1
|
Yang Y, Hou M, Su G, Ma X, Su X, Li K, Liu S, Xiao L, Yao J, Zhai J, Wei X, Zhou Y, Lai Q, Dong Y, Liu J, Zhai S. Establishment of Echinococcus granulosus EgM123 Recombinant Gene Rabies Virus SRV 9 and Identification of Its Biological Characteristics. Viruses 2024; 17:30. [PMID: 39861819 PMCID: PMC11769458 DOI: 10.3390/v17010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/25/2024] [Accepted: 12/25/2024] [Indexed: 01/27/2025] Open
Abstract
Canids act as a crucial intermediary in the transmission of rabies and Echinococcus granulosus, serving as co-infection hosts and pathogen carriers for both rabies and hydatid disease (HD) transmitted from animals to humans. Therefore, an effective and efficient bivalent oral vaccine for preventing HD and rabies is urgently required to reduce economic losses in husbandry resulting from rabies and HD. In this study, a full-length plasmid (pcDNA4-NPM+GΔCD+EgM123+eGFP+L) carrying the Echinococcus granulosus EgM123 gene and fluorescence reporter genes of eGFP and four auxiliary transfection plasmids of rabies virus SRV9 (pcDNA4-N, pcDNA4-P, pcDNA4-G, pcDNA-L) were established by reverse genetics approaches and co-transfected to BSR cells by electrotransfection. The co-transfected BSR cells showed green fluorescence 48 h after electrotransfection. The recombinant virus was exposed to the sixth-generation blind passage, with the N, P, G, and EgM123 genes amplified via RT-PCR, yielding targeted strips. The rescued virus-infected BSR cells were characterized by TEM, and the results indicated that bullet-like viral particles with an average size of 148.47 nm and a cyst structure were present in the cytoplasm of BSR cells; the expression levels of continuously cultivated 9th-, 10th-, 11th-, 12th-, and 13th-generation viruses were quantified by qRT-PCR, and the results showed that mRNA expression of the virus was upregulated. The LD50 titer of suckling rats was measured to be 10-1.4. The synthesized EgM123 recombinant gene rabies virus SRV9 can function as a vaccine strain for the development of the "Rabies-HD bivalent recombinant gene oral vaccine", therefore aiding in the prevention and management of rabies and HD in animals.
Collapse
Affiliation(s)
- Yueqi Yang
- School of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (Y.Y.); (M.H.); (K.L.); (S.L.); (L.X.); (J.Y.); (J.Z.); (X.W.); (Y.Z.); (Q.L.); (Y.D.); (J.L.)
| | - Mengdan Hou
- School of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (Y.Y.); (M.H.); (K.L.); (S.L.); (L.X.); (J.Y.); (J.Z.); (X.W.); (Y.Z.); (Q.L.); (Y.D.); (J.L.)
| | - Guicheng Su
- Livestock and Veterinary Work Station of Xinjiang Production and Construction Corps, Urumqi 830063, China; (G.S.); (X.M.); (X.S.)
| | - Xiaoyan Ma
- Livestock and Veterinary Work Station of Xinjiang Production and Construction Corps, Urumqi 830063, China; (G.S.); (X.M.); (X.S.)
| | - Xiaohui Su
- Livestock and Veterinary Work Station of Xinjiang Production and Construction Corps, Urumqi 830063, China; (G.S.); (X.M.); (X.S.)
| | - Kunlei Li
- School of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (Y.Y.); (M.H.); (K.L.); (S.L.); (L.X.); (J.Y.); (J.Z.); (X.W.); (Y.Z.); (Q.L.); (Y.D.); (J.L.)
| | - Songhan Liu
- School of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (Y.Y.); (M.H.); (K.L.); (S.L.); (L.X.); (J.Y.); (J.Z.); (X.W.); (Y.Z.); (Q.L.); (Y.D.); (J.L.)
| | - Luheng Xiao
- School of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (Y.Y.); (M.H.); (K.L.); (S.L.); (L.X.); (J.Y.); (J.Z.); (X.W.); (Y.Z.); (Q.L.); (Y.D.); (J.L.)
| | - Jingjing Yao
- School of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (Y.Y.); (M.H.); (K.L.); (S.L.); (L.X.); (J.Y.); (J.Z.); (X.W.); (Y.Z.); (Q.L.); (Y.D.); (J.L.)
| | - Jiahao Zhai
- School of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (Y.Y.); (M.H.); (K.L.); (S.L.); (L.X.); (J.Y.); (J.Z.); (X.W.); (Y.Z.); (Q.L.); (Y.D.); (J.L.)
| | - Xiaoying Wei
- School of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (Y.Y.); (M.H.); (K.L.); (S.L.); (L.X.); (J.Y.); (J.Z.); (X.W.); (Y.Z.); (Q.L.); (Y.D.); (J.L.)
| | - Yang Zhou
- School of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (Y.Y.); (M.H.); (K.L.); (S.L.); (L.X.); (J.Y.); (J.Z.); (X.W.); (Y.Z.); (Q.L.); (Y.D.); (J.L.)
| | - Qianqian Lai
- School of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (Y.Y.); (M.H.); (K.L.); (S.L.); (L.X.); (J.Y.); (J.Z.); (X.W.); (Y.Z.); (Q.L.); (Y.D.); (J.L.)
| | - Yuwei Dong
- School of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (Y.Y.); (M.H.); (K.L.); (S.L.); (L.X.); (J.Y.); (J.Z.); (X.W.); (Y.Z.); (Q.L.); (Y.D.); (J.L.)
| | - Jieyu Liu
- School of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (Y.Y.); (M.H.); (K.L.); (S.L.); (L.X.); (J.Y.); (J.Z.); (X.W.); (Y.Z.); (Q.L.); (Y.D.); (J.L.)
| | - Shaohua Zhai
- School of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (Y.Y.); (M.H.); (K.L.); (S.L.); (L.X.); (J.Y.); (J.Z.); (X.W.); (Y.Z.); (Q.L.); (Y.D.); (J.L.)
| |
Collapse
|
2
|
Wu M, Peng X, Xu W, Zhang H, Fang L, Liu X, Miao F, Liu Q, Mi S, Xiao Y, Yu X, Tu C, Ge L, Liu Y. Development of Human Monoclonal Antibodies With Broad Reactivity for Rabies Postexposure Prophylaxis. J Med Virol 2024; 96:e70068. [PMID: 39601104 PMCID: PMC11600393 DOI: 10.1002/jmv.70068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/27/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024]
Abstract
Rabies is an acute lethal disease causing by the neurotropic virus rabies virus (RABV). Rabies immune globulin (RIG) as an indispensable component of rabies postexposure prophylaxis (PEP) always faces with great challenges in terms of costs, stability and safety. Our objective is to develop a novel and potential fully human monoclonal antibodies (mAbs) cocktail for the improvement of rabies PEP. The neutralizing fully human mAbs were screened by using fully humanized antibody mice (CAMouseHG). Then, two mAbs 26-12 G and 5-7 G were selected with potential neutralizing activity to RABV by using fluorescent antibody virus neutralization test (FAVN), which specifically bind to antigenic sites I and III of RABV-glycoprotein (RABV-G), the key amino acid residues were further identified in position 336, 337 of 5-7 G and 226, 227, 228 of 26-12 G by using cross-linking and mass-spectrometry. Both mAbs are highly conserved across 8 RABV strains (distributing in 3 lineages: Asian, Cosmopolitan and Arctic-related) and 1 IRKV strain, and showed high neutralizing potential. Moreover, the in vivo experiment demonstrated that our cocktail can protect Kunming mice from a lethal RABV challenge. Collectively, we generate two noncompeting fully human mAbs (26-12 G, 5-7 G) and obtained cocktail CAM001 with their mixture. The high-potency and broad-spectrum neutralization of the cocktail supports its utility in human rabies PEP as an efficacious and affordable alternative to RIG products, particularly in endemic areas.
Collapse
Affiliation(s)
- Meng Wu
- College of Veterinary MedicineHunan Agricultural UniversityChangshaChina
- Changchun Veterinary Research InstituteChinese Academy of Agricultural SciencesChangchunChina
- Institute of BioengineeringChongqing Academy of Animal SciencesChongqingChina
| | - Xinyu Peng
- Department of Hepatobiliary & Pancreas SurgeryThe First Hospital of Jilin UniversityChina
| | - Weidi Xu
- Changchun Veterinary Research InstituteChinese Academy of Agricultural SciencesChangchunChina
| | - Hao Zhang
- R&D DepartmentChongqing CAMAB BIOTECH Ltd.ChongqingChina
| | - Lian Fang
- R&D DepartmentChongqing CAMAB BIOTECH Ltd.ChongqingChina
| | - Xueqin Liu
- Institute of BioengineeringChongqing Academy of Animal SciencesChongqingChina
- Biotechnology Research InstituteNational Center of Technology Innovation for PigsChongqingChina
| | - Faming Miao
- Changchun Veterinary Research InstituteChinese Academy of Agricultural SciencesChangchunChina
| | - Quan Liu
- Department of Infectious Diseases and Center for Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of EducationThe First Hospital of Jilin UniversityChangchunChina
| | - Shijiang Mi
- Changchun Veterinary Research InstituteChinese Academy of Agricultural SciencesChangchunChina
| | - Yuewen Xiao
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonoses Research of the Ministry of Education, College of Veterinary MedicineJilin UniversityChangchunChina
| | - Xinglong Yu
- College of Veterinary MedicineHunan Agricultural UniversityChangshaChina
| | - Changchun Tu
- Changchun Veterinary Research InstituteChinese Academy of Agricultural SciencesChangchunChina
| | - Liangpeng Ge
- Institute of BioengineeringChongqing Academy of Animal SciencesChongqingChina
- Biotechnology Research InstituteNational Center of Technology Innovation for PigsChongqingChina
| | - Yan Liu
- Changchun Veterinary Research InstituteChinese Academy of Agricultural SciencesChangchunChina
| |
Collapse
|
3
|
Huang J, Wang W, Li H, Bai Y, Song Y, Jiao C, Jin H, Huang P, Zhang H, Xia X, Yan F, Li Y, Wang H. Three in one: An effective and universal vaccine expressing heterologous tandem RBD trimer by rabies virus vector protects mice against SARS-CoV-2. Antiviral Res 2024; 227:105905. [PMID: 38740191 DOI: 10.1016/j.antiviral.2024.105905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
The rapid emergence of Severe Acute Respiratory Syndrome Coronavirus type 2 (SARS-CoV-2) variants, coupled with severe immune evasion and imprinting, has jeopardized the vaccine efficacy, necessitating urgent development of broad protective vaccines. Here, we propose a strategy employing recombinant rabies viruses (RABV) to create a universal SARS-CoV-2 vaccine expressing heterologous tandem receptor-binding domain (RBD) trimer from the SARS-CoV-2 Prototype, Delta, and Omicron strains (SRV-PDO). The results of mouse immunization indicated that SRV-PDO effectively induced cellular and humoral immune responses, and demonstrated higher immunogenicity and broader SARS-CoV-2 neutralization compared to the recombinant RABVs that only expressed RBD monomers. Moreover, SRV-PDO exhibited full protection against SARS-CoV-2 in the challenge assay. This study demonstrates that recombinant RABV expressing tandem RBD-heterotrimer as a multivalent immunogen could elicit a broad-spectrum immune response and potent protection against SARS-CoV-2, making it a promising candidate for future human or veterinary vaccines and offering a novel perspective in other vaccine design.
Collapse
MESH Headings
- Animals
- Rabies virus/immunology
- Rabies virus/genetics
- COVID-19 Vaccines/immunology
- Mice
- SARS-CoV-2/immunology
- SARS-CoV-2/genetics
- COVID-19/prevention & control
- COVID-19/immunology
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/genetics
- Mice, Inbred BALB C
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/blood
- Female
- Humans
- Immunity, Humoral
- Genetic Vectors
- Vaccine Efficacy
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/administration & dosage
Collapse
Affiliation(s)
- Jingbo Huang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China; Department of Chinese Medicine, The First Hospital of Jilin University, Changchun 130021, China
| | - Weiqi Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Hailun Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yujie Bai
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yumeng Song
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Cuicui Jiao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Hongli Jin
- Changchun SR Biological Technology Co., LTD, Changchun 130012, Jilin, China
| | - Pei Huang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Haili Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xianzhu Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Feihu Yan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Yuanyuan Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Hualei Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| |
Collapse
|
4
|
Jiao C, Liu D, Jin H, Huang P, Zhang H, Li Y, Wang H. Immunogenicity evaluation of a bivalent vaccine based on a recombinant rabies virus expressing gB protein of FHV-1 in mice and cats. Vet J 2024; 304:106096. [PMID: 38503385 DOI: 10.1016/j.tvjl.2024.106096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 03/21/2024]
Abstract
Feline viral rhinotracheitis (FVR) is caused by the feline herpesvirus-1 (FHV-1), which commonly results in upper respiratory symptoms, and can result in death in the kittens and weak cats. Rabies is an infectious disease with zoonotic characteristics highly relevant to public health and also poses a serious threat to cats. Vaccines are the most effective method to control the spread of both FHV-1 and RABV and have the advantage that they produce long-term specific immune responses. In this study, we constructed a bivalent vaccine against FHV-1 and rabies virus (RABV) simultaneously. The vaccine was constructed by cloning FHV-1 gB into a RABV based vector, and the recombinant RABV (SRV9-FHV-gB) expressing the FHV-1 gB protein was rescued. The growth characteristics of SRV9-FHV-gB were analyzed on NA and BSR cells. To assess the immunogenicity of the vaccine, mice and cats were immunized with SRV9-FHV-gB supplemented with Gel02 adjuvant. The SRV9-FHV-gB exhibited the same growth characteristics as the parent virus SRV9 in both BSR cells and NA cells. The safety of SRV9-FHV-gB was evaluated using 5-day-old and 14-day-old suckling mice. The results showed that mice infected with the SRV9-FHV-gB survived for longer than those in the SRV9 group. Mice immunized with inactivated SRV9-FHV-gB produced high titers of specific antibodies against FHV-1 and neutralizing antibodies against RABV. Cats that received three immunizations with SRV9-FHV-gB also produced neutralizing antibodies against both FHV-1 and RABV. This study represents the first time that a bivalent vaccine targeting FHV-1 and RABV has been constructed, laying the foundations and providing inspiration for the development of other multivalent vaccines.
Collapse
Affiliation(s)
- Cuicui Jiao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Di Liu
- Changchun Sino Biotechnology Co., Ltd., Changchun 130012, China
| | - Hongli Jin
- Changchun Sino Biotechnology Co., Ltd., Changchun 130012, China
| | - Pei Huang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Haili Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yuanyuan Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Hualei Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| |
Collapse
|
5
|
Bi J, Wang H, Han Q, Pei H, Wang H, Jin H, Jin S, Chi H, Yang S, Zhao Y, Yan F, Ge L, Xia X. A rabies virus-vectored vaccine expressing two copies of the Marburg virus glycoprotein gene induced neutralizing antibodies against Marburg virus in humanized mice. Emerg Microbes Infect 2023; 12:2149351. [PMID: 36453198 PMCID: PMC9809360 DOI: 10.1080/22221751.2022.2149351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Marburg virus disease (MVD) is a lethal viral haemorrhagic fever caused by Marburg virus (MARV) with a case fatality rate as high as 88%. There is currently no vaccine or antiviral therapy approved for MVD. Due to high variation among MARV isolates, vaccines developed against one strain fail to protect against other strains. Here we report that three recombinant rabies virus (RABV) vector vaccines encoding two copies of GPs covering both MARV lineages induced pseudovirus neutralizing antibodies in BALB/c mice. Furthermore, high-affinity human neutralizing antibodies were isolated from a humanized mouse model. The three vaccines produced a Th1-biased serological response similar to that of human patients. Adequate sequential immunization enhanced the production of neutralizing antibodies. Virtual docking suggested that neutralizing antibodies induced by the Angola strain seemed to be able to hydrogen bond to the receptor-binding site (RBS) in the GP of the Ravn strain through hypervariable regions 2 (CDR2) and CDR3 of the VH region. These findings demonstrate that three inactivated vaccines are promising candidates against different strains of MARV, and a novel fully humanized neutralizing antibody against MARV was isolated.
Collapse
Affiliation(s)
- Jinhao Bi
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, People’s Republic of China,Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
| | - Haojie Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
| | - Qiuxue Han
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China,Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, People’s Republic of China
| | - Hongyan Pei
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China,College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Hualei Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, People’s Republic of China
| | - Hongli Jin
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, People’s Republic of China
| | - Song Jin
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China,Ruminant Disease Research Center, College of Life Sciences, Shandong Normal University, Jinan, People’s Republic of China
| | - Hang Chi
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
| | - Songtao Yang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
| | - Yongkun Zhao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
| | - Feihu Yan
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China, Feihu Yan ; Liangpeng Ge ; Xianzhu Xia
| | - Liangpeng Ge
- Chongqing Academy of Animal Sciences, Chongqing, People’s Republic of China, Feihu Yan ; Liangpeng Ge ; Xianzhu Xia
| | - Xianzhu Xia
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, People’s Republic of China,Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China,Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, People’s Republic of China, Feihu Yan ; Liangpeng Ge ; Xianzhu Xia
| |
Collapse
|
6
|
Li Z, Zhu Y, Yan F, Jin H, Wang Q, Zhao Y, Feng N, Wang T, Li N, Yang S, Xia X, Cong Y. Inactivated Recombinant Rabies Virus Displaying the Nipah Virus Envelope Glycoproteins Induces Systemic Immune Responses in Mice. Vaccines (Basel) 2023; 11:1758. [PMID: 38140162 PMCID: PMC10747385 DOI: 10.3390/vaccines11121758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/07/2023] [Accepted: 11/11/2023] [Indexed: 12/24/2023] Open
Abstract
Nipah virus (NiV) causes severe, lethal encephalitis in humans and pigs. However, there is no licensed vaccine available to prevent NiV infection. In this study, we used the reverse genetic system based on the attenuated rabies virus strain SRV9 to construct two recombinant viruses, rSRV9-NiV-F and rSRV9-NiV-G, which displayed the NiV envelope glycoproteins F and G, respectively. Following three immunizations in BALB/c mice, the inactivated rSRV9-NiV-F and rSRV9-NiV-G alone or in combination, mixed with the adjuvants ISA 201 VG and poly (I:C), were able to induce the antigen-specific cellular and Th1-biased humoral immune responses. The specific antibodies against rSRV9-NiV-F and rSRV9-NiV-G had reactivity with two constructed bacterial-like particles displaying the F and G antigens of NiV. These data demonstrate that rSRV9-NiV-F or rSRV9-NiV-G has the potential to be developed into a promising vaccine candidate against NiV infection.
Collapse
Affiliation(s)
- Zhengrong Li
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130122, China
| | - Yanting Zhu
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130122, China
| | - Feihu Yan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Hongli Jin
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130122, China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Qi Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Yongkun Zhao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Na Feng
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Tiecheng Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Nan Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Songtao Yang
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130122, China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Xianzhu Xia
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130122, China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Yanlong Cong
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130122, China
| |
Collapse
|
7
|
Hou P, Guo Y, Jin H, Sun J, Bai Y, Li W, Li L, Cao Z, Wu F, Zhang H, Li Y, Yang S, Xia X, Huang P, Wang H. Bif-1c Attenuates Viral Proliferation by Regulating Autophagic Flux Blockade Induced by the Rabies Virus CVS-11 Strain in N2a Cells. Microbiol Spectr 2023; 11:e0307922. [PMID: 37014208 PMCID: PMC10269655 DOI: 10.1128/spectrum.03079-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 03/09/2023] [Indexed: 04/05/2023] Open
Abstract
Bax-interacting factor-1 (Bif-1) is a multifunctional protein involved in apoptosis, autophagy, and mitochondrial morphology. However, the associations between Bif-1 and viruses are poorly understood. As discrete Bif-1 isoforms are selectively expressed and exert corresponding effects, we evaluated the effects of neuron-specific/ubiquitous Bif-1 isoforms on rabies virus (RABV) proliferation. First, infection with the RABV CVS-11 strain significantly altered Bif-1 expression in mouse neuroblastoma (N2a) cells, and Bif-1 knockdown in turn promoted RABV replication. Overexpression of neuron-specific Bif-1 isoforms (Bif-1b/c/e) suppressed RABV replication. Moreover, our study showed that Bif-1c colocalized with LC3 and partially alleviated the incomplete autophagic flux induced by RABV. Taken together, our data reveal that neuron-specific Bif-1 isoforms impair the RABV replication process by abolishing autophagosome accumulation and blocking autophagic flux induced by the RABV CVS-11 strain in N2a cells. IMPORTANCE Autophagy can be triggered by viral infection and replication. Autophagosomes are generated and affect RABV replication, which differs by viral strain and infected cell type. Bax-interacting factor-1 (Bif-1) mainly has a proapoptotic function but is also involved in autophagosome formation. However, the association between Bif-1-involved autophagy and RABV infection remains unclear. In this study, our data reveal that a neuron-specific Bif-1 isoform, Bif-1c, impaired viral replication by unchoking autophagosome accumulation induced by RABV in N2a cells to a certain extent. Our study reveals for the first time that Bif-1 is involved in modulating autophagic flux and plays a crucial role in RABV replication, establishing Bif-1 as a potential therapeutic target for rabies.
Collapse
Affiliation(s)
- Pengfei Hou
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yidi Guo
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Hongli Jin
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Jingxuan Sun
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yujie Bai
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wujian Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Ling Li
- National Research Center for Exotic Animal Diseases, China Animal Health and Epidemiology Center, Qingdao, China
| | - Zengguo Cao
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Fangfang Wu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Haili Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yuanyuan Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Songtao Yang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Xianzhu Xia
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Pei Huang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Hualei Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
8
|
Wang S, Liang B, Wang W, Li L, Feng N, Zhao Y, Wang T, Yan F, Yang S, Xia X. Viral vectored vaccines: design, development, preventive and therapeutic applications in human diseases. Signal Transduct Target Ther 2023; 8:149. [PMID: 37029123 PMCID: PMC10081433 DOI: 10.1038/s41392-023-01408-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 04/09/2023] Open
Abstract
Human diseases, particularly infectious diseases and cancers, pose unprecedented challenges to public health security and the global economy. The development and distribution of novel prophylactic and therapeutic vaccines are the prioritized countermeasures of human disease. Among all vaccine platforms, viral vector vaccines offer distinguished advantages and represent prominent choices for pathogens that have hampered control efforts based on conventional vaccine approaches. Currently, viral vector vaccines remain one of the best strategies for induction of robust humoral and cellular immunity against human diseases. Numerous viruses of different families and origins, including vesicular stomatitis virus, rabies virus, parainfluenza virus, measles virus, Newcastle disease virus, influenza virus, adenovirus and poxvirus, are deemed to be prominent viral vectors that differ in structural characteristics, design strategy, antigen presentation capability, immunogenicity and protective efficacy. This review summarized the overall profile of the design strategies, progress in advance and steps taken to address barriers to the deployment of these viral vector vaccines, simultaneously highlighting their potential for mucosal delivery, therapeutic application in cancer as well as other key aspects concerning the rational application of these viral vector vaccines. Appropriate and accurate technological advances in viral vector vaccines would consolidate their position as a leading approach to accelerate breakthroughs in novel vaccines and facilitate a rapid response to public health emergencies.
Collapse
Affiliation(s)
- Shen Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Bo Liang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Weiqi Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ling Li
- China National Research Center for Exotic Animal Diseases, China Animal Health and Epidemiology Center, Qingdao, China
| | - Na Feng
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yongkun Zhao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Tiecheng Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Feihu Yan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.
| | - Songtao Yang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.
| | - Xianzhu Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.
| |
Collapse
|
9
|
Gong Z, Huang P, Jin H, Bai Y, Li H, Qian M, Sun J, Jiao C, Zhang M, Li Y, Zhang H, Wang H. A recombinant rabies virus chimera expressing the DC-targeting molecular MAB2560 shows enhanced vaccine immunogenicity through activation of dendritic cells. PLoS Negl Trop Dis 2023; 17:e0011254. [PMID: 37093869 PMCID: PMC10124880 DOI: 10.1371/journal.pntd.0011254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 03/20/2023] [Indexed: 04/25/2023] Open
Abstract
BACKGROUND Rabies, caused by the rabies virus (RABV), is an ancient and neglected zoonotic disease posing a large public health threat to humans and animals in developing countries. Immunization of animals with a rabies vaccine is the most effective way to control the epidemic and the occurrence of the disease in humans. Therefore, the development of cost-effective and efficient rabies vaccines is urgently needed. The activation of dendritic cells (DCs) is known to play an important role in improving the host immune response induced by rabies vaccines. METHODOLOGY/PRINCIPAL FINDINGS In this study, we constructed a recombinant virus, rCVS11-MAB2560, based on the reverse genetic system of the RABV CVS11 strain. The MAB2560 protein (a DC-targeting molecular) was chimeric expressed on the surface of the viral particles to help target and activate the DCs when this virus was used as inactivated vaccine. Our results demonstrated that inactivated rCVS11-MAB2560 was able to promote the recruitment and/or proliferation of DC cells, T cells and B cells in mice, and induce good immune memory after two immunizations. Moreover, the inactivated recombinant virus rCVS11-MAB2560 could produce higher levels of virus-neutralizing antibodies (VNAs) in both mice and dogs more quickly than rCVS11 post immunization. CONCLUSIONS/SIGNIFICANCE In summary, the recombinant virus rCVS11-MAB2560 chimeric-expressing the molecular adjuvant MAB2560 can stimulate high levels of humoral and cellular immune responses in vivo and can be used as an effective inactivated rabies vaccine candidate.
Collapse
Affiliation(s)
- Zhiyuan Gong
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Pei Huang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Hongli Jin
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
- Changchun Sino Biotechnology Co., Ltd., Changchun, China
| | - Yujie Bai
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Hailun Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Meichen Qian
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jingxuan Sun
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Cuicui Jiao
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Mengyao Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yuanyuan Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Haili Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Hualei Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
10
|
Zhang H, Jin H, Yan F, Song Y, Dai J, Jiao C, Bai Y, Sun J, Liu D, Wang S, Zhang M, Lu J, Huang J, Huang P, Li Y, Xia X, Wang H. An inactivated recombinant rabies virus chimerically expressed RBD induces humoral and cellular immunity against SARS-CoV-2 and RABV. Virol Sin 2023; 38:244-256. [PMID: 36587795 PMCID: PMC9797420 DOI: 10.1016/j.virs.2022.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/26/2022] [Indexed: 12/30/2022] Open
Abstract
Many studies suggest that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can infect various animals and transmit among animals, and even to humans, posing a threat to humans and animals. There is an urgent need to develop inexpensive and efficient animal vaccines to prevent and control coronavirus disease 2019 (COVID-19) in animals. Rabies virus (RABV) is another important zoonotic pathogen that infects almost all warm-blooded animals and poses a great public health threat. The present study constructed two recombinant chimeric viruses expressing the S1 and RBD proteins of the SARS-CoV-2 Wuhan01 strain based on a reverse genetic system of the RABV SRV9 strain and evaluated their immunogenicity in mice, cats and dogs. The results showed that both inactivated recombinant viruses induced durable neutralizing antibodies against SARS-CoV-2 and RABV and a strong cellular immune response in mice. Notably, inactivated SRV-nCoV-RBD induced earlier antibody production than SRV-nCoV-S1, which was maintained at high levels for longer periods. Inactivated SRV-nCoV-RBD induced neutralizing antibodies against both SARS-CoV-2 and RABV in cats and dogs, with a relatively broad-spectrum cross-neutralization capability against the SARS-CoV-2 pseudoviruses including Alpha, Beta, Gamma, Delta, and Omicron, showing potential to be used as a safe bivalent vaccine candidate against COVID-19 and rabies in animals.
Collapse
Affiliation(s)
- Haili Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Hongli Jin
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China; Changchun Sino Biotechnology Co., Ltd., Changchun, 130012, China
| | - Feihu Yan
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Yumeng Song
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Jiaxin Dai
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Cuicui Jiao
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Yujie Bai
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Jingxuan Sun
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Di Liu
- Changchun Sino Biotechnology Co., Ltd., Changchun, 130012, China
| | - Shen Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Mengyao Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Jilong Lu
- Changchun Sino Biotechnology Co., Ltd., Changchun, 130012, China
| | - Jingbo Huang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Pei Huang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Yuanyuan Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Xianzhu Xia
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Hualei Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| |
Collapse
|
11
|
Zhang Y, Zhang M, Liao X, Yu Y, Liu Q, Luo Y, Luo J, Guo X. Interleukin-25 enhances humoral immune responses caused by the rabies virus. Virulence 2022; 13:1446-1454. [PMID: 35999776 PMCID: PMC9423819 DOI: 10.1080/21505594.2022.2116146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Rabies is an important zoonotic disease caused by the rabies virus (RABV). Currently, no effective treatment is available for this condition. The prevention and control of rabies mainly depend on effective vaccination. Therefore, it is crucial to enhance the immune responses induced by the rabies vaccine. Virus neutralizing antibodies (VNA) induced by rabies vaccines are important for the clearance of RABV. Interleukin-25 (IL-25) has been demonstrated to activate T helper type 2 cells that contribute to humoral immune responses. The IL-25 gene was inserted into the genome of RABV, and the immunogenicity of recombinant RABV with IL-25 gene was investigated to develop more efficient rabies vaccines. Here, we found that the expression of IL-25 did not affect RABV production in vitro and pathogenicity in vivo. However, recombinant RABV expression of IL-25 induced a better VNA level than the parental virus in mice. In addition, expression of IL-25 enhanced the IgG1 level induced by RABV. Furthermore, mice immunized with recombinant RABV showed a higher survival rate and milder clinical signs than those immunized with the parent strain after challenge with CVS-11. Thus, these results showed that IL-25 could enhance the humoral immune responses induced by RABV, suggesting that IL-25 can be used as a viral vaccine adjuvant.
Collapse
Affiliation(s)
- Yue Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Mengwei Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xilan Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yunsong Yu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Qing Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yongwen Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jun Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiaofeng Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
12
|
Bi J, Wang H, Pei H, Han Q, Feng N, Wang Q, Wang X, Wang Z, Wei S, Ge L, Wu M, Liang H, Yang S, Yan F, Zhao Y, Xia X. A Novel and Secure Pseudovirus Reporter System Based Assay for Neutralizing and Enhancing Antibody Assay Against Marburg Virus. Front Microbiol 2022; 13:927122. [PMID: 35756049 PMCID: PMC9224600 DOI: 10.3389/fmicb.2022.927122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 05/17/2022] [Indexed: 11/29/2022] Open
Abstract
Marburg virus (MARV) is one of the principal members of the filovirus family, which can cause fatal hemorrhagic fever in humans. There are currently no prophylactic and therapeutic drugs on the market, and the high pathogenicity and infectivity of MARV make its research highly dependent on biosafety level 4 conditions, severely hindering the development of vaccines and therapies. Therefore, the development of medicines, such as MARV serological diagnosis, vaccines, and therapeutic antibody drugs, urgently needs a safe, convenient, and biosafety level 2 detection method to measure the neutralizing activity of MARV antibodies. To this end, we report a neutralization assay relying on a Rabies virus (RABV) reverse genetic operating system. We constructed infectious clones carrying the eGFP reporter gene and the full length of the original unmodified MARV GP gene. Based on the critical parameters of phylogenetic analysis, recombinant viruses targeting representative strains in the two major MARV lineages were successfully rescued. These pseudoviruses are safe in mice, and their inability to infect cells after being neutralized by antibodies can be visualized under a fluorescence microscope. We tested the system using the neutralizing antibody MR191. MR191 can significantly block the infection of BSR cells with pseudovirus. We compared it with the traditional lentivirus-type pseudovirus system to verify the system’s credibility and obtained the same results as reported in the literature. In general, we have established a safe and visualized method for evaluating the neutralizing activity of MARV antibodies. Compared with traditional methods, it has the advantages of convenient operation, short cycle, and low cost. It is a candidate method that can replace actual viruses for a neutralization assay.
Collapse
Affiliation(s)
- Jinhao Bi
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Haojie Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.,College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Hongyan Pei
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.,College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Qiuxue Han
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.,Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, China
| | - Na Feng
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Qi Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.,College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Xinyue Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.,College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Zhenshan Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Shimeng Wei
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.,Guangzhou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Guangzhou, China
| | - Liangpeng Ge
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Meng Wu
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Hao Liang
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Songtao Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Feihu Yan
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yongkun Zhao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Xianzhu Xia
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.,Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, China.,College of Animal Science and Technology, Shihezi University, Shihezi, China.,College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
13
|
Chi H, Wang Y, Li E, Wang X, Wang H, Jin H, Han Q, Wang Z, Wang X, Zhu A, Sun J, Zhuang Z, Zhang L, Ye J, Wang H, Feng N, Hu M, Gao Y, Zhao J, Zhao Y, Yang S, Xia X. Inactivated Rabies Virus Vectored MERS-Coronavirus Vaccine Induces Protective Immunity in Mice, Camels, and Alpacas. Front Immunol 2022; 13:823949. [PMID: 35173733 PMCID: PMC8842186 DOI: 10.3389/fimmu.2022.823949] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/10/2022] [Indexed: 12/26/2022] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) is an emergent coronavirus that has caused frequent zoonotic events through camel-to-human spillover. An effective camelid vaccination strategy is probably the best way to reduce human exposure risk. Here, we constructed and evaluated an inactivated rabies virus-vectored MERS-CoV vaccine in mice, camels, and alpacas. Potent antigen-specific antibody and CD8+ T-cell responses were generated in mice; moreover, the vaccination reduced viral replication and accelerated virus clearance in MERS-CoV-infected mice. Besides, protective antibody responses against both MERS-CoV and rabies virus were induced in camels and alpacas. Satisfyingly, the immune sera showed broad cross-neutralizing activity against the three main MERS-CoV clades. For further characterization of the antibody response induced in camelids, MERS-CoV-specific variable domains of heavy-chain-only antibody (VHHs) were isolated from immunized alpacas and showed potent prophylactic and therapeutic efficacies in the Ad5-hDPP4-transduced mouse model. These results highlight the inactivated rabies virus-vectored MERS-CoV vaccine as a promising camelid candidate vaccine.
Collapse
Affiliation(s)
- Hang Chi
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yanqun Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Entao Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Xiwen Wang
- Food and Drug Inspection Laboratory, Administration for Drug and Instrument Supervision and Inspection, Beijing, China
| | - Hualei Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Hongli Jin
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Qiuxue Han
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Zhenshan Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Xinyue Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Airu Zhu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jing Sun
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhen Zhuang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lu Zhang
- Health and Quarantine Laboratory, Guangzhou Customs Technology Center, Guangzhou, China
| | - Jingmeiqi Ye
- Institute of Education, Tsinghua University, Beijing, China
| | - Haijun Wang
- Jilin Wild Animal Rescue Breeding Center Committee, Jilin Province Northeast Tiger Garden, Changchun, China
| | - Na Feng
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Mingda Hu
- Sate Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Yuwei Gao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Institute of Infectious Disease, Guangzhou Eighth People's Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Basic Research, Guangzhou Laboratory, Guangzhou, China
| | - Yongkun Zhao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Songtao Yang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Xianzhu Xia
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| |
Collapse
|
14
|
Jin H, Jiao C, Cao Z, Huang P, Chi H, Bai Y, Liu D, Wang J, Feng N, Li N, Zhao Y, Wang T, Gao Y, Yang S, Xia X, Wang H. An inactivated recombinant rabies virus displaying the Zika virus prM-E induces protective immunity against both pathogens. PLoS Negl Trop Dis 2021; 15:e0009484. [PMID: 34086672 PMCID: PMC8208564 DOI: 10.1371/journal.pntd.0009484] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/16/2021] [Accepted: 05/17/2021] [Indexed: 12/15/2022] Open
Abstract
The global spread of Zika virus (ZIKV), which caused a pandemic associated with Congenital Zika Syndrome and neuropathology in newborns and adults, prompted the pursuit of a safe and effective vaccine. Here, three kinds of recombinant rabies virus (RABV) encoding the prM-E protein of ZIKV were constructed: ZI-D (prM-E), ZI-E (transmembrane domain (TM) of prM-E replaced with RABV G) and ZI-F (signal peptide and TM domain of prM-E replaced with the region of RABV G). When the TM of prM-E was replaced with the region of RABV G (termed ZI-E), it promoted ZIKV E protein localization on the cell membrane and assembly on recombinant viruses. In addition, the change in the signal peptide with RABV G (termed ZI-F) was not conducive to foreign protein expression. The immunogenicity of recombinant viruses mixed with a complex adjuvant of ISA 201 VG and poly(I:C) was tested in BALB/c mice. After immunization with ZI-E, the anti-ZIKV IgG antibody lasted for at least 10 weeks. The titers of neutralizing antibodies (NAbs) against ZIKV and RABV at week 6 were all greater than the protective titers. Moreover, ZI-E stimulated the proliferation of splenic lymphocytes and promoted the secretion of cytokines. It also promoted the production of central memory T cells (TCMs) among CD4+/CD8+ T cells and stimulated B cell activation and maturation. These results indicate that ZI-E could induce ZIKV-specific humoral and cellular immune responses, which have the potential to be developed into a promising vaccine for protection against both ZIKV and RABV infections.
Collapse
Affiliation(s)
- Hongli Jin
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China
| | - Cuicui Jiao
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zengguo Cao
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China
| | - Pei Huang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
| | - Hang Chi
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China
| | - Yujie Bai
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Di Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
| | - Jianzhong Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
| | - Na Feng
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China
| | - Nan Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China
| | - Yongkun Zhao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China
| | - Tiecheng Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China
| | - Yuwei Gao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China
| | - Songtao Yang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China
| | - Xianzhu Xia
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China
- * E-mail: (XX); (HW)
| | - Hualei Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China
- * E-mail: (XX); (HW)
| |
Collapse
|
15
|
Li E, Yan F, Huang P, Chi H, Xu S, Li G, Liu C, Feng N, Wang H, Zhao Y, Yang S, Xia X. Characterization of the Immune Response of MERS-CoV Vaccine Candidates Derived from Two Different Vectors in Mice. Viruses 2020; 12:E125. [PMID: 31968702 PMCID: PMC7019946 DOI: 10.3390/v12010125] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/15/2020] [Accepted: 01/17/2020] [Indexed: 12/31/2022] Open
Abstract
Middle East respiratory syndrome (MERS) is an acute, high-mortality-rate, severe infectious disease caused by an emerging MERS coronavirus (MERS-CoV) that causes severe respiratory diseases. The continuous spread and great pandemic potential of MERS-CoV make it necessarily important to develop effective vaccines. We previously demonstrated that the application of Gram-positive enhancer matrix (GEM) particles as a bacterial vector displaying the MERS-CoV receptor-binding domain (RBD) is a very promising MERS vaccine candidate that is capable of producing potential neutralization antibodies. We have also used the rabies virus (RV) as a viral vector to design a recombinant vaccine by expressing the MERS-CoV S1 (spike) protein on the surface of the RV. In this study, we compared the immunological efficacy of the vaccine candidates in BALB/c mice in terms of the levels of humoral and cellular immune responses. The results show that the rabies virus vector-based vaccine can induce remarkably earlier antibody response and higher levels of cellular immunity than the GEM particles vector. However, the GEM particles vector-based vaccine candidate can induce remarkably higher antibody response, even at a very low dose of 1 µg. These results indicate that vaccines constructed using different vaccine vector platforms for the same pathogen have different rates and trends in humoral and cellular immune responses in the same animal model. This discovery not only provides more alternative vaccine development platforms for MERS-CoV vaccine development, but also provides a theoretical basis for our future selection of vaccine vector platforms for other specific pathogens.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Cell Line
- Coronavirus Infections/immunology
- Coronavirus Infections/prevention & control
- Genetic Vectors
- Humans
- Immunization
- Immunoglobulin G/blood
- Immunoglobulin G/immunology
- Lactococcus lactis/genetics
- Mice
- Mice, Inbred BALB C
- Middle East Respiratory Syndrome Coronavirus/genetics
- Middle East Respiratory Syndrome Coronavirus/immunology
- Rabies virus/genetics
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
- T-Lymphocytes/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/immunology
- Viral Vaccines/administration & dosage
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- Entao Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China;
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (F.Y.); (Y.Z.)
| | - Feihu Yan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (F.Y.); (Y.Z.)
| | - Pei Huang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (F.Y.); (Y.Z.)
- Animal Science and Technology College, Jilin Agricultural University, Changchun 130118, China
| | - Hang Chi
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (F.Y.); (Y.Z.)
| | - Shengnan Xu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (F.Y.); (Y.Z.)
- Animal Science and Technology College, Jilin Agricultural University, Changchun 130118, China
| | - Guohua Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (F.Y.); (Y.Z.)
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Chuanyu Liu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (F.Y.); (Y.Z.)
- Animal Science and Technology College, Jilin Agricultural University, Changchun 130118, China
| | - Na Feng
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (F.Y.); (Y.Z.)
| | - Hualei Wang
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yongkun Zhao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (F.Y.); (Y.Z.)
| | - Songtao Yang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (F.Y.); (Y.Z.)
| | - Xianzhu Xia
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China;
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (F.Y.); (Y.Z.)
- Animal Science and Technology College, Jilin Agricultural University, Changchun 130118, China
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
16
|
Monath TP, Fast PE, Modjarrad K, Clarke DK, Martin BK, Fusco J, Nichols R, Heppner DG, Simon JK, Dubey S, Troth SP, Wolf J, Singh V, Coller BA, Robertson JS. rVSVΔG-ZEBOV-GP (also designated V920) recombinant vesicular stomatitis virus pseudotyped with Ebola Zaire Glycoprotein: Standardized template with key considerations for a risk/benefit assessment. Vaccine X 2019; 1:100009. [PMID: 31384731 PMCID: PMC6668225 DOI: 10.1016/j.jvacx.2019.100009] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 12/07/2018] [Indexed: 12/14/2022] Open
Abstract
The Brighton Collaboration Viral Vector Vaccines Safety Working Group (V3SWG) was formed to evaluate the safety and characteristics of live, recombinant viral vector vaccines. A recent publication by the V3SWG described live, attenuated, recombinant vesicular stomatitis virus (rVSV) as a chimeric virus vaccine for HIV-1 (Clarke et al., 2016). The rVSV vector system is being explored as a platform for development of multiple vaccines. This paper reviews the molecular and biological features of the rVSV vector system, followed by a template with details on the safety and characteristics of a rVSV vaccine against Zaire ebolavirus (ZEBOV). The rVSV-ZEBOV vaccine is a live, replication competent vector in which the VSV glycoprotein (G) gene is replaced with the glycoprotein (GP) gene of ZEBOV. Multiple copies of GP are expressed and assembled into the viral envelope responsible for inducing protective immunity. The vaccine (designated V920) was originally constructed by the National Microbiology Laboratory, Public Health Agency of Canada, further developed by NewLink Genetics Corp. and Merck & Co., and is now in final stages of registration by Merck. The vaccine is attenuated by deletion of the principal virulence factor of VSV (the G protein), which also removes the primary target for anti-vector immunity. The V920 vaccine caused no toxicities after intramuscular (IM) or intracranial injection of nonhuman primates and no reproductive or developmental toxicity in a rat model. In multiple studies, cynomolgus macaques immunized IM with a wide range of virus doses rapidly developed ZEBOV-specific antibodies measured in IgG ELISA and neutralization assays and were fully protected against lethal challenge with ZEBOV virus. Over 20,000 people have received the vaccine in clinical trials; the vaccine has proven to be safe and well tolerated. During the first few days after vaccination, many vaccinees experience a mild acute-phase reaction with fever, headache, myalgia, and arthralgia of short duration; this period is associated with a low-level viremia, activation of anti-viral genes, and increased levels of chemokines and cytokines. Oligoarthritis and rash appearing in the second week occur at a low incidence, and are typically mild-moderate in severity and self-limited. V920 vaccine was used in a Phase III efficacy trial during the West African Ebola epidemic in 2015, showing 100% protection against Ebola Virus Disease, and it has subsequently been deployed for emergency control of Ebola outbreaks in central Africa. The template provided here provides a comprehensive picture of the first rVSV vector to reach the final stage of development and to provide a solution to control of an alarming human disease.
Collapse
Affiliation(s)
| | - Patricia E. Fast
- International AIDS Vaccine Initiative, New York, NY 10004, United States
| | - Kayvon Modjarrad
- Walter Reed Army Institute of Research, Silver Spring, MD 20910, United States
| | | | | | - Joan Fusco
- NewLink Genetics Corp, Ames, IA, United States
| | | | | | | | - Sheri Dubey
- Merck & Co., Inc., Kenilworth, NJ 07033, United States
| | - Sean P. Troth
- Merck & Co., Inc., Kenilworth, NJ 07033, United States
| | - Jayanthi Wolf
- Merck & Co., Inc., Kenilworth, NJ 07033, United States
| | - Vidisha Singh
- Immunology and Molecular Pathogenesis, Emory University, Atlanta, GA 30322, United States
| | | | | | | |
Collapse
|
17
|
Li L, Jin H, Wang H, Cao Z, Feng N, Wang J, Zhao Y, Zheng X, Hou P, Li N, Chi H, Huang P, Jiao C, Li Q, Wang L, Wang T, Sun W, Gao Y, Tu C, Hu G, Yang S, Xia X. Autophagy is highly targeted among host comparative proteomes during infection with different virulent RABV strains. Oncotarget 2017; 8:21336-21350. [PMID: 28186992 PMCID: PMC5400588 DOI: 10.18632/oncotarget.15184] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 01/16/2017] [Indexed: 12/23/2022] Open
Abstract
Rabies virus (RABV) is a neurotropic virus that causes serious disease in humans and animals worldwide. It has been reported that different RABV strains can result in divergent prognoses in animal model. To identify host factors that affect different infection processes, a kinetic analysis of host proteome alterations in mouse brains infected with different virulent RABV strains was performed using isobaric tags for a relative and absolute quantification (iTRAQ)-liquid chromatography-tandem mass spectrometry (LC-MS/MS) proteomics approach, and this analysis identified 147 differentially expressed proteins (DEPs) between the pathogenic challenge virus standard (CVS)-11 strain and the attenuated SRV9 strain. Bioinformatics analyses of these DEPs revealed that autophagy and several pathways associated with autophagy, such as mammalian target of rapamycin (mTOR) signaling, p70S6K signaling, nuclear factor erythroid 2-related factor 2 (NRF2)-mediated oxidative stress and superoxide radical degradation, were dysregulated. Validation of the proteomic data showed that attenuated SRV9 induced more autophagosome accumulation than CVS-11 in an in vitro model. Our findings provide new insights into the pathogenesis of RABV and encourage further studies on this topic.
Collapse
Affiliation(s)
- Ling Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China.,Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China
| | - Hongli Jin
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China.,Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China
| | - Hualei Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China
| | - Zengguo Cao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China
| | - Na Feng
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China
| | - Jianzhong Wang
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yongkun Zhao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China
| | - Xuexing Zheng
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China.,School of Public Health, Shandong University, Jinan, China
| | - Pengfei Hou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China.,Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China
| | - Nan Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China
| | - Hang Chi
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China
| | - Pei Huang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China.,Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Cuicui Jiao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China
| | - Qian Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China
| | - Lina Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China.,Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Tiecheng Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China
| | - Weiyang Sun
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China
| | - Yuwei Gao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China
| | - Changchun Tu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China
| | - Guixue Hu
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Songtao Yang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China
| | - Xianzhu Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China
| |
Collapse
|
18
|
Luo J, Zhao J, Tian Q, Mo W, Wang Y, Chen H, Guo X. A recombinant rabies virus carrying GFP between N and P affects viral transcription in vitro. Virus Genes 2016; 52:379-87. [PMID: 26957093 PMCID: PMC4858564 DOI: 10.1007/s11262-016-1313-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 02/26/2016] [Indexed: 12/21/2022]
Abstract
Several studies have demonstrated the rabies virus to be a perfect potential vaccine vector to insert foreign genes into the target genome. For this study, a green fluorescent protein (GFP) gene was cloned into the rabies virus (RABV) genome between the N and P gene. CT dinucleotide was inserted as intergenic region. The recombinant high egg passage Flury strain (HEP-Flury) of RABV, carrying GFP (rHEP-NP-GFP), was generated in BHK-21 cells using reverse genetics. According to the viral growth kinetics assay, the addition of GFP between N and P gene has little effect on the viral growth compared to the parental strain HEP-Flury. Quantitative real-time PCR (qPCR) indicated that rHEP-NP-GFP showed different viral gene transcription, especially for G gene, compared to HEP-Flury. The same is true for one other recombinant RABV carrying GFP between G and L gene in NA cells. In addition, parent HEP-Flury showed more expression of innate immune-related molecules in NA cells. Compared to HEP-Flury, Western blotting (WB) indicated that insertion of a foreign gene following N gene enhanced the expression of M and G proteins. According to the qPCR and WB, GFP expression levels of rHEP-NP-GFP were significantly higher than rHEP-GFP. This study indicates HEP-Flury as valid vector to express exogenous genes between N and P.
Collapse
Affiliation(s)
- Jun Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jing Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Qin Tian
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Weiyu Mo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yifei Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Hao Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiaofeng Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
| |
Collapse
|