in China, resulting in severe economic impacts to the pork industry. In this study, we selected and analyzed the genetic evolution of 15 PEDV representative strains that were identified in fecal samples of diarrheic piglets in 10 provinces and cities during 2011-2017. The phylogenetic analysis indicated that all the 15 PEDV isolates clustered into G2 genotype associated with the current circulating strains. Compared with the genome of the prototype strain CV777, these strains had 103-120 amino acid mutations in their S proteins, most of which were in the N terminal domain of S1 (S1-NTD). We also found 37 common mutations in all these 15 strains, although these strains shared 96.9-99.7% nucleotide homology and 96.3-99.8% amino acid homology in the S protein compared with the other original pandemic strains. Computational analysis showed that these mutations may lead to remarkable changes in the conformational structure and asparagine (N)-linked glycosylation sites of S1-NTD, which may be associated with the altered pathogenicity of these variant PEDV strains. We evaluated the pathogenicity of the PEDV strain FJzz1 in piglets through oral and intramuscular infection routes. Compared with oral infection, intramuscular infection could also cause typical clinical signs but with a slightly delayed onset, confirming that the variant PEDV isolate FJzz1 was highly pathogenic to suckling piglets. In conclusion, we analyzed the genetic variation and pathogenicity of the emerging PEDV isolates of China, indicating that G2 variant PEDV strains as the main prevalent strains that may mutate continually. This study shows the necessity of monitoring the molecular epidemiology and the etiological characteristics of the epidemic PEDV isolates, which may help better control the PED outbreaks.
Collapse
Affiliation(s)
- Pengfei Chen
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Kang Wang
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yixuan Hou
- Shanghai Key laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai JiaoTong University, Shanghai, China
| | - Huichun Li
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Xianbin Li
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Lingxue Yu
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yifeng Jiang
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Fei Gao
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Wu Tong
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Hai Yu
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Zhibiao Yang
- Shanghai Key laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai JiaoTong University, Shanghai, China
| | - Guangzhi Tong
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.
| | - Yanjun Zhou
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.
| |
Collapse
|
8
|
S1 Subunit of Spike Protein from a Current Highly Virulent Porcine Epidemic Diarrhea Virus Is an Important Determinant of Virulence in Piglets. Viruses 2018; 10:v10090467. [PMID: 30200258 PMCID: PMC6163780 DOI: 10.3390/v10090467] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 08/29/2018] [Accepted: 08/29/2018] [Indexed: 12/27/2022] Open
Abstract
Base on the sequence of S genes, which encode spike proteins, we previously identified three different types (North American, S INDEL, and S large-DEL types) of porcine epidemic diarrhea virus (PEDV) that have re-emerged in Japan since 2013. Based on experimental infections with the North American and S large-DEL types, we also hypothesized that PEDV virulence may be linked to the S1 subunit of the S protein. To test this hypothesis, we have now assayed in gnotobiotic piglets various recombinant PEDVs generated by reverse genetics. Piglets inoculated with CV777 maintained in National Institute of Animal Health, along with piglets infected with a recombinant form of the same virus, developed subclinical to mild diarrhea. In contrast, severe watery diarrhea, dehydration, weight loss, astasia, and high mortality were observed in piglets inoculated with recombinant strains in which the S gene was partially or fully replaced with corresponding sequences from the highly virulent Japanese PEDV isolate OKN-1/JPN/2013. Indeed, symptoms resembled those in piglets inoculated with the OKN-1/JPN/2013, and were especially pronounced in younger piglets. Collectively, the data demonstrate that the S1 subunit of the S protein is an important determinant of PEDV virulence, and advance development of new vaccine candidate.
Collapse
|
9
|
Sun J, Li Q, Shao C, Ma Y, He H, Jiang S, Zhou Y, Wu Y, Ba S, Shi L, Fang W, Wang X, Song H. Isolation and characterization of Chinese porcine epidemic diarrhea virus with novel mutations and deletions in the S gene. Vet Microbiol 2018; 221:81-89. [PMID: 29981713 PMCID: PMC7117340 DOI: 10.1016/j.vetmic.2018.05.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 05/21/2018] [Accepted: 05/29/2018] [Indexed: 12/03/2022]
Abstract
We successfully isolated two novel PEDV strains, PEDV-LA1 and PEDV-LY4-98 in China. The two novel PEDV isolates shared higher identities with United States strains than with South Korean strains. Three unique amino acid substitutions were identified in the S1 N terminal domain of the PEDV-LY4-98 strain.
Porcine epidemic diarrhea (PEDV) has raised growing concerns in the pig-breeding industry because it has caused significant economic losses. To better understand the molecular epidemiology and genetic diversity of PEDV field isolates, in this study, the complete spike (S) and ORF3 genes of 17 PEDV variants in Zhejiang, China during 2014 to 2017, were characterized and analyzed. Phylogenetic analysis based on the S gene and ORF3 gene of these 17 novel PEDV strains and PEDV reference strains indicated that all the PEDV strains fell into two groups designated G1 and G2. Notably, the strains identified in 2014–2015 were in G2, while the other five strains identified from 2016 to 2017 were in G1. Sequencing and phylogenetic analyses showed that recently prevalent Chinese PEDV field strains shared higher identities with United States strains than with South Korean strains. Compared with classical vaccine strains, a series of deletions and frequently occurring mutations were observed in the receptor binding domains of our PEDV strains. Besides, we successfully isolated and reported the genetic characterization two novel PEDV strains, PEDV-LA1 and PEDV-LY4-98, found on the Chinese mainland, which had significant variations in the S gene. Meanwhile, the virulence of the new mutants may be changed, the PEDV-LY4-98 strain, which has multiple mutations in the signal peptide-encoding fragment of the S gene showed delayed cytopathic effects and smaller plaque size compared with strain PEDV-LA1, which lacks these mutations. Three unique amino acid substitutions (L7, G8, and V9) were identified in the SP-encoding fragment of the S1 N-terminal domain of the PEDV-LY4-98 S protein compared with the S proteins of all the previous PEDV strains. The animal experiment revealed that these two novel strains were high pathogenic to neonatal pigs. Whether these amino acids substitutions and the N-glycosylation site substitutions influence the antigenicity and pathogenicity of PEDV remains to be investigated. Meanwhile, amino acid substitutions in the neutralizing epitopes may have conferred the capacity for immune evasion in these PEDV field strains. This study improves our understanding of ongoing PEDV outbreaks in China, and it will guide further efforts to develop effective measures to control this virus.
Collapse
Affiliation(s)
- Jing Sun
- College of Animal Science and Technology of Zhejiang A&F University, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Lin'an, Zhejiang, PR China
| | - Qunjing Li
- College of Animal Science and Technology of Zhejiang A&F University, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Lin'an, Zhejiang, PR China
| | - Chunyan Shao
- College of Animal Science and Technology of Zhejiang A&F University, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Lin'an, Zhejiang, PR China
| | - Yuanmei Ma
- College of Animal Science and Technology of Zhejiang A&F University, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Lin'an, Zhejiang, PR China
| | - Haijian He
- School of Agricultural and Biological Engineer, Jinhua Polytechnic, Jinhua, Zhejiang, PR China
| | - Sheng Jiang
- College of Animal Science and Technology of Zhejiang A&F University, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Lin'an, Zhejiang, PR China
| | - Yingshan Zhou
- College of Animal Science and Technology of Zhejiang A&F University, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Lin'an, Zhejiang, PR China
| | - Yuan Wu
- School of Agricultural and Biological Engineer, Jinhua Polytechnic, Jinhua, Zhejiang, PR China
| | - Shaobo Ba
- College of Animal Science and Technology of Zhejiang A&F University, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Lin'an, Zhejiang, PR China
| | - Lin Shi
- College of Animal Science and Technology of Zhejiang A&F University, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Lin'an, Zhejiang, PR China
| | - Weihuan Fang
- College of Animal Science and Technology of Zhejiang A&F University, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Lin'an, Zhejiang, PR China; Zhejiang University Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang, PR China
| | - Xiaodu Wang
- College of Animal Science and Technology of Zhejiang A&F University, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Lin'an, Zhejiang, PR China.
| | - Houhui Song
- College of Animal Science and Technology of Zhejiang A&F University, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Lin'an, Zhejiang, PR China.
| |
Collapse
|
10
|
Yu J, Chai X, Cheng Y, Xing G, Liao A, Du L, Wang Y, Lei J, Gu J, Zhou J. Molecular characteristics of the spike gene of porcine epidemic diarrhoea virus strains in Eastern China in 2016. Virus Res 2018; 247:47-54. [DOI: 10.1016/j.virusres.2018.01.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/24/2018] [Accepted: 01/26/2018] [Indexed: 10/18/2022]
|
11
|
Huan CC, Wang HX, Sheng XX, Wang R, Wang X, Liao Y, Liu QF, Tong GZ, Ding C, Fan HJ, Wu JQ, Mao X. Porcine epidemic diarrhea virus nucleoprotein contributes to HMGB1 transcription and release by interacting with C/EBP-β. Oncotarget 2018; 7:75064-75080. [PMID: 27634894 PMCID: PMC5342723 DOI: 10.18632/oncotarget.11991] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 09/02/2016] [Indexed: 01/09/2023] Open
Abstract
Porcine epidemic diarrhea is a devastating swine enteric disease, which is caused by porcine epidemic diarrhea virus (PEDV) infection. Our studies demonstrated that PEDV infection resulted in the up-regulation of proinflammatory cytokines. Meanwhile, PEDV infection and overexpression of viral nucleoprotein resulted in the acetylation and release of high mobility group box 1 proteins in vitro, an important proinflammatory response mediator, which contributes to the pathogenesis of various inflammatory diseases. Our studies also showed that SIRT1, histone acetyltransferase, and NF-κB regulated the acetylation and release of HMGB1. Chromatin immunoprecipitation, dual-luciferase reporter gene assay, and co-immunoprecipitation experiments illustrated that PEDV-N could induce HMGB1 transcription by interacting with C/EBP-β, which could bind to C/EBP motif in HMGB1 promotor region. Collectively, our data indicate PEDV-N contributes to HMGB1 transcription and the subsequent release/acetylation of HMGB1 during PEDV infection.
Collapse
Affiliation(s)
- Chang-Chao Huan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China, 210095
| | - Hua-Xia Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China, 210095
| | - Xiang-Xiang Sheng
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China, 210095
| | - Rui Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China, 210095
| | - Xin Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China, 210095
| | - Ying Liao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China, 200241
| | - Qin-Fang Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China, 200241
| | - Guang-Zhi Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China, 200241
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China, 200241
| | - Hong-Jie Fan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China, 210095
| | - Jia-Qiang Wu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Shandong Province, China, 250100
| | - Xiang Mao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China, 210095.,Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China, 200241
| |
Collapse
|
12
|
Differential gene modulation of pattern-recognition receptor TLR and RIG-I-like and downstream mediators on intestinal mucosa of pigs infected with PEDV non S-INDEL and PEDV S-INDEL strains. Virology 2017; 517:188-198. [PMID: 29249266 PMCID: PMC7112111 DOI: 10.1016/j.virol.2017.11.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/25/2017] [Accepted: 11/29/2017] [Indexed: 02/06/2023]
Abstract
Porcine epidemic diarrhea virus (PEDV) strains can be divided into non-S-INDEL and S-INDEL strains. PEDV pathogenesis is strain-specific, and studies in neonatal pigs have demonstrated that the PEDV non-S-INDEL strains are more pathogenic than the PEDV S-INDEL strains. RNA viruses, including PEDV, can interact with a large number of pattern recognition receptors (PRRs) in the intestinal mucosa, including toll-like receptors (TLRs) and RIG-I-like receptors (RLRs). We investigated the differential gene modulation of TLRs, RIG-I, and downstream mediators on the intestinal mucosa of neonatal pigs infected with PEDV S-INDEL and non-S-INDEL strains. Ten five-day-old piglets were inoculated orally with 10 ml of 104 TCDI50/ml of either PEDV non-S-INDEL or S-INDEL strains. PEDV S-INDEL infection induced pro-inflammatory cytokines through the non-canonical NF-κB signaling pathway by activating RIG-I. In contrast, PEDV non-S-INDEL infection suppressed the induction of pro-inflammatory cytokines and type 1 interferon production by down-regulation of TLRs and downstream signaling molecules. Differential gene modulation of TLR and RIG-I-like receptors and downstream mediators. PEDV S-INDEL induces pro-inflammatory cytokines through non-canonical NF-κB signaling pathway. PEDV S-INDEL pro-inflammatory cytokines activation is RIG-I dependent. PEDV non-S-INDEL suppresses the induction of pro-inflammatory cytokines and type 1 interferon. PEDV non-S-INDEL effect is mediated by down-regulation of TLRs and its downstream-signaling molecules. PEDV S-INDEL and PEDV non-S-INDEL cause differential modulation on innate immune response pathways. Differential modulation could be translated into differences in pathogenesis and clinical outcomes.
Collapse
|
13
|
Su Y, Liu Y, Chen Y, Xing G, Hao H, Wei Q, Liang Y, Xie W, Li D, Huang H, Deng R, Zhang G. A novel duplex TaqMan probe-based real-time RT-qPCR for detecting and differentiating classical and variant porcine epidemic diarrhea viruses. Mol Cell Probes 2017; 37:6-11. [PMID: 29104088 DOI: 10.1016/j.mcp.2017.10.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/11/2017] [Accepted: 10/30/2017] [Indexed: 02/01/2023]
Abstract
Two different genotypes of porcine epidemic diarrhea virus (PEDV), the classical and variant strains, are classified by multiple insertions and deletions in their S genes. It is critical to detect and differentiate two genotypes in the pork industry to prevent PEDV outbreaks. In the present study, a novel duplex TaqMan RT-PCR was developed for detecting and differentiating PEDV strains in China. There was no cross-amplification between the two probes when using standard recombinant plasmids, and the specificity was further confirmed by using other seven non-PEDV swine pathogens. The minimum copies required for the detection of both classical and variant PEDV were 4.8 × 102 DNA copies/reaction. The repeatability of TaqMan RT-PCR was evaluated using standard recombinant plasmids and gave coefficients of variation 0.19-4.93. In recent 5 years, 79 clinical samples were collected from piglets with severe diarrhea in the Central China. Among these clinical samples, 51 were confirmed as PEDV positive by conventional RT-PCR, whereas 63 variant PEDV, 3 co-infections and 1 classical PEDV were confirmed by this duplex TaqMan RT-PCR, with viral loads of 102-108, 102-103, and 104 copies/reaction, respectively. Therefore, the duplex TaqMan RT-PCR could be a useful method for detecting and differentiating variant and classical PEDV strains. The results showed that variant PEDV was prevalent in clinical samples in central China. Moreover, in this study, co-infection by PEDV strains was detected for the first time and might help explain the emergence of the novel recombinant PEDV in recent years.
Collapse
Affiliation(s)
- Yunfang Su
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Yunchao Liu
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450000, China
| | - Yumei Chen
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450000, China
| | - Guangxu Xing
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450000, China
| | - Huifang Hao
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450000, China
| | - Qiang Wei
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450000, China
| | - Yue Liang
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450000, China
| | - Weitao Xie
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450000, China
| | - Dongliang Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450000, China
| | - Huimin Huang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450000, China
| | - Ruiguang Deng
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450000, China
| | - Gaiping Zhang
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450000, China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450000, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225000, China.
| |
Collapse
|
14
|
Characterization of Chinese Porcine Epidemic Diarrhea Virus with Novel Insertions and Deletions in Genome. Sci Rep 2017; 7:44209. [PMID: 28276526 PMCID: PMC5343579 DOI: 10.1038/srep44209] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 02/06/2017] [Indexed: 11/09/2022] Open
Abstract
Outbreaks of porcine epidemic diarrhoea virus (PEDV) have caused great economic losses to the global pig industry. PEDV strains with variants in the spike (S) gene have been reported in several countries. To better understand the molecular epidemiology and genetic diversity of PEDV field isolates, in this study, we characterised the complete genome sequence of a novel PEDV variant JSCZ1601 from a outbreak in China in 2016. The PEDV isolate was 28,033 nucleotides (nt) in length without the polyadenylated sequences. Phylogenetic analysis based on the full-length genome sequence of JSCZ1601 grouped it with the pandemic variants determined post-2010 into group 2 (G2). However, the S gene of JSCZ1601 formed a new subgroup separated from the subgroups containing the other G2 strains. Comparative analysis of the amino acids encoded by the S genes revealed the N-terminal of the deduced JSCZ1601 S protein had a novel two-amino-acid deletion (N58 and S59) compared with all identified genogroups. Further, compared with the reference strains, a 'G' insertion was detected in the 5' terminal of the 5'UTR of the JSCZ1601. The animal experiment revealed that this strain was high pathogenic to neonatal pigs. Taken together, a PEDV strain with the new molecular characterizations and phylogenies was found in mainland China. It is necessary to strengthen the monitoring of PEDV variations.
Collapse
|
15
|
Huan CC, Wang HX, Sheng XX, Wang R, Wang X, Mao X. Glycyrrhizin inhibits porcine epidemic diarrhea virus infection and attenuates the proinflammatory responses by inhibition of high mobility group box-1 protein. Arch Virol 2017; 162:1467-1476. [PMID: 28175983 PMCID: PMC7086885 DOI: 10.1007/s00705-017-3259-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/08/2017] [Indexed: 12/11/2022]
Abstract
Porcine epidemic diarrhea (PED), caused by porcine epidemic diarrhea virus (PEDV) infection, leads to significant economic losses in the swine industry worldwide. In our studies, we found that glycyrrhizin, the major component of licorice root extracts, could moderately inhibit PEDV infection in Vero cells, when analyzed by western blot, qRT-PCR and a plaque formation assay. We also revealed that glycyrrhizin inhibited the entry and replication of PEDV. In addition, we demonstrated that glycyrrhizin decreased the mRNA levels of proinflammatory cytokines. Since glycyrrhizin is a competitive inhibitor of high mobility group box-1 (HMGB1), we confirmed that TLR4 and RAGE (£ associated with PEDV pathogenesis during the infection in Vero cells. In summary, our studies provide a molecular basis for developing novel therapeutic methods to control PEDV infection, based on glycyrrhizin and its derivatives.
Collapse
Affiliation(s)
- Chang-Chao Huan
- College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu, 210095, China.
| | - Hua-Xia Wang
- College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu, 210095, China
| | - Xiang-Xiang Sheng
- College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu, 210095, China
| | - Rui Wang
- College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu, 210095, China
| | - Xin Wang
- College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu, 210095, China
| | - Xiang Mao
- College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu, 210095, China.
| |
Collapse
|
16
|
IFN-lambda preferably inhibits PEDV infection of porcine intestinal epithelial cells compared with IFN-alpha. Antiviral Res 2017; 140:76-82. [PMID: 28109912 PMCID: PMC7113730 DOI: 10.1016/j.antiviral.2017.01.012] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 01/06/2017] [Accepted: 01/16/2017] [Indexed: 12/02/2022]
Abstract
In contrast to type I interferons that target various types of cells and organs, interferon lambda (IFN-L) primarily acts on mucosal epithelial cells and exhibits robust antiviral activity within the mucosal surface. Porcine epidemic diarrhea virus (PEDV), which causes high morbidity and mortality in piglets, is an enteropathogenic coronavirus with economic importance. Here, we demonstrated that both recombinant porcine IFN-L1 (rpIFN-L1) and rpIFN-L3 have powerful antiviral activity against PEDV infection of both Vero E6 cells and the intestinal porcine epithelial cell line J2 (IPEC-J2). Both forms of rpIFN-L inhibited two genotypes of PEDV (strain CV777 of genotype 1 and strain LNCT2 of genotype 2). rpIFN-L1 primarily controlled viral infection in the early stage and had less antiviral activity in IPEC-J2 than in rpIFN-L3 cells infected with PEDV. In addition, rpIFN-L1 exhibited greater antiviral activity against PEDV infection of IPEC-J2 cells than that of porcine IFN-alpha. Consistent with this finding, rpIFN-L1 triggered higher levels of certain antiviral IFN-stimulated genes (ISGs) (ISG15, OASL, and MxA) in IPEC-J2 cells than porcine IFN-alpha. Although IPEC-J2 cells responded to both IFN-alpha and lambda, transcriptional profiling of ISGs (specifically ISG15, OASL, MxA, and IFITMs) differed when induced by either IFN-alpha or rpIFN-L. Therefore, our data provide the experimental evidence that porcine IFN-L suppresses PEDV infection of IPEC-J2 cells, which may offer a promising therapeutic for combating PED in piglets. Porcine IFN-lambda robustly inhibited PEDV in both Vero E6 and IPEC-J2. IFN-lambda exhibited more anti-PEDV activity and induced a better antiviral response in IPEC-J2 than IFN-alpha. Porcine IFN-lambda might represent a novel therapeutic agent for PEDV infection in the future.
Collapse
|
17
|
Novel Porcine Epidemic Diarrhea Virus (PEDV) Variants with Large Deletions in the Spike (S) Gene Coexist with PEDV Strains Possessing an Intact S Gene in Domestic Pigs in Japan: A New Disease Situation. PLoS One 2017; 12:e0170126. [PMID: 28095455 PMCID: PMC5241010 DOI: 10.1371/journal.pone.0170126] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 12/29/2016] [Indexed: 11/19/2022] Open
Abstract
Since late 2013, after an absence of seven years, outbreaks of porcine epidemic diarrhea virus (PEDV) infection have reemerged and swept rapidly across Japan, resulting in significant economic losses. In this study, we report the emergence, mixed infection, and genetic characterization of 15 novel field PEDV variants with large genomic deletions. The sizes of deletion varied between 582 nt (194 aa) and 648 nt (216 aa) at positions 28-714 (10-238) on the S gene (protein). Among 17 PEDV samples isolated from individual pigs, all of them contained at least two distinct genotypes with large genomic deletions, and 94.1% of them were found to consist of strains with an intact S gene. These variants were found in eight primary and nine recurrent outbreaks, and they might be associated with persistent PEDV infection in the farms. Full-length S and ORF3 genes of eight variants derived from 2 samples were characterized. This is the first report of mixed infections caused by various genotypes of PEDV and would be important for the studies of viral isolation, pathogenesis, and molecular epidemiology of the disease.
Collapse
|
18
|
Su Y, Liu Y, Chen Y, Zhao B, Ji P, Xing G, Jiang D, Liu C, Song Y, Wang G, Li D, Deng R, Zhang G. Detection and phylogenetic analysis of porcine epidemic diarrhea virus in central China based on the ORF3 gene and the S1 gene. Virol J 2016; 13:192. [PMID: 27887624 PMCID: PMC5123408 DOI: 10.1186/s12985-016-0646-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 11/10/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Porcine epidemic diarrhea (PED) has increased in severity in China since 2010. To investigate further the infectivity, genetic diversity and molecular epidemiology of its causative agent, the porcine epidemic diarrhea virus (PEDV), we assessed 129 clinical samples, which were the intestinal tissue of piglets with severe diarrhea, from 17 cities in central China. Both the spike (S) glycoprotein (S1, 1-789 amino acids (aa)) and the full-length ORF3 gene of 21 representative field strains from 21 farms in 11 cities were sequenced and analysed. METHODS PEDV was detected by reverse transcription-polymerase chain reaction (RT-PCR), and S1 and ORF3 sequences were processed by the Clustal W method via DNAMAN 8 software, and phylogenetic trees were constructed by the neighbor-joining method using MEGA 6 software. RESULTS The prevalence of PEDV was 92.25% and was detected in 119 of 129 samples, with 94.03% (63 of 67) of pig farms harbouring the disease. According to the phylogenetic analysis of the S1 genes, our isolates all fell into group G2 (variants) and showed a close relationship to isolates from Chinese (HN1303, CH/ZMDZY/11 and AJ1102), Korean (AD01), American (MN, IA1, IA2 and 13-019349) sources, and these isolates differed genetically from other Chinese (LZC, CH/HNZZ/2011 and SD-M) and Korean (SM98) strains as well Japanese (83-P5 and MK) strains. In addition, our isolates differed from attenuated vaccine strains, CV777 (used in China) and DR13 (used in Korea). According to our derived amino acid sequence analysis, we detected one novel variant PEDV, viz: CH/HNLY, with 4-aa insertion/deletion (RSSS/T) at position 375 and 1-aa (D) deletion at position 430 compared to the CV777 attenuated strain. These mutations were located on the receptor binding domain. Our ORF3 gene analyses showed that the prevalent PEDV isolates were variants, and the isolated strains differed genetically from the vaccine strains. CONCLUSIONS These findings illustrated the existence of genetic diversity among geographically distinct PEDV strains, and our study has provided an impetus to conduct further research on the PEDV receptor binding protein and on the new and efficacious vaccines design.
Collapse
Affiliation(s)
- Yunfang Su
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China
| | - Yunchao Liu
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Science, Zhengzhou, 450002, China.
| | - Yumei Chen
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Science, Zhengzhou, 450002, China
| | - Baolei Zhao
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Pengchao Ji
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China
| | - Guangxu Xing
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Science, Zhengzhou, 450002, China
| | - Dawei Jiang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Chang Liu
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Science, Zhengzhou, 450002, China
| | - Yapeng Song
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Guoqiang Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Dongliang Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Ruiguang Deng
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Science, Zhengzhou, 450002, China
| | - Gaiping Zhang
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Science, Zhengzhou, 450002, China. .,College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| |
Collapse
|
19
|
Suzuki T, Shibahara T, Yamaguchi R, Nakade K, Yamamoto T, Miyazaki A, Ohashi S. Pig epidemic diarrhoea virus S gene variant with a large deletion non-lethal to colostrum-deprived newborn piglets. J Gen Virol 2016; 97:1823-1828. [PMID: 27226332 DOI: 10.1099/jgv.0.000513] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
We previously identified a third porcine epidemic diarrhoea virus (PEDV) S variant with a large deletion of 582 nucleotides in the 5' terminal region of the S gene, in addition to the North American type and the S INDELs type. To investigate the pathogenicity of this variant, TTR-2/JPN/2014, we performed experimental infection using colostrum-deprived piglets and compared the results with those from the North American type PEDV, OKN-1/JPN/2013. Fifteen newborn piglets were divided into two groups of 7-8 piglets each and inoculated orally with one of PEDV isolates maintained at the eighth passage in Vero cell culture. Although all PEDV-inoculated piglets showed acute watery diarrhoea, lethality clearly differed between both PEDV-inoculated groups. Moreover, there were differences in virus distribution and lesions on the intestines between the two PEDV-inoculated groups. Therefore, our data suggest that the OKN-1/JPN/2013 PEDV isolate is virulent, whereas the TTR-2/JPN/2014 PEDV isolate is avirulent.
Collapse
Affiliation(s)
- Tohru Suzuki
- Viral Disease and Epidemiology Research Division, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Tomoyuki Shibahara
- Pathology and Pathophysiology Research Division, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Ryosaku Yamaguchi
- Institute of Animal Health, National Federation of Agricultural Co-operative Associations, Sakura, Japan
| | | | - Takehisa Yamamoto
- Viral Disease and Epidemiology Research Division, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Ayako Miyazaki
- Viral Disease and Epidemiology Research Division, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Seiichi Ohashi
- Viral Disease and Epidemiology Research Division, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| |
Collapse
|
20
|
Gao Q, Zhao S, Qin T, Yin Y, Yu Q, Yang Q. Effects of inactivated porcine epidemic diarrhea virus on porcine monocyte-derived dendritic cells and intestinal dendritic cells. Res Vet Sci 2016; 106:149-58. [PMID: 27234553 DOI: 10.1016/j.rvsc.2016.03.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 03/16/2016] [Accepted: 03/28/2016] [Indexed: 10/21/2022]
Abstract
Porcine epidemic diarrhea (PED) is a serious infection in neonatal piglets. As the causative agent of PED, porcine epidemic diarrhea virus (PEDV) results in acute diarrhea and dehydration with high mortality rates in swine. Dendritic cells (DCs) are highly effective antigen-presenting cells to uptake and present viral antigens to T cells, which then initiate a distinct immune response. In this study, our results show that the expression of Mo-DCs surface markers such as SWC3a(+)CD1a(+), SWC3a(+)CD80/86(+) and SWC3a(+)SLA-II-DR(+) is increased after incubation with UV-PEDV for 24h. Mo-DCs incubated with UV-PEDV produce higher levels of IL-12 and INF-γ compared to mock-infected Mo-DCs. Interactions between Mo-DCs and UV-PEDV significantly stimulate T-cell proliferation in vitro. Consistent with these results, there is an enhancement in the ability of porcine intestinal DCs to activate T-cell proliferation in vivo. We conclude that UV-PEDV may be a useful and safe vaccine to trigger adaptive immunity.
Collapse
Affiliation(s)
- Qi Gao
- Nanjing Agricultural University, Wei gang 1, Jiangsu, PR China
| | - Shanshan Zhao
- Nanjing Agricultural University, Wei gang 1, Jiangsu, PR China
| | - Tao Qin
- Nanjing Agricultural University, Wei gang 1, Jiangsu, PR China
| | - Yinyan Yin
- Nanjing Agricultural University, Wei gang 1, Jiangsu, PR China
| | - Qinghua Yu
- Nanjing Agricultural University, Wei gang 1, Jiangsu, PR China
| | - Qian Yang
- Key Lab of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, PR China.
| |
Collapse
|
21
|
Yamamoto T, Suzuki T, Ohashi S, Miyazaki A, Tsutsui T. Genomic Motifs as a Novel Indicator of the Relationship between Strains Isolated from the Epidemic of Porcine Epidemic Diarrhea in 2013-2014. PLoS One 2016; 11:e0147994. [PMID: 26808527 PMCID: PMC4726493 DOI: 10.1371/journal.pone.0147994] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 01/10/2016] [Indexed: 11/18/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is a positive-sense RNA virus that causes infectious gastroenteritis in pigs. Following a PED outbreak that occurred in China in 2010, the disease was identified for the first time in the United States in April 2013, and was reported in many other countries worldwide from 2013 to 2014. As a novel approach to elucidate the epidemiological relationship between PEDV strains, we explored their genome sequences to identify the motifs that were shared within related strains. Of PED outbreaks reported in many countries during 2013–2014, 119 PEDV strains in Japan, USA, Canada, Mexico, Germany, and Korea were selected and used in this study. We developed a motif mining program, which aimed to identify a specific region of the genome that was exclusively shared by a group of PEDV strains. Eight motifs were identified (M1–M8) and they were observed in 41, 9, 18, 6, 10, 14, 2, and 2 strains, respectively. Motifs M1–M6 were shared by strains from more than two countries, and seemed to originate from one PEDV strain, Indiana12.83/USA/2013, among the 119 strains studied. BLAST search for motifs M1–M6 revealed that M3–M5 were almost identical to the strain ZMDZY identified in 2011 in China, while M1 and M2 were similar to other Chinese strains isolated in 2011–2012. Consequently, the PED outbreaks in these six countries may be closely related, and multiple transmissions of PEDV strains between these countries may have occurred during 2013–2014. Although tools such as phylogenetic tree analysis with whole genome sequences are increasingly applied to reveal the connection between isolates, its interpretation is sometimes inconclusive. Application of motifs as a tool to examine the whole genome sequences of causative agents will be more objective and will be an explicit indicator of their relationship.
Collapse
Affiliation(s)
- Takehisa Yamamoto
- Virology and Epidemiology Research Division, National Institute of Animal Health, National Agriculture and Research Organization, Tsukuba, Ibaraki 305–0856, Japan
- * E-mail:
| | - Tohru Suzuki
- Virology and Epidemiology Research Division, National Institute of Animal Health, National Agriculture and Research Organization, Tsukuba, Ibaraki 305–0856, Japan
| | - Seiichi Ohashi
- Virology and Epidemiology Research Division, National Institute of Animal Health, National Agriculture and Research Organization, Tsukuba, Ibaraki 305–0856, Japan
| | - Ayako Miyazaki
- Virology and Epidemiology Research Division, National Institute of Animal Health, National Agriculture and Research Organization, Tsukuba, Ibaraki 305–0856, Japan
| | - Toshiyuki Tsutsui
- Virology and Epidemiology Research Division, National Institute of Animal Health, National Agriculture and Research Organization, Tsukuba, Ibaraki 305–0856, Japan
| |
Collapse
|
22
|
Van Diep N, Norimine J, Sueyoshi M, Lan NT, Hirai T, Yamaguchi R. US-like isolates of porcine epidemic diarrhea virus from Japanese outbreaks between 2013 and 2014. SPRINGERPLUS 2015; 4:756. [PMID: 26693114 PMCID: PMC4668244 DOI: 10.1186/s40064-015-1552-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 11/24/2015] [Indexed: 12/22/2022]
Abstract
Since late 2013, outbreaks of porcine epidemic diarrhea virus (PEDV) have reemerged in Japan. In the present study, we observed a high detection rate of PEDV, with 72.5 % (148/204) of diarrhea samples (suckling, weaned, and sows) and 88.5 % (77/87) of farms experiencing acute diarrhea found to be positive for PEDV by reverse transcription PCR. Sequencing and phylogenic analyses of the partial spike gene and ORF3 of PEDV demonstrated that all prevailing Japanese PEDV isolates belonged to novel genotypes that differed from previously reported strains and the two PEDV vaccine strains currently being used in Japan. Sequence and phylogenetic analysis revealed prevailing PEDV isolates in Japan had the greatest genetic similarity to US isolates and were not vaccine-related. Unlike vaccine strains, all prevailing field PEDV isolates in Japan were found to have a number of amino acid differences in the neutralizing epitope domain, COE, which may affect antigenicity and vaccine efficacy. The present study indicates recent PEDV isolates may have been introduced into Japan from overseas and highlights the urgent requirement of novel vaccines for controlling PEDV outbreaks in Japan.
Collapse
Affiliation(s)
- Nguyen Van Diep
- Laboratory of Veterinary Pathology, Department of Veterinary, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-Nishi, Miyazaki, 889-2192 Japan
| | - Junzo Norimine
- Laboratory of Veterinary Pathology, Department of Veterinary, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-Nishi, Miyazaki, 889-2192 Japan
| | - Masuo Sueyoshi
- Laboratory of Veterinary Pathology, Department of Veterinary, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-Nishi, Miyazaki, 889-2192 Japan
| | - Nguyen Thi Lan
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Takuya Hirai
- Laboratory of Veterinary Pathology, Department of Veterinary, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-Nishi, Miyazaki, 889-2192 Japan
| | - Ryoji Yamaguchi
- Laboratory of Veterinary Pathology, Department of Veterinary, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-Nishi, Miyazaki, 889-2192 Japan
| |
Collapse
|
23
|
Lei X, Zhao J, Wang X, Zhao Y, Wang C. Development of a hybridoma cell line secreting monoclonal antibody against S protein of a Chinese variant of PEDV. Monoclon Antib Immunodiagn Immunother 2015; 34:12-6. [PMID: 25723278 DOI: 10.1089/mab.2014.0063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Gene encoding 22-380 aa of spike protein of porcine epidemic diarrhea virus (PEDV) isolate in China was cloned and expressed as a recombinant protein in Escherichia coli BL21(DE3). Female BALB/c mice were immunized with the purified recombinant S protein, and a monoclonal antibody (MAb) designated as 2D1 against S protein was achieved by hybridoma technique. MAb 2D1 reacted with S protein of PEDV specifically. The monoclonal antibody 2D1 may provide a useful tool as a specific diagnostic reagent for detecting S protein of the Chinese variant of PEDV and for further investigation into the virus' pathogenic mechanism.
Collapse
Affiliation(s)
- Ximei Lei
- College of Animal Science and Veterinary Medicine, Henan Agricultural University , Zhengzhou, China
| | | | | | | | | |
Collapse
|
24
|
Suzuki T, Murakami S, Takahashi O, Kodera A, Masuda T, Itoh S, Miyazaki A, Ohashi S, Tsutsui T. Molecular characterization of pig epidemic diarrhoea viruses isolated in Japan from 2013 to 2014. INFECTION GENETICS AND EVOLUTION 2015; 36:363-368. [PMID: 26477934 DOI: 10.1016/j.meegid.2015.10.017] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/17/2015] [Accepted: 10/13/2015] [Indexed: 11/30/2022]
Abstract
Since October 2013, approximately 1000 outbreaks of porcine epidemic diarrhoea (PED) have occurred, spanning almost all prefectures of Japan, after a period of seven years without a reported case. In order to consider occurrence factor of PED outbreaks, we determined the whole-genome sequences of 38 PED virus (PEDV) strains from diarrheal samples collected at swine farms in 18 prefectures between 2013 and 2014 using next-generation sequencing technology. Using these data, we investigated genetic variation among the recent Japanese PEDV strains and the genetic relationships between these strains and global PEDV strains isolated recently from multiple swine-industrial countries. Eleven out of 38 PEDV strains were isolated successfully on Vero cells with trypsin treatment and subjected to genome sequence analysis. In a comparative genome analysis, we detected two novel PEDV variants, TTR-2/JPN/2014 and MYG-1/JPN/2014, with large deletions in the spike and ORF3 genes, respectively. A phylogenetic analysis based on the spike gene showed that the 38 Japanese PEDV strains were classified into two PEDV types: the North American type with high virulence (n=34) and the INDEL type (n=4). In addition, the recent Japanese PEDV isolates had a close relationship to global PEDV strains isolated in recent years than to the classical PEDV strains detected in Japan the past decades ago. Moreover, the phylogenetic dendrogram of the complete genomes also indicated that the 38 Japanese PEDV strains, including the two novel PEDV variants discovered in this study, are closely related to the PEDV strains that were widespread in the United States and Korea in 2013-2014. These findings suggest that the re-emergence of PED outbreaks since the last reported case in 2006 was caused by the introduction of recent PEDV strains to Japan from overseas.
Collapse
Affiliation(s)
- Tohru Suzuki
- Viral Disease and Epidemiology Research Division, National Institute of Animal Health, NARO, 3-1-5 Tsukuba, Ibaraki 305-0856, Japan.
| | - Satoshi Murakami
- Life Technologies Japan ltd., Thermo Fisher Scientific, 4-2-8 Shibaura, Minato-ku, Tokyo 108-0023, Japan
| | - Osamu Takahashi
- Life Technologies Japan ltd., Thermo Fisher Scientific, 4-2-8 Shibaura, Minato-ku, Tokyo 108-0023, Japan
| | - Aya Kodera
- Sendai Livestock Hygiene Service Center, 3-11-22 Sendai, Miyagi 983-0832, Japan
| | - Tsuneyuki Masuda
- Kurayoshi Livestock Hygiene Service Center, 2-132 Kurayoshi, Tottori 682-0017, Japan
| | - Sakie Itoh
- Viral Disease and Epidemiology Research Division, National Institute of Animal Health, NARO, 3-1-5 Tsukuba, Ibaraki 305-0856, Japan
| | - Ayako Miyazaki
- Viral Disease and Epidemiology Research Division, National Institute of Animal Health, NARO, 3-1-5 Tsukuba, Ibaraki 305-0856, Japan
| | - Seiichi Ohashi
- Viral Disease and Epidemiology Research Division, National Institute of Animal Health, NARO, 3-1-5 Tsukuba, Ibaraki 305-0856, Japan
| | - Toshiyuki Tsutsui
- Viral Disease and Epidemiology Research Division, National Institute of Animal Health, NARO, 3-1-5 Tsukuba, Ibaraki 305-0856, Japan
| |
Collapse
|
25
|
Shen H, Zhang C, Guo P, Liu Z, Zhang J. Effective inhibition of porcine epidemic diarrhea virus by RNA interference in vitro. Virus Genes 2015; 51:252-9. [PMID: 26329934 PMCID: PMC7088742 DOI: 10.1007/s11262-015-1242-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/20/2015] [Indexed: 11/25/2022]
Abstract
Porcine epidemic diarrhea virus (PEDV) is a member of the coronaviridae family, which can cause acute and highly contagious enteric disease of swine characterized by severe entero-pathogenic diarrhea in piglets. Currently, the vaccines of PEDV are only partially effective and there is no specific drug available for treatment of PEDV infection. To exploit the possibility of using RNA interference (RNAi) as a strategy against PEDV infection, five shRNA-expressing plasmids targeting the N, M, and S genes of PEDV were constructed and transfected into Vero cells. The cytopathic effect and MTS assays demonstrated that two shRNAs (pSilencer4.1-M1 and pSilencer4.1-N) were capable of protecting cells against PEDV invasion with very high specificity and efficiency. The two shRNA expression plasmids were also able to inhibit the PEDV replication significantly, as shown by detection of virus titers (TCID50/mL). A real-time quantitative RT-PCR further confirmed that the amounts of viral RNAs in cell cultures pre-transfected with these two plasmids were reduced by 95.0 %. Our results suggest that RNAi might be a promising new strategy against PEDV infection.
Collapse
Affiliation(s)
- Haiyan Shen
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangdong Open Laboratory of Veterinary Public Health, Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, 510640, Guangdong, China
| | - Chunhong Zhang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangdong Open Laboratory of Veterinary Public Health, Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, 510640, Guangdong, China
| | - Pengju Guo
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou, 510640, Guangdong, China
| | - Zhicheng Liu
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangdong Open Laboratory of Veterinary Public Health, Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, 510640, Guangdong, China
| | - Jianfeng Zhang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangdong Open Laboratory of Veterinary Public Health, Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, 510640, Guangdong, China.
| |
Collapse
|
26
|
Huan CC, Wang Y, Ni B, Wang R, Huang L, Ren XF, Tong GZ, Ding C, Fan HJ, Mao X. Porcine epidemic diarrhea virus uses cell-surface heparan sulfate as an attachment factor. Arch Virol 2015; 160:1621-8. [PMID: 25896095 DOI: 10.1007/s00705-015-2408-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 03/26/2015] [Indexed: 10/23/2022]
Abstract
It is well known that many viruses use heparan sulfate as the initial attachment factor. In the present study, we determined whether porcine epidemic diarrhea virus (PEDV), an emerging veterinary virus, infects Vero cells by attaching to heparan sulfate. Western blot analysis, real-time PCR, and plaque formation assay revealed that PEDV infection was inhibited when the virus was pretreated with heparin (an analogue of heparan sulfate). There was no inhibitory effect when the cells were pre-incubated with heparin. We next demonstrated that enzymatic removal of the highly sulfated domain of heparan sulfate by heparinase I treatment inhibited PEDV infection. We also confirmed that sodium chlorate, which interferes with heparan sulfate biosynthesis, also inhibited PEDV infection. Furthermore, we examined the effect of two heparin derivatives with different types of sulfation on PEDV infection. The data suggested de-N-sulfated heparin, but not N-acetyl-de-O-sulfated heparin, inhibits PEDV infection. In summary, our studies revealed that heparan sulfate acts as the attachment factor of PEDV in Vero cells.
Collapse
Affiliation(s)
- Chang-chao Huan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Zhao PD, Tan C, Dong Y, Li Y, Shi X, Bai J, Jiang P. Genetic variation analyses of porcine epidemic diarrhea virus isolated in mid-eastern China from 2011 to 2013. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2015; 79:8-15. [PMID: 25673903 PMCID: PMC4283240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 03/05/2014] [Indexed: 06/04/2023]
Abstract
Porcine diarrhea outbreaks caused by porcine epidemic diarrhea virus (PEDV) has occurred in China with significant losses of piglets since 2010. In this study, the complete S and ORF3 genes of 15 field PEDV isolates in mid-eastern China from 2011 to 2013 were detected and compared with other reference strains. Based on S gene, all of the PEDV strains could be assigned to 3 genogroups. Only 1 isolate, JS120103, belonged to genogroup 1 and showed a close relationship with previous Chinese strains DX and JS-2004-2, European strain CV777, and Korean strain DR13. The other 14 isolates belonged to genogroup 3 and showed a close relationship with other Chinese strains isolated after 2010. The S genes of those isolates were 9 nucleotides longer in length than JS120103 and the other reference strains in genogroup 1, with 15 bp insertion and 6 bp deletion. Homology analyses revealed that all of the Chinese field isolates, except JS120103, are 97.6% to 100% (95.8% to 100%) identical in nucleotide (deduced amino acid) sequence to each other. Meanwhile, based on the ORF3 gene, all of the PEDV isolates could be separated into 3 genogroups. Eleven of the 15 field isolates in this study belonged to genogroup 3 and were 95.8% to 100% identical in nucleotide sequence or 95.6% to 100% in deduced amino acid sequence to each other. Our results indicate that the variant PEDV strain spread wildly in mid-eastern China. This will be useful to take into consideration in the control and prevention of this disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ping Jiang
- Address all correspondence to Dr. Ping Jiang; e-mail: and Dr. Juan Bai; e-mail:
| |
Collapse
|
28
|
Abstract
In the last decade, many porcine epidemic diarrhoea (PED) outbreaks have been reported by several countries in Asia whereas only a few Member States of the European Union (EU) have reported PED clinical cases and/or PED virus (PEDV)-seropositive animals. This alphacoronavirus was first reported in the USA in May 2013, followed by rapid spread throughout the country and outbreaks reported by several countries in the Americas. The recent PEDV-EU isolates have high level of sequence identity to PEDV-Am isolates. Based on nucleotide sequencing, multiple variants of PEDV are circulating in Europe, the Americas and Asia but any difference in virulence and antigenicity is currently unknown. Serological cross-reactivity has been reported between PEDV isolated in Europe and in the Americas; however no data regarding cross-protection are available. The impact of different PEDV strains is difficult to compare between one country and another, since impact is dependent not only on pathogenicity but also on factors such as biosecurity, farm management, sanitary status or herd immune status. However, the clinical signs of PEDV infections in naive pigs are similar in different countries with mortalities up to 100% in naive newborn piglets. The impact of recently reported PED outbreaks in Asia and the USA seems to be more severe than what has been described in Europe. Infected animals, faeces, feed and objects contaminated with faeces are matrices that have been reported to transmit PEDV between farms. Infectious PEDV has been detected in spray-dried porcine plasma (SDPP) in one study but the origin of the infectious PEDV in SDPP is not clear. Detection of porcine deltacoronavirus (PDCoV) has been reported in a few countries but only limited testing has been done. Based on the currently available information, it seems that PDCoV would have a lower impact than PEDV.
Collapse
|
29
|
Li R, Qiao S, Yang Y, Su Y, Zhao P, Zhou E, Zhang G. Phylogenetic analysis of porcine epidemic diarrhea virus (PEDV) field strains in central China based on the ORF3 gene and the main neutralization epitopes. Arch Virol 2013; 159:1057-65. [PMID: 24292967 PMCID: PMC7087087 DOI: 10.1007/s00705-013-1929-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 11/16/2013] [Indexed: 12/02/2022]
Abstract
Since 2010, porcine epidemic diarrhea has re-emerged with devastating impact on the swine-raising industry in central China. To investigate the epidemic characteristics of PEDV, the complete ORF3 genes of 14 PEDV field strains from central China during 2012 to 2013 were cloned, sequenced and compared with reference strains. Phylogenetic analysis based on the complete ORF3 gene showed that the PEDVs in central China and the reference strains could be divided into three groups: G1, G2, and G3. The 14 PEDV isolates were classified as G1 and showed a close relationship to some Chinese strains isolated previously in central China and differed genetically from recent isolates from southern China, Korean strains (SM98 and DB1865, 2012), the Chinese LZC strain (2007), and the vaccine strain (CV777) being used in China. Our findings suggested that the PEDVs circulating between 2012 and 2013 in central China might have evolved from earlier strains in the local region. To determine the reason for recent vaccination failures, we also studied variations in antigenicity of field strains by analyzing the three neutralizing epitope regions in the S gene. The results showed that the neutralizing epitopes at aa 245-252 were highly conserved, but most of the amino acid changes occurred in the epitope regions aa 7-146 and 271-278. We speculate that the amino acid mutations in the neutralizing epitope regions may be associated with changes in the antigenicity of PEDV and consequently result in vaccination failure. Together, these findings may be useful for understanding the epidemiology of PEDV and may be relevant for designing of new and more efficacious vaccines.
Collapse
Affiliation(s)
- Renfeng Li
- College of Veterinary Medicine, Northwest A and F University, Yangling, 712100, Shaanxi, China
| | | | | | | | | | | | | |
Collapse
|
30
|
Isolation and characterization of porcine epidemic diarrhea viruses associated with the 2013 disease outbreak among swine in the United States. J Clin Microbiol 2013; 52:234-43. [PMID: 24197882 DOI: 10.1128/jcm.02820-13] [Citation(s) in RCA: 317] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) was detected in May 2013 for the first time in U.S. swine and has since caused significant economic loss. Obtaining a U.S. PEDV isolate that can grow efficiently in cell culture is critical for investigating pathogenesis and developing diagnostic assays and for vaccine development. An additional objective was to determine which gene(s) of PEDV is most suitable for studying the genetic relatedness of the virus. Here we describe two PEDV isolates (ISU13-19338E and ISU13-22038) successfully obtained from the small intestines of piglets from sow farms in Indiana and Iowa, respectively. The two isolates have been serially propagated in cell culture for over 30 passages and were characterized for the first 10 passages. Virus production in cell culture was confirmed by PEDV-specific real-time reverse-transcription PCR (RT-PCR), immunofluorescence assays, and electron microscopy. The infectious titers of the viruses during the first 10 passages ranged from 6 × 10(2) to 2 × 10(5) 50% tissue culture infective doses (TCID50)/ml. In addition, the full-length genome sequences of six viruses (ISU13-19338E homogenate, P3, and P9; ISU13-22038 homogenate, P3, and P9) were determined. Genetically, the two PEDV isolates were relatively stable during the first 10 passages in cell culture. Sequences were also compared to those of 4 additional U.S. PEDV strains and 23 non-U.S. strains. All U.S. PEDV strains were genetically closely related to each other (≥99.7% nucleotide identity) and were most genetically similar to Chinese strains reported in 2011 to 2012. Phylogenetic analyses using different genes of PEDV suggested that the full-length spike gene or the S1 portion is appropriate for sequencing to study the genetic relatedness of these viruses.
Collapse
|
31
|
Sequence heterogeneity of the ORF3 gene of porcine epidemic diarrhea viruses field samples in Fujian, China, 2010-2012. Viruses 2013; 5:2375-83. [PMID: 24084234 PMCID: PMC3814593 DOI: 10.3390/v5102375] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 09/13/2013] [Accepted: 09/19/2013] [Indexed: 11/16/2022] Open
Abstract
Twenty-seven field samples that showed positive in PEDV detection were collected from different farms of Fujian province from 2010 to 2012. Their heterogeneity was investigated by analysis of the ORF3 gene because of its potential function as a representation of virulence. According to the results, six Fujian strains in Group 1 showed a different genotype with unique point mutations, which might be used in differentiation between PEDV groups and brought potential antigenic variation. P55 and five reference strains in Group 2 had a long length deletion, showing another genotype and might be involved in the variation of virulence. Phylogenetic analysis revealed that the collected Fujian strains were very distant from the vaccine development strain CV777, which might be the reason why the vaccine was inefficient to control the disease. The results can help to reconsider the strategy of PEDV vaccine management and prevent outbreaks of PEDV-induced diarrhea more efficiently.
Collapse
|
32
|
Tian Y, Yu Z, Cheng K, Liu Y, Huang J, Xin Y, Li Y, Fan S, Wang T, Huang G, Feng N, Yang Z, Yang S, Gao Y, Xia X. Molecular characterization and phylogenetic analysis of new variants of the porcine epidemic diarrhea virus in Gansu, China in 2012. Viruses 2013; 5:1991-2004. [PMID: 23955500 PMCID: PMC3761238 DOI: 10.3390/v5081991] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 07/24/2013] [Accepted: 08/01/2013] [Indexed: 11/16/2022] Open
Abstract
Between January 2012 and March 2012, the infection rates of porcine epidemic diarrhea virus (PEDV) increased substantially in vaccinated swine herds in many porcine farms in Gansu Province, China. The spike (S) glycoprotein is an important determinant for PEDV biological properties. To determine the distribution profile of PEDV outbreak strains, we sequenced the full-length S gene of five samples from two farms where animals exhibited severe diarrhea and high mortality rates. Five new PEDV variants were identified, and the molecular diversity, phylogenetic relationships, and antigenicity analysis of Gansu field samples with other PEDV reference strains were investigated. A series of insertions, deletions, and mutations in the S gene was found in five PEDV variants compared with classical and vaccine strains. These mutations may provide stronger pathogenicity and antigenicity to the new PEDV variants that influenced the effectiveness of the CV777-based vaccine. Our results suggest that these new PEDV variant strains in Gansu Province might be from South Korean or South China, and the effectiveness of the CV777-based vaccine needs to be evaluated.
Collapse
Affiliation(s)
- Yufei Tian
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute of Academy of Military Medical Sciences, Changchun, 130122, China
| | - Zhijun Yu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute of Academy of Military Medical Sciences, Changchun, 130122, China
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Kaihui Cheng
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan 250132, China
| | - Yuxiu Liu
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Jing Huang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute of Academy of Military Medical Sciences, Changchun, 130122, China
| | - Yue Xin
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute of Academy of Military Medical Sciences, Changchun, 130122, China
| | - Yuanguo Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute of Academy of Military Medical Sciences, Changchun, 130122, China
| | - Shengtao Fan
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Tiecheng Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute of Academy of Military Medical Sciences, Changchun, 130122, China
| | - Geng Huang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute of Academy of Military Medical Sciences, Changchun, 130122, China
| | - Na Feng
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute of Academy of Military Medical Sciences, Changchun, 130122, China
| | - Zhenguo Yang
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Songtao Yang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute of Academy of Military Medical Sciences, Changchun, 130122, China
| | - Yuwei Gao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute of Academy of Military Medical Sciences, Changchun, 130122, China
- Authors to whom correspondence should be addressed; E-Mails: (Y.G.); (X.X.); Tel.: +86-431-8698-5516 (Y.G.); Fax: +86-431-8698-5516 (Y.G.)
| | - Xianzhu Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute of Academy of Military Medical Sciences, Changchun, 130122, China
- Authors to whom correspondence should be addressed; E-Mails: (Y.G.); (X.X.); Tel.: +86-431-8698-5516 (Y.G.); Fax: +86-431-8698-5516 (Y.G.)
| |
Collapse
|
33
|
Complete genome sequence of novel porcine epidemic diarrhea virus strain GD-1 in China. J Virol 2013; 86:13824-5. [PMID: 23166239 DOI: 10.1128/jvi.02615-12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) infection, which causes acute diarrhea and dehydration in suckling piglets, has become a serious problem for the swine industry of China in recent years. In this study, a virulent PEDV strain, GD-1, was obtained from fecal samples from suckling piglets that suffered from severe diarrhea in 2011 in Guangdong, China. Here we describe the complete genome sequence of strain GD-1, which may be helpful in further understanding the molecular epidemiology and genetic diversity of PEDV field isolates in China.
Collapse
|