1
|
Song Y, Zhao X, Chen Y, Yu X, Su T, Wang J, He T, Yin Z, Jia R, Zhao X, Zhou X, Li L, Zou Y, Li M, Zhang D, Zhang Y, Song X. The antiviral activity of myricetin against pseudorabies virus through regulation of the type I interferon signaling pathway. J Virol 2024:e0156724. [PMID: 39601590 DOI: 10.1128/jvi.01567-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024] Open
Abstract
The type I interferon signaling pathway constitutes a pivotal component of the innate immune response, encompassing the cGAS/STING and JAK/STAT pathways. Drugs that affect the body's innate immune response could potentially be used as broad-spectrum antivirals. In this study, the antiviral activities of 25 flavonoids against pseudorabies virus (PRV) were tested in PK-15 cells. Eight active flavonoids were identified, with IC50 values ranging from 23.24 to 323.09 µM. Subsequently, the regulatory effects of these flavonoids on the cGAS/STING pathway in PRV-infected cells were investigated. It was found that Myricetin significantly increased the transcriptional levels of cGAS, STING, IRF3, and IFN-β, which had been reduced by PRV infection. The regulation of the type I interferon signaling pathways by myricetin following PRV infection was further investigated through the production of cGAMP and the assessment of transcriptional and protein levels of pivotal genes and proteins. To confirm the activation of the innate immune response, a dual luciferase gene reporter study found that the expression of the IFN-β promoter in the myricetin-treated group was significantly elevated in a cellular model of type I interferon signaling pathway, and the contents of IFN-β were also significantly higher than those observed in the infected-untreated group in a PRV-infected mice model. Moreover, the transcriptional and protein levels of key genes and proteins in cell and mouse models exhibited analogous outcomes to those observed in PRV-infected cells. These findings suggest that myricetin can effectively activate the type I interferon signaling pathway, thereby enhancing the innate immune response during PRV infection. IMPORTANCE PRV, belonging to the Herpesviridae family, is an easily overlooked zoonotic pathogen that can threaten human health. The immunoprotective efficacy of conventional vaccines is significantly reduced due to the continuous mutation of the PRV genome, which constantly generates new viral strains. Therefore, there is a need to develop potent therapeutic drugs. PRV is capable of evading the host's natural immunity by suppressing the host's type I interferon signaling pathway, and the search for drugs that activate natural immunity can induce the body to produce type I IFN interferon and exert antiviral effects. Accordingly, the present study sought to identify active compounds from flavonoids that modulate the type I IFN interferon signaling pathway and thus inhibit the proliferation of PRV, which provides a new idea for the development of anti-PRV drugs from flavonoids that modulate the type I IFN interferon signaling pathway to enhance the body's antiviral immunity.
Collapse
Affiliation(s)
- Yizhen Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xufan Zhao
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yaqin Chen
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xingyue Yu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Tianli Su
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Wang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Tingke He
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhongqiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinhong Zhao
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xun Zhou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lixia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yuanfeng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingyue Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dongmei Zhang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yingying Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xu Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
2
|
Xu L, Tao Q, Xu T, Yang Y, Zhang Y, Liu Z, Zhou Y, Zhu L, Xu Z. Pathogenicity characteristics of different subgenotype pseudorabies virus in newborn piglets. Front Vet Sci 2024; 11:1438354. [PMID: 39170631 PMCID: PMC11335603 DOI: 10.3389/fvets.2024.1438354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024] Open
Abstract
Pseudorabies virus is a major pathogen in the pig industry, causing substantial economic losses. The emergence of pseudorabies virus variant strains in China has led to extensive spread, raising concerns about their potential impact. However, the differences in pathogenicity between the classical strains and the variant strains of genotype II are not well understood. In this study, we isolated three pseudorabies virus strains to evaluate their replication characteristics and to examine the differences in virulence genes among various subgenotypes strains. Additionally, a piglet infection model was utilized to investigate the clinical features of infection, tissue tropism, and the inflammatory responses induced by these strains. Our results showed that the genotype II variant strains (MS, XJ, LS, and CZ) had significantly larger plaque sizes and higher replication capacities than the genotype II classical strain Fa. The animal experiments revealed significant differences in pathogenicity among the pseudorabies virus subgenotype strains, with the variant strains showing higher mortality rates, more severe clinical symptoms, increased nasal virus shedding, and a more robust inflammatory response compared to the genotype II classical strain. There were also notable differences in tissue tropism among the strains. In terms of tissue viral loads, the genotype II variant strains did not exhibit a significant advantage over the genotype I classical strain. Furthermore, our findings indicate that antibodies against the genotype II classical strains have a reduced neutralizing capacity against the genotype II variant strains. On the other hand, antibodies against the genotype II variant strains displayed similar neutralizing abilities against both classical and variant strains. Overall, these findings offer important insights into the distinctions among pseudorabies virus subgenotypes and their implications for the clinical control of pseudorabies virus infections in pig farming.
Collapse
Affiliation(s)
- Lei Xu
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qian Tao
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Tong Xu
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanting Yang
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yang Zhang
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zheyan Liu
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yuancheng Zhou
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Ling Zhu
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhiwen Xu
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
3
|
Huan C, Yao J, Wang X, Zhang H, Wang X, Jiang L, Gao S. Rehmmannia glutinosa polysaccharide exerts antiviral activity against pseudorabies virus and antioxidant activity. Int J Biol Macromol 2024; 274:133455. [PMID: 38945342 DOI: 10.1016/j.ijbiomac.2024.133455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/19/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
Pseudorabies virus (PRV) is an important pathogen harming the global pig industry. Vaccines available for swine cannot protect against PRV completely. Furthermore, no antiviral drugs are available to treat PRV infections. Rehmmannia glutinosa polysaccharide (RGP) possesses several medicinal properties. However, its antiviral activity is not reported. In the present study, we found that RGP can inhibit PRV/XJ5 infection by western blotting, immunofluorescent assay (IFA), and TCID50 assay quantitative polymerase chain reaction (qPCR). We revealed RGP can inhibit virus adsorption and invasion into PK-15 cells in a dose-dependent manner via western blotting, IFA, TCID50 assay, and quantitative polymerase chain reaction (qPCR), and suppressed PRV/XJ5 replication through western blotting, and qPCR. Additionally, it also reduced PRV/XJ5-induced ROS, lipid oxidation, and improved SOD levels in PK-15 cells, which was observed by using corresponding test kits. To conclude, our findings suggest that RGP might be a novel therapeutic agent for preventing and controlling PRV infection and antioxidant agent.
Collapse
Affiliation(s)
- Changchao Huan
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China.
| | - Jingting Yao
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
| | - Xiaotong Wang
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
| | - HanYu Zhang
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
| | - XiaoBing Wang
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
| | - Luyao Jiang
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
| | - Song Gao
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China.
| |
Collapse
|
4
|
Jiang L, Cheng J, Pan H, Yang F, Zhu X, Wu J, Pan H, Yan P, Zhou J, Gao Q, Huan C, Gao S. Analysis of the recombination and evolution of the new type mutant pseudorabies virus XJ5 in China. BMC Genomics 2024; 25:752. [PMID: 39090561 PMCID: PMC11295580 DOI: 10.1186/s12864-024-10664-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 07/25/2024] [Indexed: 08/04/2024] Open
Abstract
Pseudorabies have caused enormous economic losses in China's pig industry and have recurred on many large pig farms since late 2011. The disease is caused by highly pathogenic, antigenic variant pseudorabies virus (vPRV) strains. Our laboratory isolated a pseudorabies virus in 2015 and named it XJ5. The pathogenic ability of this mutant strain was much stronger than that of the original isolate. After we sequenced its whole genome (GenBank accession number: OP512542), we found that its overall structure was not greatly changed compared with that of the previous strain Ea (KX423960.1). The whole genome alignment showed that XJ5 had a strong genetic relationship with the strains isolated in China after 2012 reported in GenBank. Based on the isolation time of XJ5 and the mutation and recombination analysis of programs, we found that the whole genome homology of XJ5 and other strains with Chinese isolates was greater than 95%, while the homology with strains outside Asia was less than 94%, which indicated that there may be some recombination and mutation patterns. We found that virulent PRV isolates emerged successively in China in 2011 and formed two different evolutionary clades from foreign isolates. At the same time, this may be due to improper immunization and the presence of wild strains in the field, and recent reports have confirmed that Bartha vaccine strains recombine with wild strains to obtain new pathogenic strains. We performed genetic evolution analysis of XJ5 isolated and sequenced in our laboratory to trace its possible mutations and recombination. We found that XJ5 may be the result of natural mutation of a virus in a branch of mutant strains widely existing in China.
Collapse
Affiliation(s)
- Luyao Jiang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, 225009, Jiangsu, China
| | - Jinlong Cheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Hao Pan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, 225009, Jiangsu, China
| | - Fan Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, 225009, Jiangsu, China
| | - Xiemin Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, 225009, Jiangsu, China
| | - Jiayan Wu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, 225009, Jiangsu, China
| | - Haochun Pan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, 225009, Jiangsu, China
| | - Ping Yan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, 225009, Jiangsu, China
| | - Jinzhu Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, 225009, Jiangsu, China
- Jiangsu Academy of Agricultural Sciences Veterinary Institute, Nanjing, 210014, Jiangsu, China
| | - Qingqing Gao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, 225009, Jiangsu, China
| | - Changchao Huan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China.
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, 225009, Jiangsu, China.
| | - Song Gao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China.
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, 225009, Jiangsu, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
5
|
Guo Z, Xu H, Zhang S, Kang H, Li C, Sun Q, Zhao J, Li J, Zhou G, Wang Q, Xiang L, Tang Y, Liu H, Leng C, An T, Cai X, Tian Z, Zhang H, Peng J. Improved detection sensitivity of anti-PRV variant antibodies through preparation of anti-gB and anti-gE monoclonal antibodies and development of blocking ELISAs. Int J Biol Macromol 2024; 260:129425. [PMID: 38219937 DOI: 10.1016/j.ijbiomac.2024.129425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
Since 2011, PRV has resurged in China and is characterized by a mutated strain with significant alterations in antigenicity and virulence. Therefore, we hypothesized that antibody detection kits based on classic PRV strains may have limitations in detecting PRV variants. For more sensitive antibody detection of PRV variants, two MABs targeting the gB and gE proteins were developed. IFA revealed that these MABs exhibited strong reactivity toward both classic and variant PRV strains. MAB-gE recognizes a novel conserved linear B-cell epitope (41PSAEVWD47), while MAB-gB recognizes a conformational B-cell epitope. The binding of both MABs was effectively inhibited in the PRV-positive pig blood samples. Accordingly, we established blocking-ELISAs to detect anti-PRV gB and gE antibodies, which achieved higher sensitivity than commercial kits. Moreover, the clinical serum samples results of our method and that of IFA were in high agreement, and our test results had a higher coincidence rate than that of a commercial kit. Assessing antibody levels by our methods at various times following immunization and challenge accurately reflected the trend of antibody-level changes and revealed the conversion to positive antibody status before the commercial kit. Our method is crucial for monitoring PRV infections, assessing immune responses, and controlling disease.
Collapse
Affiliation(s)
- Zhenyang Guo
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Hu Xu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Siyu Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Haonan Kang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Chao Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Qi Sun
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Jing Zhao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Jinhao Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Guohui Zhou
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Qian Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Lirun Xiang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Yandong Tang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Huairan Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Chaoliang Leng
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan Provincial Engineering Laboratory of Insects Bio-reactor, China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Nanyang Normal University, Nanyang 473061, China
| | - Tongqing An
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xuehui Cai
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Zhijun Tian
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Hongliang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| | - Jinmei Peng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| |
Collapse
|
6
|
Ukhovskyi VV, Romanov OM, Chechet OM, Sytiuk MP, Korniienko LY, Tsarenko TM, Radzykhovskyi ML, Gerilovych AP. Molecular characterization and phylogenetic analysis of pseudorabies virus isolated from pigs in Ukraine. REGULATORY MECHANISMS IN BIOSYSTEMS 2023; 14:180-185. [DOI: 10.15421/022327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
Abstract
The article presents the results of a molecular genetic study of two isolates of the Pseudorabies virus that were isolated from pigs in Ukraine. Bioinformatic analysis of the gE gene fragment of Aujeszky's disease virus (Pseudorabies virus) isolates was carried out in order to determine the phylogenetic relationships and homology of nucleotide sequences. Fragments of the Aujeszky disease virus genome corresponding to the C-terminal region of the gE gene were selected for sequencing and further analysis. As a result of the conducted studies, it was demonstrated that the nucleotide sequences of the analyzed samples differ from each other by the presence of ACG insert in the tandem repeats region. Comparison of the studied sequences with the sequences of strains/isolates of the Aujeszky's disease virus found in Europe and Asia, presented in the GenBank database, indicates that such an insert is characteristic for the Min-A and HNJZ strains (position 1487 in the gE gene) isolated in Asia. Analysis of the homology of nucleotide sequences showed that the sequence of the gE gene fragment of sample No. 1 is 100% identical to the sequences of strains 89V87 and 00V72 isolated in Belgium. The homology of the nucleotide sequence of the gE gene fragment of sample No. 3 with strains 89V87 and 00V72 was 99.13%. In order to clarify the analyzed samples belonging to a particular genogroup (genetic cluster), a phylogenetic dendrogram was constructed. This demonstrates the phylogenetic relationships between strains/isolates of the Aujeszky's disease virus. It was found that the analyzed samples belong to the genetic cluster uniting European strains/isolates, and the studied isolates are most genetically close to strains 89V87 and 00V72.
Collapse
|
7
|
Nie Z, Zhu S, Wu L, Sun R, Shu J, He Y, Feng H. Progress on innate immune evasion and live attenuated vaccine of pseudorabies virus. Front Microbiol 2023; 14:1138016. [PMID: 36937252 PMCID: PMC10020201 DOI: 10.3389/fmicb.2023.1138016] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/15/2023] [Indexed: 03/06/2023] Open
Abstract
Pseudorabies virus (PRV) is a highly infectious disease that can infect most mammals, with pigs as the only natural host, has caused considerable economic losses to the pig husbandry of the world. Innate immunity is the first defense line of the host against the attack of pathogens and is essential for the proper establishment of adaptive immunity. The host uses the innate immune response to against the invasion of PRV; however PRV makes use of various strategies to inhibit the innate immunity to promote the virus replication. Currently, live attenuated vaccine is used to prevent pig from infection with the PRV worldwide, such as Bartha K61. However, a growing number of data indicates that these vaccines do not provide complete protection against new PRV variants that have emerged since late 2011. Here we summarized the interactions between PRV and host innate immunity and the current status of live attenuated PRV vaccines to promote the development of novel and more effective PRV vaccines.
Collapse
Affiliation(s)
- Zhenyu Nie
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Shaoxing Academy of Biomedicine, Zhejiang Sci-Tech University, Shaoxing, China
| | - Shunfan Zhu
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Shaoxing Academy of Biomedicine, Zhejiang Sci-Tech University, Shaoxing, China
| | - Li Wu
- Department of Biology, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Ruolin Sun
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jianhong Shu
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yulong He
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Huapeng Feng
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- *Correspondence: Huapeng Feng,
| |
Collapse
|
8
|
Li L, Du Y, Zhang Y, Li P, Liu X, Zhang X, Li J, Zhang T, Li X, Xiao D, Liu P, Qi P, Xiao J. Comprehensive evaluation of the safety and immunogenicity of a gene-deleted variant pseudorabies virus attenuated vaccine. Vet Res 2022; 53:73. [PMID: 36138470 PMCID: PMC9502647 DOI: 10.1186/s13567-022-01091-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/12/2022] [Indexed: 11/15/2022] Open
Abstract
Pseudorabies virus (PRV) variant infections have caused a substantial economic impact on swine production in the absence of new powerful candidate vaccines. In this study, we developed and evaluated a gene-deleted variant pseudorabies virus (PRV)-attenuated vaccine, PRV GX-ΔTK/IES, in which the genes TK, gI, gE, US9 and US2 were deleted. During a study of innocuousness, all mice inoculated with PRV GX-ΔTK/IES survived, neither clinical signs nor pathological changes were observed, and viral genomes could not be detected in the blood and tissues. All piglets inoculated with high titres of PRV GX-ΔTK/IES remained clinically healthy, and neither fever nor clinical signs were observed. Viral detection results were negative in nasal swab samples, blood and tissue samples. Moreover, none of the cohabitated piglets seroconverted during a trial on horizontal transmission. The immunogenicity was assessed through a vaccination and challenge experiment in piglets. Piglets vaccinated with PRV GX-ΔTK/IES and the commercial vaccine were completely protected from subsequent PRV infection, and the level of immunity and protection induced by PRV GX-ΔTK/IES was better than that provided by the live commercial vaccine. Thus, PRV GX-ΔTK/IES is completely safe for both nontarget and target animals and can be regarded as a novel live gene-deleted PRV vaccine candidate.
Collapse
Affiliation(s)
- Ling Li
- Key Laboratory of Veterinary Bioproduction and Chemical Medicine of the Ministry of Agriculture, Engineering and Technology Research Center for Beijing Veterinary Peptide Vaccine Design and Preparation, Zhongmu Institute of China Animal Husbandry Industry, Co., Ltd., Beijing, China.
| | - Yongfeng Du
- Cahic Chengdu Machinery Factory, Chengdu, 610100, China
| | - Yanbin Zhang
- Key Laboratory of Veterinary Bioproduction and Chemical Medicine of the Ministry of Agriculture, Engineering and Technology Research Center for Beijing Veterinary Peptide Vaccine Design and Preparation, Zhongmu Institute of China Animal Husbandry Industry, Co., Ltd., Beijing, China
| | - Pengyu Li
- Key Laboratory of Veterinary Bioproduction and Chemical Medicine of the Ministry of Agriculture, Engineering and Technology Research Center for Beijing Veterinary Peptide Vaccine Design and Preparation, Zhongmu Institute of China Animal Husbandry Industry, Co., Ltd., Beijing, China
| | - Xinyue Liu
- Key Laboratory of Veterinary Bioproduction and Chemical Medicine of the Ministry of Agriculture, Engineering and Technology Research Center for Beijing Veterinary Peptide Vaccine Design and Preparation, Zhongmu Institute of China Animal Husbandry Industry, Co., Ltd., Beijing, China
| | - Xin Zhang
- Key Laboratory of Veterinary Bioproduction and Chemical Medicine of the Ministry of Agriculture, Engineering and Technology Research Center for Beijing Veterinary Peptide Vaccine Design and Preparation, Zhongmu Institute of China Animal Husbandry Industry, Co., Ltd., Beijing, China
| | - Jing Li
- Key Laboratory of Veterinary Bioproduction and Chemical Medicine of the Ministry of Agriculture, Engineering and Technology Research Center for Beijing Veterinary Peptide Vaccine Design and Preparation, Zhongmu Institute of China Animal Husbandry Industry, Co., Ltd., Beijing, China
| | - Tong Zhang
- Key Laboratory of Veterinary Bioproduction and Chemical Medicine of the Ministry of Agriculture, Engineering and Technology Research Center for Beijing Veterinary Peptide Vaccine Design and Preparation, Zhongmu Institute of China Animal Husbandry Industry, Co., Ltd., Beijing, China
| | - Xin Li
- Cahic Jiangxi Biological Pharmaceutical Factory, Nanchang, 330200, China
| | - Dong Xiao
- Cahic Jiangxi Biological Pharmaceutical Factory, Nanchang, 330200, China
| | - Peng Liu
- Animal Husbandry and Veterinary Station of Wendeng District, Shandong, 264400, Weihai, China
| | - Peng Qi
- Key Laboratory of Veterinary Bioproduction and Chemical Medicine of the Ministry of Agriculture, Engineering and Technology Research Center for Beijing Veterinary Peptide Vaccine Design and Preparation, Zhongmu Institute of China Animal Husbandry Industry, Co., Ltd., Beijing, China
| | - Jin Xiao
- Key Laboratory of Veterinary Bioproduction and Chemical Medicine of the Ministry of Agriculture, Engineering and Technology Research Center for Beijing Veterinary Peptide Vaccine Design and Preparation, Zhongmu Institute of China Animal Husbandry Industry, Co., Ltd., Beijing, China.
| |
Collapse
|
9
|
Li C, Ma Y, Cai Z, Wan Q, Tian S, Ning H, Wang S, Chen JL, Yang G. Neuropeptide S and its receptor NPSR enhance the susceptibility of hosts to pseudorabies virus infection. Res Vet Sci 2022; 146:15-23. [PMID: 35298925 DOI: 10.1016/j.rvsc.2022.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 03/01/2022] [Accepted: 03/07/2022] [Indexed: 11/18/2022]
Abstract
The neuropeptide S (NPS) and its receptor (NPSR) represent a signaling system in the brain. Increased levels of NPS and NPSR have been observed in PK15 cells and murine brains in response to pseudorabies virus (PRV) infection, but it remains unclear whether elevated levels of NPS and NPSR are involved in the pathogenic process of PRV infection. In this study, the activities of both NPS and NPSR during PRV pathogenesis were explored in vitro and in vivo by reverse transcription polymerase chain reaction (RT-PCR), PCR, real-time quantitative RT-PCR (qRT-PCR), qPCR, TCID50, and Western blotting methods. NPSR-deficient cells were less susceptible to PRV infection, as evidenced by decreased viral production and PRV-glycoprotein E (gE) expression. In vitro studies showed that exogenous NPS promoted the expression of interleukin 6 (IL-6) mRNA but inhibited interferon β (IFN-β) mRNA expression in PK15 cells after PRV infection. In vivo studies showed that NPS-treated mice were highly susceptible to PRV infection, with decreased survival rates and body weights. In addition, NPS-treated mice showed elevated levels of IL-6 mRNA and STAT3 phosphorylation. However, the expression of IFN-β mRNA was greatly decreased after virus challenge. Contrasting results were obtained from the NPSR-ir-treated groups, which further highlighted the effects of NPS. This study revealed that NPS-treated hosts are more susceptible to PRV infection than controls. Moreover, excessive IL-6/STAT3 and defective IFN-β responses in NPS-treated mice may contribute to the pathogenesis of PRV.
Collapse
Affiliation(s)
- Chunyu Li
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Science (College of Bee Science), Fujian Agricultural and Forestry University, Fujian, PR China
| | - Yijie Ma
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Science (College of Bee Science), Fujian Agricultural and Forestry University, Fujian, PR China
| | - Zifeng Cai
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Science (College of Bee Science), Fujian Agricultural and Forestry University, Fujian, PR China
| | - Qianhui Wan
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Science (College of Bee Science), Fujian Agricultural and Forestry University, Fujian, PR China
| | - Shimao Tian
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Science (College of Bee Science), Fujian Agricultural and Forestry University, Fujian, PR China
| | - Hongxia Ning
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Science (College of Bee Science), Fujian Agricultural and Forestry University, Fujian, PR China
| | - Song Wang
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Science (College of Bee Science), Fujian Agricultural and Forestry University, Fujian, PR China
| | - Ji-Long Chen
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Science (College of Bee Science), Fujian Agricultural and Forestry University, Fujian, PR China
| | - Guihong Yang
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Science (College of Bee Science), Fujian Agricultural and Forestry University, Fujian, PR China.
| |
Collapse
|
10
|
Jin YL, Yin D, Xing G, Huang YM, Fan CM, Fan CF, Qiu XH, Dong WR, Yan Y, Gu JY, Zhou JY. The Inactivated gE/TK Gene-Deleted Vaccine Against Pseudorabies Virus Type II Confers Effective Protection in Mice and Pigs. Front Microbiol 2022; 13:943707. [PMID: 35992698 PMCID: PMC9389536 DOI: 10.3389/fmicb.2022.943707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
The highly virulent and antigenic variant of Pseudorabies virus (PRV) that emerged from classical Bartha-K61-vaccinated pig herds has caused substantial economic losses to the swine industry in China since 2011. A safe and more effective vaccine is most desirable. In this study, a gE/TK gene-deficient PRV, namely, HD/c, was constructed based on a PRV type II DX strain isolated from a commercial vaccine-immunized farm and the HD/c-based inactivated vaccine was formulated and evaluated for its safety, immunogenicity, and protective efficacy in mice and piglets. The resulting PRV HD/c strain has a similar growth curve to the parental DX strain. After vaccination, the inactivated HD/c vaccine did not cause any visible gross pathological or histopathological changes in the tissues of mice and piglets and provided rapid and potent protection against the challenge of the classical and variant PRVs at day 21 post-vaccination in mice. A single immunization of 108.5TCID50 inactivated PRV HD/c strain-elicited robust immunity with high titer of neutralizing antibody and provided complete protection from the lethal challenge of PRV DX strain in piglets. These results indicated that the inactivated PRV HD/c vaccine with the deletion of gE/TK genes was a safe and effective PRV vaccine candidate for the control of PRV.
Collapse
Affiliation(s)
- Yu-Lan Jin
- Ministry of Agriculture (MOA) Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, China
- The Experimental Teaching Center, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Di Yin
- Ministry of Agriculture (MOA) Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, China
| | - Gang Xing
- Ministry of Agriculture (MOA) Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, China
| | - Yan-Ming Huang
- Ministry of Agriculture (MOA) Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, China
| | - Chun-Mei Fan
- Ministry of Agriculture (MOA) Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, China
| | - Cheng-Fei Fan
- Ministry of Agriculture (MOA) Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, China
| | - Xiao-Huo Qiu
- Ministry of Agriculture (MOA) Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, China
| | - Wei-Ren Dong
- Ministry of Agriculture (MOA) Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, China
| | - Yan Yan
- Ministry of Agriculture (MOA) Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, China
| | - Jin-Yan Gu
- Ministry of Agriculture (MOA) Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, China
| | - Ji-Yong Zhou
- Ministry of Agriculture (MOA) Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University, Hangzhou, China
- *Correspondence: Ji-Yong Zhou
| |
Collapse
|
11
|
Ning Y, Huang Y, Wang M, Cheng A, Yang Q, Wu Y, Tian B, Ou X, Huang J, Mao S, Sun D, Zhao X, Zhang S, Gao Q, Chen S, Liu M, Zhu D, Jia R. Alphaherpesvirus glycoprotein E: A review of its interactions with other proteins of the virus and its application in vaccinology. Front Microbiol 2022; 13:970545. [PMID: 35992696 PMCID: PMC9386159 DOI: 10.3389/fmicb.2022.970545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
The viral envelope glycoprotein E (gE) is required for cell-to-cell transmission, anterograde and retrograde neurotransmission, and immune evasion of alphaherpesviruses. gE can also interact with other proteins of the virus and perform various functions in the virus life cycle. In addition, the gE gene is often the target gene for the construction of gene-deleted attenuated marker vaccines. In recent years, new progress has been made in the research and vaccine application of gE with other proteins of the virus. This article reviews the structure of gE, the relationship between gE and other proteins of the virus, and the application of gE in vaccinology, which provides useful information for further research on gE.
Collapse
Affiliation(s)
- Yaru Ning
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
| | - Yalin Huang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- *Correspondence: Anchun Cheng,
| | - Qiao Yang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
| | - Ying Wu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
| | - Bin Tian
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
| | - Xumin Ou
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
| | - Juan Huang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
| | - Sai Mao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
| | - Di Sun
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
| | - Xinxin Zhao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
| | - Shaqiu Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
| | - Qun Gao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
| | - Shun Chen
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
| | - Mafeng Liu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
| | - Dekang Zhu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
| |
Collapse
|
12
|
Serological Investigation and Genetic Characteristics of Pseudorabies Virus between 2019 and 2021 in Henan Province of China. Viruses 2022; 14:v14081685. [PMID: 36016307 PMCID: PMC9412869 DOI: 10.3390/v14081685] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022] Open
Abstract
In late 2011, severe pseudorabies (PR) outbreaks occurred among swine herds vaccinated with the Bartha-K61 vaccine in many provinces of China, causing enormous economic losses for the pork industry. To understand the epidemic profile and genetic characteristics of the pseudorabies virus (PRV), a total of 35,796 serum samples were collected from 1090 pig farms of different breeding scales between 2019 and 2021 in the Henan province where swine had been immunized with the Bartha-K61 vaccine, and PRV glycoprotein E (gE)-specific antibodies were detected using an enzyme-linked immunosorbent assay (ELISA). The results reveal that the overall positive rate for PRV gE antibodies was 20.33% (7276/35,796), which decreased from 25.00% (2596/10,385) in 2019 to 16.69% (2222/13,315) in 2021, demonstrating that PR still existed widely in pig herds in the Henan province but displayed a decreasing trend. Further analysis suggested that the PRV-seropositive rate may be associated with farm size, farm category, quarter, region and the cross-regional transportation of livestock. Moreover, the gE gene complete sequences of 18 PRV isolates were obtained, and they shared a high identity (97.1–100.0%) with reference strains at the nucleotide level. Interestingly, the phylogenetic analysis based on the gE complete sequences found that there were both classical strains and variant strains in pig herds. The deduced amino acid sequence analysis of the gE gene showed that there were unique amino acids in the classical strains, the variant strains and genotype Ⅱ strains. This study provides epidemiological data that could be useful in the prevention of pseudorabies in Henan, China, and this finding contributed to our understanding of the epidemiology and evolution of PRV.
Collapse
|
13
|
Ning Y, Huang Y, Wang M, Cheng A, Jia R, Liu M, Zhu D, Chen S, Zhao X, Zhang S, Yang Q, Wu Y, Huang J, Tian B, Ou X, Mao S, Gao Q, Sun D, Yu Y, Zhang L. Evaluation of the Safety and Immunogenicity of Duck-Plague Virus gE Mutants. Front Immunol 2022; 13:882796. [PMID: 35515004 PMCID: PMC9067127 DOI: 10.3389/fimmu.2022.882796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Duck plague (DP) is an acute infectious disease in the duck industry. The duck plague virus (DPV) is the pathogen, a subfamily of alphaherpesvirinae. gE is a type I membrane protein that contains three parts: an extracellular domain, a transmembrane domain, and a cytoplasmic domain. gE is the major virulence determinant of α-herpesvirus. However, the functions of the gE extracellular and cytoplasmic domains have not been reported in DPV. In this study, a gE extracellular domain deletion mutant and a gE cytoplasmic domain deletion mutant were constructed from DPV. Virus replication kinetics showed that the growth titers of both the gE ectodomain-deleted mutant virus and the gE cytoplasmic domain-deleted virus in DEFs were lower than that of the parental virus CHv-50. DPV CHv-gEΔET and DPV CHv-gEΔCT were continuously passed to the 20th passage in DEFs and the 10th in ducklings. The mutant virus DNA after passage was extracted for identification. The results showed that the gE ectodomain and gE cytoplasmic domain deletion mutant viruses have good genetic stability. The ducklings in each group (n=10) were inoculated with the same titers of DPV CHv-gEΔET, DPV CHv-gEΔCT, DPV CHv-ΔgE, and parental CHv-50, respectively. Clinical symptoms and serum antibody levels were detected after inoculation. The results showed that the virulence of DPV CHv-gEΔCT to ducklings was reduced compared with parental CHv-50, while the virulence of DPV CHv-gEΔET to ducklings was significantly reduced. 105 TCID50 DPV CHv-gEΔET or DPV CHv-ΔgE can induce ducklings to produce DPV-specific antibodies, protect the ducklings from virulent CHv challenge. Therefore, DPV CHv-gEΔET may serve as a promising vaccine candidate to prevent and control duck plague.
Collapse
Affiliation(s)
- Yaru Ning
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yalin Huang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Sai Mao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qun Gao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanlin Yu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
14
|
Sun Y, Zhao L, Fu ZF. Effective Cross-protection of a lyophilized live gE/gI/TK-deleted pseudorabies virus (PRV) vaccine against classical and variant PRV challenges. Vet Microbiol 2022; 267:109387. [PMID: 35276621 DOI: 10.1016/j.vetmic.2022.109387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/18/2022] [Accepted: 02/27/2022] [Indexed: 10/19/2022]
|
15
|
Sun L, Tang Y, Yan K, Zhang H. Construction of a quadruple gene-deleted vaccine confers complete protective immunity against emerging PRV variant challenge in piglets. Virol J 2022; 19:19. [PMID: 35078501 PMCID: PMC8787898 DOI: 10.1186/s12985-022-01748-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/13/2022] [Indexed: 12/27/2022] Open
Abstract
Abstract
Background
Pseudorabies virus (PRV) causes Aujeszky’s disease or pseudorabies (PR) in pigs worldwide, which leads to heavy economic losses to the swine industry. Pigs are the natural host, meanwhile, animals such as dogs, cats, foxes, rabbits, cattle and sheep are susceptible to infection. In 2011, the emerging PRV variant led to the outbreak of PR in Bartha-K61 vaccinated pigs. The PR outbreaks demonstrated that the Bartha-K61 vaccine did not provide full protection against the emerging PRV variant. It is widely believed that PRV live attenuated vaccine could control PRV infection.
Methods
In this study, we developed a novel PRV live attenuated vaccine by deleting its gI, gE, US9, and US2 genes through CRISPR/Cas9, which was named PRV GDFS-delgI/gE/US9/US2.
Results
Safety experiments confirmed that PRV GDFS-delgI/gE/US9/US2 was safe for 5- to 7-day-old suckling piglets. Piglets immunized with the PRV GDFS-delgI/gE/US9/US2 vaccine did not produce PRV gE-specific antibodies but could generate PRV gB-specific antibodies and high neutralizing titers against the PRV GDFS strain (variant PRV strain) or PRV Ea strain (older PRV strain). After challenge with the emerging PRV GDFS variant, none of the piglets immunized with the PRV GDFS-delgI/gE/US9/US2 vaccine showed any clinical signs, and their rectal temperatures were normal. Moreover, the autopsy and histopathological analyses revealed that the piglets in the PRV GDFS-delgI/gE/US9/US2 vaccine group did not show apparent gross or pathological lesions. Furthermore, the piglets in the PRV GDFS-delgI/gE/US9/US2 vaccine groups did not present weight loss. According to the criteria of the OIE terrestrial manual, the results of the experiment confirmed that the PRV GDFS-delgI/gE/US9/US2 vaccine could provide full protection against the emerging PRV variant strain in piglets.
Conclusions
The PRV GDFS-delgI/gE/US9/US2 strain is a potential new live attenuated vaccine against emerging PRV variant strain infections in China.
Collapse
|
16
|
Zheng HH, Bai YL, Xu T, Zheng LL, Li XS, Chen HY, Wang ZY. Isolation and Phylogenetic Analysis of Reemerging Pseudorabies Virus Within Pig Populations in Central China During 2012 to 2019. Front Vet Sci 2021; 8:764982. [PMID: 34869736 PMCID: PMC8635136 DOI: 10.3389/fvets.2021.764982] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/15/2021] [Indexed: 02/03/2023] Open
Abstract
To understand the biological characteristics of the reemerging pseudorabies virus (PRV) strains, a total of 392 tissue samples were collected from diseased pigs during reemerging PR outbreaks between 2012 and 2019 on farms in central China where swine had been immunized with Bartha-K61 and 51 (13. 01%) were positive for the gE gene by PCR. Sixteen PRV strains were isolated and caused clinical symptoms and death in mice. Subsequently, gE, gC, gB, and gD complete genes were amplified from the 16 PRV isolates and sequenced. Phylogenetic analysis based on these four gene sequences shows that the 16 PRV isolates were more closely related to the Chinese PRV variants (after 2012) but genetically differed from early Chinese PRV isolates (before 2012). Sequence analysis reveals that PRV isolates exhibited amino acid insertions, substitutions, or deletions compared with early Chinese PRV isolates and European–American PRV strains. In addition, this is the first report that eight isolates (8/16) in this study harbor a unique amino acid substitution at position 280 (F to L) of the gC protein, and six isolates have an amino acid substitution at position 338 (A to V) of the gD protein compared with the Chinese PRV variants. The emulsion containing inactivated PRV NY isolate could provide complete protection against the NY isolate. This study might enrich our understanding of the evolution of reemerging PRV strains as well as pave the way for finding a model virus to develop a novel vaccine based on reemerging PRV strains.
Collapse
Affiliation(s)
- Hui-Hua Zheng
- Zhengzhou Major Pig Disease Prevention and Control Laboratory, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yi-Lin Bai
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Tong Xu
- Zhengzhou Major Pig Disease Prevention and Control Laboratory, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Lan-Lan Zheng
- Zhengzhou Major Pig Disease Prevention and Control Laboratory, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Xin-Sheng Li
- Zhengzhou Major Pig Disease Prevention and Control Laboratory, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Hong-Ying Chen
- Zhengzhou Major Pig Disease Prevention and Control Laboratory, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Zhen-Ya Wang
- Key Laboratory of "Runliang" Antiviral Medicines Research and Development, Institute of Drug Discovery & Development, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
17
|
Zhang T, Liu Y, Chen Y, Wang J, Feng H, Wei Q, Zhao S, Yang S, Liu D, Zhang G. A monoclonal antibody neutralizes pesudorabies virus by blocking gD binding to the receptor nectin-1. Int J Biol Macromol 2021; 188:359-368. [PMID: 34339791 DOI: 10.1016/j.ijbiomac.2021.07.170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 07/08/2021] [Accepted: 07/25/2021] [Indexed: 11/30/2022]
Abstract
Pseudorabies virus (PRV) was isolated from some human cases recently and the infected patients manifested respiratory dysfunction and acute neurological symptoms. However, no effective drug or vaccine, preventing the progression of PRV infection, is available. Nectin-1 was the only reported receptor for PRV cell entry both swine and human origin, representing an excellent target to block PRV infection, and especially its transmission from pigs to humans. A PRV-gD specific mAbs (10B6) was isolated from hybridomas and its neutralizing activities in vitro and in vivo were determined. 10B6 exhibited effective neutralizing activities in vitro with IC50 = 2.514 μg/ml and 4.297 μg/ml in the presence and absence of complement. And in vivo, 10B6 provided 100% protection against PRV lethal challenge with a dose of 15 mg/kg. Further, 10B6 could bind to a conserved epitope, 316QPAEPFP322, locating in gD pro-fusion domain, and finally blocks the binding of PRV-gD to nectin-1. Moreover, 10B6 showed an effective inhibition on PRV cell-attachment in a cell type-independent manner and could also block the virus spreading among cells. 10B6 exhibited effectively neutralizing activities to Chinese PRV variant strain in vitro and in vivo by blocking gD binding to nectin-1, implied both prophylactic and therapeutic interventions against PRV infections.
Collapse
Affiliation(s)
- Teng Zhang
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China; College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yunchao Liu
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yumei Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Jucai Wang
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Hua Feng
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Qiang Wei
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Shuangshuang Zhao
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Suzhen Yang
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Dongmin Liu
- Henan Zhongze Biological Engineering Co., Ltd, Zhengzhou, China
| | - Gaiping Zhang
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China; School of Life Sciences, Zhengzhou University, Zhengzhou, China; College of Veterinary Medicine, Northwest A&F University, Yangling, China; Henan Zhongze Biological Engineering Co., Ltd, Zhengzhou, China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China.
| |
Collapse
|
18
|
Lv L, Liu X, Jiang C, Wang X, Cao M, Bai J, Jiang P. Pathogenicity and immunogenicity of a gI/gE/TK/UL13-gene-deleted variant pseudorabies virus strain in swine. Vet Microbiol 2021; 258:109104. [PMID: 34004569 DOI: 10.1016/j.vetmic.2021.109104] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/06/2021] [Indexed: 11/29/2022]
Abstract
Pseudorabies is a highly infectious disease with severe clinical symptoms, causing acute death in infected pigs and leading to substantial economic losses among swine producers. In this study, a vaccine candidate strain in which the protein kinase UL13 gene was deleted was constructed with the CRISPR/Cas9 system based on the recombinant pseudorabies virus (PRV) ZJ01-ΔgI/gE/TK. Pigs immunized with ZJ01-ΔgI/gE/TK or ZJ01-ΔgI/gE/TK/UL13 produced high levels of anti-gB antibodies and virus-neutralizing antibodies. ZJ01-ΔgI/gE/TK/UL13 provided greater protective efficacy against challenge with PRV variant strain ZJ01 than did Bartha-K61 or ZJ01-ΔgI/gE/TK. The pigs vaccinated with ZJ01-ΔgI/gE/TK/UL13 excreted significantly less virus than those vaccinated with Bartha-K61 or ZJ01-ΔgI/gE/TK. The viral loads in the lungs of pigs treated with ZJ01-ΔgI/gE/TK/UL13 were lower than those in pigs treated with ZJ01-ΔgI/gE/TK after challenge with PRV variant strain ZJ01. These data indicated that ZJ01-ΔgI/gE/TK/UL13 had greater protective efficacy and safety than the commercial ZJ01-ΔgI/gE/TK and Bartha-K61 vaccines, and could be developed as a promising vaccine candidate for the prevention and control of this disease.
Collapse
Affiliation(s)
- Lin Lv
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xing Liu
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chenlong Jiang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xianwei Wang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mingzhu Cao
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Juan Bai
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Ping Jiang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.
| |
Collapse
|
19
|
Yao L, Hu Q, Chen S, Zhou T, Yu X, Ma H, H. Ghonaim A, Wu H, Sun Q, Fan S, He Q. Recombinant Pseudorabies Virus with TK/gE Gene Deletion and Flt3L Co-Expression Enhances the Innate and Adaptive Immune Response via Activating Dendritic Cells. Viruses 2021; 13:v13040691. [PMID: 33923590 PMCID: PMC8072707 DOI: 10.3390/v13040691] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/23/2022] Open
Abstract
Owing to viral evolution and recombination, emerging pseudorabies virus (PRV) strains have caused unprecedented outbreaks in swine farms even when the pigs were previously vaccinated, which might indicate that traditional vaccines were unable to provide effective protection. The development of safe and efficacious vaccines presents prospects to minimize the clinical signs and eventually eradicate the infection. In this study, we used an emerging PRV strain, HNX, as the parental strain to construct a recombinant PRV with TK/gE gene deletion and Fms-related tyrosine kinase 3 ligand (Flt3L) expression, named HNX-TK−/gE−-Flt3L. HNX-TK−/gE−-Flt3L enhanced the maturation of bone marrow derived dendritic cells (DCs) in vitro. Significantly more activated DCs were detected in HNX-TK−/gE−-Flt3L-immunized mice compared with those immunized with HNX-TK−/gE−. Subsequently, a remarkable increase of neutralizing antibodies, gB-specific IgG antibodies, and interferon-gamma (IFN-γ) was observed in mice vaccinated with HNX-TK−/gE−-Flt3L. In addition, a lower mortality and less histopathological damage were observed in HNX-TK−/gE−-Flt3L vaccinated mice with upon PRV lethal challenge infection. Taken together, our results revealed the potential of Flt3L as an ideal adjuvant that can activate DCs and enhance protective immune responses and support the further evaluation of HNX-TK−/gE−-Flt3L as a promising PRV vaccine candidate.
Collapse
Affiliation(s)
- Lun Yao
- State Key Laboratory of Agricultural Microbiology College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (L.Y.); (Q.H.); (S.C.); (T.Z.); (X.Y.); (H.M.); (A.H.G.); (H.W.); (Q.S.); (S.F.)
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430000, China
| | - Qiao Hu
- State Key Laboratory of Agricultural Microbiology College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (L.Y.); (Q.H.); (S.C.); (T.Z.); (X.Y.); (H.M.); (A.H.G.); (H.W.); (Q.S.); (S.F.)
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430000, China
| | - Siqi Chen
- State Key Laboratory of Agricultural Microbiology College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (L.Y.); (Q.H.); (S.C.); (T.Z.); (X.Y.); (H.M.); (A.H.G.); (H.W.); (Q.S.); (S.F.)
| | - Tong Zhou
- State Key Laboratory of Agricultural Microbiology College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (L.Y.); (Q.H.); (S.C.); (T.Z.); (X.Y.); (H.M.); (A.H.G.); (H.W.); (Q.S.); (S.F.)
| | - Xuexiang Yu
- State Key Laboratory of Agricultural Microbiology College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (L.Y.); (Q.H.); (S.C.); (T.Z.); (X.Y.); (H.M.); (A.H.G.); (H.W.); (Q.S.); (S.F.)
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430000, China
| | - Hailong Ma
- State Key Laboratory of Agricultural Microbiology College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (L.Y.); (Q.H.); (S.C.); (T.Z.); (X.Y.); (H.M.); (A.H.G.); (H.W.); (Q.S.); (S.F.)
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430000, China
| | - Ahmed. H. Ghonaim
- State Key Laboratory of Agricultural Microbiology College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (L.Y.); (Q.H.); (S.C.); (T.Z.); (X.Y.); (H.M.); (A.H.G.); (H.W.); (Q.S.); (S.F.)
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430000, China
- Desert Research Center, Cairo 11435, Egypt
| | - Hao Wu
- State Key Laboratory of Agricultural Microbiology College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (L.Y.); (Q.H.); (S.C.); (T.Z.); (X.Y.); (H.M.); (A.H.G.); (H.W.); (Q.S.); (S.F.)
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430000, China
| | - Qi Sun
- State Key Laboratory of Agricultural Microbiology College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (L.Y.); (Q.H.); (S.C.); (T.Z.); (X.Y.); (H.M.); (A.H.G.); (H.W.); (Q.S.); (S.F.)
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430000, China
| | - Shengxian Fan
- State Key Laboratory of Agricultural Microbiology College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (L.Y.); (Q.H.); (S.C.); (T.Z.); (X.Y.); (H.M.); (A.H.G.); (H.W.); (Q.S.); (S.F.)
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430000, China
| | - Qigai He
- State Key Laboratory of Agricultural Microbiology College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (L.Y.); (Q.H.); (S.C.); (T.Z.); (X.Y.); (H.M.); (A.H.G.); (H.W.); (Q.S.); (S.F.)
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430000, China
- Correspondence: ; Tel.: +86-27-8728-6974; Fax: +86-27-8728-7288
| |
Collapse
|
20
|
Zheng HH, Jin Y, Hou CY, Li XS, Zhao L, Wang ZY, Chen HY. Seroprevalence investigation and genetic analysis of pseudorabies virus within pig populations in Henan province of China during 2018-2019. INFECTION GENETICS AND EVOLUTION 2021; 92:104835. [PMID: 33798759 DOI: 10.1016/j.meegid.2021.104835] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 10/21/2022]
Abstract
In late 2011, the outbreak of pseudorabies (PR) occurred in Bartha-K61-vaccinated pig farms and spread rapidly to many provinces of China, causing substantial economic losses to the swine industry. A total of 4708 pig serum samples from Henan province during 2018-2019 were collected to screen for the presence of pseudorabies virus (PRV) gE-specific antibodies, and phylogenetic analysis based on the gE gene of PRV was performed. Of the 4708 serum samples tested, 30.14% (1419/4708) were seropositive for PRV antibodies, based on PRV gE-coated enzyme-linked immunosorbent assay (ELISA), with slaughterhouses having the highest seroprevalence. The seropositive rates of PRV also varied with the region and the season. Phylogenetic analysis showed that three PRV isolates from this study were clustered in an independent branch together with the Chinese variant PRV strains (after 2012), and had a closer genetic relationship with the Chinese variant PRV strains, but differed genetically from the 4 early Chinese PRV strains and 4 European-American strains. This study suggests that three PRV isolates may belong to PRV variants, and the development of a novel vaccine against PRV variants is particularly urgent.
Collapse
Affiliation(s)
- Hui-Hua Zheng
- Zhengzhou Major Pig Disease Prevention and Control Laboratory, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, People's Republic of China
| | - Yue Jin
- Zhengzhou Major Pig Disease Prevention and Control Laboratory, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, People's Republic of China
| | - Cheng-Yao Hou
- Zhengzhou Major Pig Disease Prevention and Control Laboratory, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, People's Republic of China
| | - Xin-Sheng Li
- Zhengzhou Major Pig Disease Prevention and Control Laboratory, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, People's Republic of China
| | - Li Zhao
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, People's Republic of China
| | - Zhen-Ya Wang
- Key Laboratory of "Runliang" Antiviral Medicines Research and Development, Institute of Drug Discovery & Development, Zhengzhou University, Zhengzhou 450001, People's Republic of China.
| | - Hong-Ying Chen
- Zhengzhou Major Pig Disease Prevention and Control Laboratory, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, People's Republic of China.
| |
Collapse
|
21
|
Better immune efficacy triggered by the inactivated gI/gE-deleted pseudorabies virus with the additional insertion of gC gene in mice and weaned pigs. Virus Res 2021; 296:198353. [PMID: 33640358 DOI: 10.1016/j.virusres.2021.198353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 11/21/2022]
Abstract
A new variant of pseudorabies virus (PRV) with high pathogenicity has been prevalent in many swineherds vaccinated with Bartha-K61 in China since 2011. Several gene-deleted vaccine candidates have been developed based on new emerging PRV variants. PRV-AH, a new emerging PRV strain from Anhui Province, was isolated in our laboratory in 2013. In the present study, rPRV-AH-gI-/gE- and rPRV-AH-gI-/gE-/gC+ were generated based on PRV-AH by homologous recombination. The growth kinetics of rPRV-AH-gI-/gE- and rPRV-AH-gI-/gE-/gC+ were similar to their parental strains. Compared with the commercial inactivated vaccine of Ea strain, the immune efficacy of the inactivated vaccine based on recombinant viruses was evaluated in mice and weaned pigs. The result showed that the level of neutralizing antibody in mice immunized with rPRV-AH-gI-/gE-/gC+ was higher compared with those immunized with rPRV-AH-gI-/gE- at a dose of 106 TCID50 at 8 weeks post initial immunization (p < 0.0001). Among the groups immunized at a dose of 105 TCID50, the rPRV-AH-gI-/gE- group showed a survival rate of 37.5 %, while the rPRV-AH-gI-/gE-/gC+ group showed a protection rate of 87.5 % against the PRV-AH challenge. Besides, the rPRV-AH-gI-/gE- and rPRV-AH-gI-/gE-/gC+ group immunized at a dose of 106 TCID50 showed a survival rate of 100 %. Interestingly, compared with the commercial vaccine group, the group of 105 TCID50 rPRV-AH-gI-/gE-/gC+ showed a lower level of neutralizing antibodies (p < 0.0001) but the same protection rate in mice. Moreover, in the pig experiment, the level of neutralizing antibodies in the group vaccinated with inactivated rPRV-AH-gI-/gE-/gC+ was higher than any other groups at 8 weeks post initial immunization (p < 0.05). More importantly, the milder symptoms and pathological lesions occurred in pigs vaccinated with rPRV-AH-gI-/gE-/gC+ after challenge with 106 TCID50 PRV-AH, revealing that additional insertion of gC gene could enhance the protective efficacy in PRV gI/gE-deleted vaccine in pigs. Collectively, these above-mentioned findings suggested that the inactivated vaccine of rPRV-AH-gI-/gE-/gC+ had a better immune efficacy, which could be regarded as a promising inactivated vaccine candidate for PRV control.
Collapse
|
22
|
Zhang T, Liu Y, Chen Y, Wang J, Feng H, Wei Q, Zhao S, Yang S, Ma H, Liu D, Zhang G. Antiviral activity of porcine interferon delta 8 against pesudorabies virus in vitro. Int J Biol Macromol 2021; 177:10-18. [PMID: 33548323 DOI: 10.1016/j.ijbiomac.2021.01.208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 12/12/2022]
Abstract
Recently, pseudorabies virus (PRV) was isolated from human cases, and infected patients presented with respiratory dysfunction and acute neurological symptoms. However, there was no available effective drug to prevent the progression of PRV infection. In the present study, we screened a stably Drosophila S2 cell line which can secretory express a novel type I IFNs-interferon delta 8 (IFN-δ8) and the yield was about 10 mg/L. After purification, recombinant IFN-δ8 was demonstrated to be acid-stable, heat-stable, and nontoxic to PK-15 and 3D4/21 cells. Antiviral effects of IFN-δ8 against PRV were tested in vitro. Our results showed both pre- and post-treatment, recombinant PoIFN-δ8 exerted a significant protective effect against PRV infection in PK-15 and 3D4/21 cells. In addition, PoIFN-δ8 remarkably increased the expression of eight IFN-stimulated genes (ISGs), including ISG15, OAS1, PKR, MX1, CH25H, IFITM1, IFITM2 and IFITM3, to resist virus infection. These findings highlight the significance of IFN-δ8 that might serve as an antiviral agent for the prevention of PRV infection, and maybe expand the potential function of IFN antiviral drugs in the future.
Collapse
Affiliation(s)
- Teng Zhang
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China; College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yunchao Liu
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yumei Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Jucai Wang
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Hua Feng
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Qiang Wei
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Shuangshuang Zhao
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Suzhen Yang
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Hongfang Ma
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China; School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Dongmin Liu
- Henan Zhongze Biological Engineering Co., Ltd, Zhengzhou, China
| | - Gaiping Zhang
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China; School of Life Sciences, Zhengzhou University, Zhengzhou, China; College of Veterinary Medicine, Northwest A&F University, Yangling, China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China; Henan Zhongze Biological Engineering Co., Ltd, Zhengzhou, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China.
| |
Collapse
|
23
|
REN CZ, HU WY, LI JC, XIE YH, JIA NN, SHI J, WEI YY, HU TJ. Ethyl acetate fraction of flavonoids from Polygonum hydropiper L. modulates pseudorabies virus-induced inflammation in RAW264.7 cells via the nuclear factor-kappa B and mitogen-activated protein kinase pathways. J Vet Med Sci 2020; 82:1781-1792. [PMID: 32999131 PMCID: PMC7804032 DOI: 10.1292/jvms.20-0263] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 08/21/2020] [Indexed: 01/05/2023] Open
Abstract
Pseudorabies virus (PRV) infection leads to severe inflammatory responses and tissue damage, and many natural herbs exhibit protective effects against viral infection by modulating the inflammatory response. An ethyl acetate fraction of flavonoids from Polygonum hydropiper L. (FEA) was prepared through ethanol extraction and ethyl acetate fractional extraction. An inflammatory model was established in RAW264.7 cells with PRV infection to evaluate the anti-inflammatory activity of FEA by measuring cell viability, nitric oxide (NO) production, reactive oxygen species (ROS) release, and mRNA expression of inflammatory factors, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2). Its functional mechanism was investigated by analyzing the phosphorylation and nuclear translocation of key proteins in the nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways. Our findings indicate that PRV induced inflammatory responses in RAW264.7 cells, and the responses were similar to that in lipopolysaccharide (LPS)-stimulated cells. FEA significantly suppressed NO synthesis and down-regulated both expression and secretion of COX-2, iNOS, and inflammatory cytokines (P<0.05 or P<0.01). FEA also reduced NF-κB p65 translocation into the nucleus and decreased MAPK phosphorylation, indicating that the NF-κB/MAPK signaling pathway may be closely related to the inflammatory response during viral infection. The findings suggested the potential pharmaceutical application of FEA as a natural product that can treat viral infections due to its ability to mitigate inflammatory responses.
Collapse
Affiliation(s)
- Chun-Zhi REN
- College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China
- Guangxi Agricultural Vocational College, Nanning 530007, PR China
| | - Wen-Yue HU
- School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, PR China
| | - Jun-Cheng LI
- Guangxi Agricultural Vocational College, Nanning 530007, PR China
| | - Ying-Hong XIE
- College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China
| | - Ni-Na JIA
- College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China
| | - Jun SHI
- College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China
| | - Ying-Yi WEI
- College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China
| | - Ting-Jun HU
- College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China
| |
Collapse
|
24
|
Ma Z, Han Z, Liu Z, Meng F, Wang H, Cao L, Li Y, Jiao Q, Liu S, Liu M. Epidemiological investigation of porcine pseudorabies virus and its coinfection rate in Shandong Province in China from 2015 to 2018. J Vet Sci 2020; 21:e36. [PMID: 32476312 PMCID: PMC7263908 DOI: 10.4142/jvs.2020.21.e36] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 12/26/2019] [Accepted: 01/26/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Pseudorabies, also known as Aujeszky's disease, is caused by the pseudorabies virus (PRV) and has been recognized as a critical disease affecting the pig industry and a wide range of animals around the world, resulting in great economic losses each year. Shandong province, one of the most vital food animal-breeding regions in China, has a very dense pig population, within which pseudorabies infections were detected in recent years. The data, however, on PRV epidemiology and coinfection rates of PRV with other major swine diseases is sparse. OBJECTIVES This study aimed to investigate the PRV epidemiology in Shandong and analyze the current control measures. METHODS In this study, a total number of 16,457 serum samples and 1,638 tissue samples, which were collected from 362 intensive pig farms (≥ 300 sows/farm) covered all cities in Shandong, were tested by performing enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR). RESULTS Overall, 52.7% and 91.5% of the serum samples were positive for PRV-gE and -gB, respectively, based on ELISA results. In addition, 15.7% of the tissue samples were PCR positive for PRV. The coinfection rates of PRV with porcine circovirus type 2 (PCV2), porcine reproductive and respiratory syndrome virus, and classical swine fever virus were measured; coinfection with PCV2 was 35.0%, higher than those of the other two viruses. Macroscopic and microscopic lesions were observed in various tissues during histopathological examination. CONCLUSIONS The results demonstrate the PRV prevalence and its coinfection rates in Shandong province and indicate that pseudorabies is endemic in pig farms in this region. This study provides epidemiological data that can be useful in the prevention and control of pseudorabies in Shandong, China.
Collapse
Affiliation(s)
- Zicheng Ma
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271018, China
| | - Zifeng Han
- Emergency Centre for the Control of Transboundary Animal Diseases, Food and Agriculture Organization of the United Nations, Beijing 100600, China
| | - Zhaohu Liu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271018, China
| | - Fanliang Meng
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271018, China
| | - Hongyu Wang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271018, China
| | - Longlong Cao
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271018, China
| | - Yan Li
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271018, China
| | - Qiulin Jiao
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271018, China
| | - Sidang Liu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271018, China
| | - Mengda Liu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271018, China.,Laboratory of Zoonoses, China Animal Health and Epidemiology Center, Qingdao 266032, China.
| |
Collapse
|
25
|
Ji C, Wei Y, Wang J, Zeng Y, Pan H, Liang G, Ma J, Gong L, Zhang W, Zhang G, Wang H. Development of a Dual Fluorescent Microsphere Immunological Assay for Detection of Pseudorabies Virus gE and gB IgG Antibodies. Viruses 2020; 12:v12090912. [PMID: 32825263 PMCID: PMC7551494 DOI: 10.3390/v12090912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 01/05/2023] Open
Abstract
Pseudorabies, also known as Aujezsky’s disease, is an acute viral infection caused by pseudorabies virus (PRV). Swine are one of the natural hosts of pseudorabies and the disease causes huge economic losses in the pig industry. The establishment of a differential diagnosis technique that can distinguish between wild-type infection and vaccinated responses and monitor vaccine-induced immunoglobulin G(IgG) is crucial for the eventual eradication of pseudorabies. The aim of this study was to develop a rapid dual detection method for PRV gE and gB protein IgG antibodies with high specificity and sensitivity. PRV gE codons at amino acid residues (aa) 52–238 and gB codons at aa 539–741 were expressed to obtain recombinant PRV gE and gB proteins via a pMAL-c5x vector. After purification with Qiagen Ni–nitrilotriacetic acid (NTA) agarose affinity chromatography, the two proteins were analyzed via SDS-PAGE and immunoblotting assays. Two single fluorescent-microsphere immunoassays (FMIAs) were established by coupling two recombinant proteins (gE and gB) to magnetic microbeads, and an effective dual FMIA was developed by integrating the two single assays. Optimal serum dilution for each assay, correlation with other common swine virus-positive sera, and comparison with ELISA for two PRV antigens were tested for validation. Compared with ELISA, the specificity and sensitivity were 99.26% and 92.3% for gE IgG antibody detection, and 95.74% and 96.3% for the gB IgG antibody detection via dual FMIA. We provide a new method for monitoring PRV protective antibodies in vaccinated pigs and differentiating wild-type PRV infection from vaccinated responses simultaneously.
Collapse
Affiliation(s)
- Chihai Ji
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (C.J.); (Y.W.); (J.W.); (Y.Z.); (H.P.); (G.L.); (J.M.); (L.G.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China;
| | - Yingfang Wei
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (C.J.); (Y.W.); (J.W.); (Y.Z.); (H.P.); (G.L.); (J.M.); (L.G.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China;
| | - Jingyu Wang
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (C.J.); (Y.W.); (J.W.); (Y.Z.); (H.P.); (G.L.); (J.M.); (L.G.)
| | - Yuchen Zeng
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (C.J.); (Y.W.); (J.W.); (Y.Z.); (H.P.); (G.L.); (J.M.); (L.G.)
| | - Haoming Pan
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (C.J.); (Y.W.); (J.W.); (Y.Z.); (H.P.); (G.L.); (J.M.); (L.G.)
| | - Guan Liang
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (C.J.); (Y.W.); (J.W.); (Y.Z.); (H.P.); (G.L.); (J.M.); (L.G.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China;
| | - Jun Ma
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (C.J.); (Y.W.); (J.W.); (Y.Z.); (H.P.); (G.L.); (J.M.); (L.G.)
| | - Lang Gong
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (C.J.); (Y.W.); (J.W.); (Y.Z.); (H.P.); (G.L.); (J.M.); (L.G.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China;
| | - Wei Zhang
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China;
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510642, China
| | - Guihong Zhang
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (C.J.); (Y.W.); (J.W.); (Y.Z.); (H.P.); (G.L.); (J.M.); (L.G.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China;
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Correspondence: (G.Z.); (H.W.)
| | - Heng Wang
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (C.J.); (Y.W.); (J.W.); (Y.Z.); (H.P.); (G.L.); (J.M.); (L.G.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- National Engineering Research Center for Breeding Swine Industry, Guangzhou 510642, China
- Correspondence: (G.Z.); (H.W.)
| |
Collapse
|
26
|
Zhang T, Liu Y, Chen Y, Wang A, Feng H, Wei Q, Zhou E, Zhang G. A single dose glycoprotein D-based subunit vaccine against pseudorabies virus infection. Vaccine 2020; 38:6153-6161. [PMID: 32741670 DOI: 10.1016/j.vaccine.2020.07.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 01/11/2023]
Abstract
Pseudorabies Virus (PRV) is the causative agent of Pseudorabies (PR), also known as Aujeszky's Disease, one of the most important infectious diseases in swine, resulting in huge economic losses to the swine industry globally. The emergence of mutant PRV strains after 2011 resulted in a sharp decrease in the efficacy of available commercial vaccines. To develop a more effective vaccine that can prevent the spread of PRV, glycoprotein B (gB), glycoprotein C (gC) and glycoprotein D (gD) from recent PRV isolates were expressed in a baculovirus system and their protective efficacy was tested in mice and piglets. Neutralizing antibody titers (NAs) in mice vaccinated with gB, gC and gD peaked at 28 days after immunization and then slowly declined. NAs in the mice immunized with gD were remarkably higher than other groups. After a lethal challenge of 5 LD50 with mutant PRV-HNLH strain, the survival rates of gB and gD were 100% and 87.5% respectively, which was significantly higher than gC group (50%). Piglets vaccinated with the gD and gB + D vaccines developed the highest NAs 7 days post immunization. No piglets in these two groups exhibited clinical symptoms, high body temperature or virus shedding following challenge with 106.6 TCID50 with the mutant PRV-HNLH strain. Histopathology and immunohistochemistry showed remarkably reduced pathological damage and viral loads in gD and gB + D groups. Furthermore, the duration of the NAs induced by gD vaccine could maintain as long as four months after a single dose. The current study indicates that a gD-based vaccine could be developed for the efficient control of PRV.
Collapse
Affiliation(s)
- Teng Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China; Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yunchao Liu
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yumei Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Aiping Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Hua Feng
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Qiang Wei
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Enmin Zhou
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Gaiping Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China; Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China; School of Life Sciences, Zhengzhou University, Zhengzhou, China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China.
| |
Collapse
|
27
|
Kedkovid R, Sirisereewan C, Thanawongnuwech R. Major swine viral diseases: an Asian perspective after the African swine fever introduction. Porcine Health Manag 2020; 6:20. [PMID: 32637149 PMCID: PMC7336096 DOI: 10.1186/s40813-020-00159-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 06/16/2020] [Indexed: 12/13/2022] Open
Abstract
Asia is a major pig producer of the world, and at present, African swine fever virus (ASFV) continues to significantly impact the Asian pig industry. Since more than 50% of the world’s pig population is in Asia, ASFV outbreaks in Asia will affect the global pig industry. Prior to the introduction of ASF, several outbreaks of major swine viruses occurred in Asia over the last two decades, including porcine reproductive and respiratory syndrome virus (PRRSV), porcine epidemic diarrhea virus (PEDV) and foot and mouth disease virus (FMDV). The rapid spreading of those viruses throughout Asia involve many factors such as the various pig production systems and supply chains ranging from back-yard to intensive industrial farms, animal movement and animal product trading within and among countries, and consumer behaviors. ASF has notoriously been known as a human-driven disease. Travelers and international trading are the major ASFV-carriers for the transboundary transmission and introduction to naïve countries. Globalization puts the entire pig industry at risk for ASF and other infectious diseases arising from Asian countries. Disease control strategies for the various pig production systems in Asia are challenging. In order to ensure future food security in the region and to prevent the deleterious consequences of ASF and other major viral disease outbreaks, disease control strategies and production systems must be improved and modernized.
Collapse
Affiliation(s)
- Roongtham Kedkovid
- Department of Veterinary Medicine, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330 Thailand.,Swine Reproduction Research Unit, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Chaitawat Sirisereewan
- Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Roongroje Thanawongnuwech
- Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330 Thailand
| |
Collapse
|
28
|
Zhao Y, Wang LQ, Zheng HH, Yang YR, Liu F, Zheng LL, Jin Y, Chen HY. Construction and immunogenicity of a gE/gI/TK-deleted PRV based on porcine pseudorabies virus variant. Mol Cell Probes 2020; 53:101605. [PMID: 32464159 DOI: 10.1016/j.mcp.2020.101605] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 05/08/2020] [Accepted: 05/20/2020] [Indexed: 01/10/2023]
Abstract
Pseudorabies (PR) caused by re-emerging pseudorabies virus (PRV) variant has outbroken among PRV vaccine-immunized swine herds on many Chinese pig farms, with severe socioeconomic consequences since late 2011. Here, a gE/gI/TK-deleted recombinant virus (rPRV NY-gE-/gI-/TK-) was constructed based on PRV NY strain from 2012 through homologous DNA recombination and gene-editing technology termed clustered regularly interspaced palindromic repeats (CRISPR)/associated (Cas9) system. The rPRV NY-gE-/gI-/TK- strain showed similar growth kinetics to the parental PRV NY strain in vitro, and was safe for mice. Sixty mice were injected subcutaneously (s.c.) twice with 106.0 TCID50 of rPRV NY-gE-/gI-/TK- and DMEM, respectively, with two-week interval. The levels of PRV gB antibodies and neutralizing antibodies against PRV NY in mice immunized with rPRV NY-gE-/gI-/TK- were higher than those in the DMEM control group. The number of T lymphocyte subclasses CD3+, CD4+ and CD8+ in rPRV NY-gE-/gI-/TK--immunized mice was higher than that in DMEM-injected mice. After challenge with 106.0 TCID50 PRV NY at 42 dpi, all rPRV NY-gE-/gI-/TK--immunized mice survived without exhibiting any pathological lesions in different tissues and intranuclear eosinophilic inclusions of the brain, and the viral genomic copy numbers in various organs of mice were obviously lower than DMEM group. These results showed the rPRV NY-gE-/gI-/TK- could be a promising next-generation vaccine to control now epidemic PR in China.
Collapse
Affiliation(s)
- Yu Zhao
- Zhengzhou Key Laboratory for Pig Disease Prevention and Control, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Nongye Road 63#, Zhengzhou, 450002, Henan Province, People's Republic of China
| | - Lin-Qing Wang
- Zhengzhou Key Laboratory for Pig Disease Prevention and Control, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Nongye Road 63#, Zhengzhou, 450002, Henan Province, People's Republic of China; Department of Life Science, Zhengzhou Normal University, Zhengzhou, 450044, Henan Province, People's Republic of China
| | - Hui-Hua Zheng
- Zhengzhou Key Laboratory for Pig Disease Prevention and Control, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Nongye Road 63#, Zhengzhou, 450002, Henan Province, People's Republic of China
| | - Yu-Rong Yang
- Zhengzhou Key Laboratory for Pig Disease Prevention and Control, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Nongye Road 63#, Zhengzhou, 450002, Henan Province, People's Republic of China
| | - Fang Liu
- Zhengzhou Key Laboratory for Pig Disease Prevention and Control, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Nongye Road 63#, Zhengzhou, 450002, Henan Province, People's Republic of China
| | - Lan-Lan Zheng
- Zhengzhou Key Laboratory for Pig Disease Prevention and Control, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Nongye Road 63#, Zhengzhou, 450002, Henan Province, People's Republic of China
| | - Yue Jin
- Zhengzhou Key Laboratory for Pig Disease Prevention and Control, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Nongye Road 63#, Zhengzhou, 450002, Henan Province, People's Republic of China.
| | - Hong-Ying Chen
- Zhengzhou Key Laboratory for Pig Disease Prevention and Control, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Nongye Road 63#, Zhengzhou, 450002, Henan Province, People's Republic of China.
| |
Collapse
|
29
|
Zhou H, Pan Y, Liu M, Han Z. Prevalence of Porcine Pseudorabies Virus and Its Coinfection Rate in Heilongjiang Province in China from 2013 to 2018. Viral Immunol 2020; 33:550-554. [PMID: 32397944 DOI: 10.1089/vim.2020.0025] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Pseudorabies (PR) is a highly contagious disease affecting a wide range of animals, which annually causes great economic losses in China. In this study, a total number of 18,815 serum samples and 1,589 tissue samples were collected from 311 intensive pig farms (≥350 sows) located in eight cities in Heilongjiang province, and tested by ELISA and PCR. Overall, the serum positive rates of gE and gB protein were 16.3% and 84.5%, respectively. The PCR-positive rate of PR virus (PRV) in tissue samples was 17.8%. The coinfection rates of PRV with porcine reproductive and respiratory syndrome virus (PRRSV), porcine circovirus type 2 (PCV2), and classical swine fever virus (CSFV) were also measured. The rate of PRV coinfected with PRRSV was 36.0% followed by 12.9% with PCV2 and 1.8% with CSFV, respectively. These results clearly demonstrate PRV prevalence and its coinfection rate in Heilongjiang province, indicating high PR endemic in pig farms in this region. This study provides data for further epidemiological investigations and a reference for developing PRV control strategies in this region and in China.
Collapse
Affiliation(s)
- Han Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Heilongjiang, China
| | - Yan Pan
- Animal Health and Diagnostic Center of CP Group, Heilongjiang, China
| | - Mengda Liu
- Laboratory of Zoonoses, China Animal Health and Epidemiology Center, Qingdao, China
| | - Zifeng Han
- Emergency Centre for the Control of Transboundary Animal Diseases, Food and Agriculture Organization of the United Nations (FAO), Beijing, China
| |
Collapse
|
30
|
Zhang X, Shu X, Bai H, Li W, Li X, Wu C, Gao Y, Wang Y, Yang K, Song C. Effect of porcine circovirus type 2 on the severity of lung and brain damage in piglets infected with porcine pseudorabies virus. Vet Microbiol 2019; 237:108394. [PMID: 31585642 DOI: 10.1016/j.vetmic.2019.108394] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 08/15/2019] [Accepted: 08/18/2019] [Indexed: 11/26/2022]
Abstract
Porcine circovirus type 2 (PCV2) is widespread throughout Chinese farms, and the infection rate of porcine pseudorabies virus (PRV) is very high. The emergence of mixed infection involving PCV2 and PRV has been difficult to prevent and control and has caused considerable economic loss. The present study investigated lung and brain damage caused by PRV in piglets with PCV2 infection. Twenty piglets were divided randomly into two experiment groups (PRV group and PRV + PCV2 group; n = 10 per group). The pigs were observed for clinical signs at specified times. At necropsy, lung and brain tissue samples were collected for histopathological examination, and tissue virus load was determined using quantitative polymerase chain reaction. Severe pathogenicity due to PRV was evident in two-month-old piglets. PCV2 and PRV co-infection led to more severe neurological and respiratory symptoms and a higher mortality rate in the piglets. In addition, the pathological damage to the lung and brain was also aggravated. The co-infection was associated with a significant increase in the content of PRV in the brain and lung tissue. In conclusion, PCV2 and PRV co-infection could cause severe and irreversible damage to piglets.
Collapse
Affiliation(s)
- Xue Zhang
- College of Veterinary Medicine of Yunnan Agricultural University, Kunming, Yunnan Province, 650201, China
| | - Xianghua Shu
- College of Veterinary Medicine of Yunnan Agricultural University, Kunming, Yunnan Province, 650201, China
| | - Huayi Bai
- College of Veterinary Medicine of Yunnan Agricultural University, Kunming, Yunnan Province, 650201, China
| | - Wengui Li
- College of Veterinary Medicine of Yunnan Agricultural University, Kunming, Yunnan Province, 650201, China
| | - Xin Li
- College of Veterinary Medicine of Yunnan Agricultural University, Kunming, Yunnan Province, 650201, China
| | - Changyue Wu
- College of Veterinary Medicine of Yunnan Agricultural University, Kunming, Yunnan Province, 650201, China
| | - Yunmei Gao
- College of Veterinary Medicine of Yunnan Agricultural University, Kunming, Yunnan Province, 650201, China
| | - Yulei Wang
- College of Veterinary Medicine of Yunnan Agricultural University, Kunming, Yunnan Province, 650201, China
| | - Kun Yang
- College of Veterinary Medicine of Yunnan Agricultural University, Kunming, Yunnan Province, 650201, China
| | - Chunlian Song
- College of Veterinary Medicine of Yunnan Agricultural University, Kunming, Yunnan Province, 650201, China.
| |
Collapse
|
31
|
CRISPR-Cas9 Mediated RNase L Knockout Regulates Cellular Function of PK-15 Cells and Increases PRV Replication. BIOMED RESEARCH INTERNATIONAL 2019; 2019:7398208. [PMID: 30941371 PMCID: PMC6421005 DOI: 10.1155/2019/7398208] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/17/2019] [Accepted: 02/04/2019] [Indexed: 11/18/2022]
Abstract
Ribonuclease L (RNase L) is an important antiviral endoribonuclease regulated by type I IFN. RNase L is activated by viral infection and dsRNA. Because the role of swine RNase L (sRNase L) is not fully understood, in this study, we generated a sRNase L knockout PK-15 (KO-PK) cell line through the CRISPR/Cas9 gene editing system to evaluate the function of sRNase L. After transfection with CRISPR-Cas9 followed by selection using puromycin, sRNase L knockout in PK-15 cells was further validated by agarose gel electrophoresis, DNA sequencing, and Western blotting. The sRNase L KO-PK cells failed to trigger RNA degradation and induced less apoptosis than the parental PK-15 cells after transfected with poly (I: C). Furthermore, the levels of ISGs mRNA in sRNase L KO-PK cells were higher than those in the parental PK-15 cells after treated with poly (I: C). Finally, both wild type and attenuated pseudorabies viruses (PRV) replicated more efficiently in sRNase L KO-PK cells than the parental PK-15 cells. Taken together, these findings suggest that sRNase L has multiple biological functions including cellular single-stranded RNA degradation, induction of apoptosis, downregulation of transcript levels of ISGs, and antiviral activity against PRV. The sRNase L KO-PK cell line will be a valuable tool for studying functions of sRNase L as well as for producing PRV attenuated vaccine.
Collapse
|
32
|
Zhou M, Wu X, Jiang D, Sui C, Chen L, Cong X, Xin X, Wang G, Li Y, Tian F, Chen Z, Zhang H, Qi J, Wang Z, Wu J, Shan H, Du Y. Characterization of a moderately pathogenic pseudorabies virus variant isolated in China, 2014. INFECTION GENETICS AND EVOLUTION 2018; 68:161-171. [PMID: 30572029 DOI: 10.1016/j.meegid.2018.12.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 12/12/2018] [Accepted: 12/12/2018] [Indexed: 12/20/2022]
Abstract
In this study, we reported a moderately pathogenic pseudorabies virus (PRV) variant isolated from one Bartha-K61-vaccinated pig farm in Weifang, Shandong Province, China, 2014. The sick piglets in the farm were characterized by anorexia, weight loss and neurologic symptoms but did not die. Sequence alignment of the gE gene indicated that it belonged to a new mutated PRV strain and about 15% amino acid sites had mutations, deficiencies and insertions compared to the other PRV strains. The gD gene had two amino acid insertions and ten amino acid mutations in comparison with the Bartha-K61 vaccine strain. The TK and gM genes were the same as one highly pathogenic PRV TJ strain. Evidence from virus isolation, laboratory challenge, serological detection and histopathologic examination confirmed that the etiological agent of the disease is PRV SD1404, which is a moderately pathogenic strain and causes piglets to be sick but not to die. PRV SD1404 strain is different from other reports and should be paid more attention to avoid economic losses.
Collapse
Affiliation(s)
- Mingming Zhou
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Sangyuan Road No. 8, Jinan 250100, China
| | - Xiangju Wu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Sangyuan Road No. 8, Jinan 250100, China
| | - Dandan Jiang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Sangyuan Road No. 8, Jinan 250100, China
| | - Chao Sui
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Sangyuan Road No. 8, Jinan 250100, China
| | - Lei Chen
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Sangyuan Road No. 8, Jinan 250100, China; College of life science, Shandong Normal University, Jinan 250014, China
| | - Xiaoyan Cong
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Sangyuan Road No. 8, Jinan 250100, China
| | - Xu Xin
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Guisheng Wang
- Shandong Provincial Center for Animal Disease Control and Prevention, Jinan 250022, China
| | - Yujie Li
- Shandong Provincial Center for Animal Disease Control and Prevention, Jinan 250022, China
| | - Fulin Tian
- Shandong Provincial Center for Animal Disease Control and Prevention, Jinan 250022, China
| | - Zhi Chen
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Sangyuan Road No. 8, Jinan 250100, China
| | - Hongliang Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Jing Qi
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Sangyuan Road No. 8, Jinan 250100, China; College of life science, Shandong Normal University, Jinan 250014, China.
| | - Zhao Wang
- China Institute of Veterinary Drug Control, 8 Nandajie, Zhongguancun, Haidian, Beijing, 100081, China.
| | - Jiaqiang Wu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Sangyuan Road No. 8, Jinan 250100, China.
| | - Hu Shan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China.
| | - Yijun Du
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Sangyuan Road No. 8, Jinan 250100, China; College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China; College of life science, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
33
|
Liu Z, Zhang C, Shen H, Sun J, Zhang J. Duplex fluorescence melting curve analysis as a new tool for rapid detection and differentiation of genotype I, II and Bartha-K61 vaccine strains of pseudorabies virus. BMC Vet Res 2018; 14:372. [PMID: 30486818 PMCID: PMC6264625 DOI: 10.1186/s12917-018-1697-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 11/13/2018] [Indexed: 12/21/2022] Open
Abstract
Background Recently, pseudorabies (PR) outbreaks have been reported in a large number of swine herds vaccinated with the Bartha-K61 vaccine in China, the current pseudorabies virus (PRV) belonging to Genotype II is differential genetically from Bartha-K61 vaccine belonging to Genotype I. Furthermore, it has been proved that the Bartha-K61 vaccine cannot provide sufficient protection against the current PRVs in China. Therefore, the accurate and rapid identification of PRVs is essential. The objective of this study is to develop a duplex fluorescence melting curve analysis (FMCA) capable of rapid, simple, high-throughput differentiation of Chinese, European/American and Bartha-K61 vaccine strains of PRV. Results Primers 6F/6R and probes P1/P2, combined with three recombinant plasmids p-B (Bartha-K61), p-N (Genotype I), and p-H (Genotype II), were used to establish the Bicolor FMCA. FAM Tm values (probe P1) and HEX (probe P2) channels of p-B were used as reference values. Tm differences (ΔTm) between detected samples and reference plasmid p-B were calculated in each channel. Bartha-K61 vaccine samples had ΔTm values of ±1 °C in both FAM and HEX channels, Genotype I samples had ΔTm values of ±1 °C in the FAM channel and 4.38 ± 1 °C in the HEX channel, and Genotype II samples had ΔTm values of 6.52 ± 1 °C in the FAM channel and 4.38 ± 1 °C in the HEX channel. The minimum detection limit of the duplex FMCA was approximately 1 × 100 copies per reaction for p-B, p-N, and p-H. The duplex FMCA technique was used to detect and different 198 suspected clinical samples, of which 18 (9%) were positive for Genotype II strains and eight (4%) were positive for Bartha-K61 vaccine strains, and the results were compared with sequencing and phylogenetic analyses, which confirmed that the Bicolor FMCA worked correctly for all samples. Conclusions In this study, we developed a duplex FMCA of dual-labeled, self-quenched probes that was performed for rapid detection and differentiation of Genotype I, II and Bartha-K61 vaccine strains of PRV. The duplex FMCA was rapid, simple, and high-throughput, and will likely prove useful for molecular epidemiological investigations and pathogen surveillance of PRV. Electronic supplementary material The online version of this article (10.1186/s12917-018-1697-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhicheng Liu
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province,Ministry of Agriculture, P.R.China, Guangzhou, 510640, Guangdong, China
| | - Chunhong Zhang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province,Ministry of Agriculture, P.R.China, Guangzhou, 510640, Guangdong, China
| | - Haiyan Shen
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province,Ministry of Agriculture, P.R.China, Guangzhou, 510640, Guangdong, China
| | - Junying Sun
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province,Ministry of Agriculture, P.R.China, Guangzhou, 510640, Guangdong, China
| | - Jianfeng Zhang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province,Ministry of Agriculture, P.R.China, Guangzhou, 510640, Guangdong, China.
| |
Collapse
|
34
|
Sun Y, Liang W, Liu Q, Zhao T, Zhu H, Hua L, Peng Z, Tang X, Stratton CW, Zhou D, Tian Y, Chen H, Wu B. Epidemiological and genetic characteristics of swine pseudorabies virus in mainland China between 2012 and 2017. PeerJ 2018; 6:e5785. [PMID: 30386699 PMCID: PMC6202975 DOI: 10.7717/peerj.5785] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 09/18/2018] [Indexed: 12/19/2022] Open
Abstract
The outbreak of pseudorabies (PR) in many Bartha-K61 vaccinated farms in China in late 2011 has seriously damaged the pig industry of one of the largest producers of pork products in the world. To understand the epidemiological characteristics of the pseudorabies virus (PRV) strains currently prevalent in China, a total of 16,256 samples collected from pig farms suspected of PRV infection in 27 Provinces of China between 2012 and 2017 were evaluated for detection of PRV. Since the extensive use of gE-deleted PRV vaccine in China, the PRV-gE was applied for determining wild-type virus infection by PCR. Of the 16,256 samples detected, approximately 1,345 samples were positive for the detection of PRV-gE, yielding an average positive rate of 8.27%. The positive rates of PRV detection from 2012 to 2017 were 11.92% (153/1284), 12.19% (225/1846), 6.70% (169/2523), 11.10% (269/2424), 5.57% (147/2640), and 6.90% (382/5539), respectively. To understand the genetic characteristics of the PRV strains currently circulating, 25 PRV strains isolated from those PRV-gE positive samples were selected for further investigation. Phylogenetic analysis based on gB, gC, and gE showed that PRV strains prevalent in China had a remarkably distinct evolutionary relationship with PRVs from other countries, which might explain the observation that Bartha-K61 vaccine was unable to provide full protection against emergent strains. Sequence alignments identified many amino acid changes within the gB, gC, and gE proteins of the PRVs circulating in China after the outbreak compared to those from other countries or those prevalent in China before the outbreak; those changes also might affect the protective efficacy of previously used vaccines in China, as well as being associated in part with the increased virulence of the current PRV epidemic strains in China.
Collapse
Affiliation(s)
- Ying Sun
- The Cooperative Innovation Center for Sustainable Pig Production, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Wan Liang
- The Cooperative Innovation Center for Sustainable Pig Production, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Qingyun Liu
- The Cooperative Innovation Center for Sustainable Pig Production, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Tingting Zhao
- The Cooperative Innovation Center for Sustainable Pig Production, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Hechao Zhu
- The Cooperative Innovation Center for Sustainable Pig Production, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Lin Hua
- The Cooperative Innovation Center for Sustainable Pig Production, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Zhong Peng
- The Cooperative Innovation Center for Sustainable Pig Production, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Xibiao Tang
- The Cooperative Innovation Center for Sustainable Pig Production, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Charles W Stratton
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Danna Zhou
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Yongxiang Tian
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Huanchun Chen
- The Cooperative Innovation Center for Sustainable Pig Production, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Bin Wu
- The Cooperative Innovation Center for Sustainable Pig Production, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
35
|
Antiviral Effect of Resveratrol in Piglets Infected with Virulent Pseudorabies Virus. Viruses 2018; 10:v10090457. [PMID: 30150559 PMCID: PMC6164078 DOI: 10.3390/v10090457] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 08/22/2018] [Accepted: 08/23/2018] [Indexed: 02/02/2023] Open
Abstract
Pseudorabies virus (PRV) is one of the most important pathogens of swine, resulting in devastating disease and economic losses worldwide. Nevertheless, there are currently no antiviral drugs available for PRV infection. Resveratrol (Res) was identified to exert its antiviral activity by inhibiting the PRV replication in preliminary investigations. In our previous study, we found that Res has anti-PRV activity in vitro. Here, we show that Res can effectively reduce the mortality and increase the growth performance of PRV-infected piglets. After Res treatment, the viral loads significantly (p < 0.001) decreased. Pathological symptoms, particularly inflammation in the brain caused by PRV infection, were significantly (p < 0.001) relieved by the effects of Res. In Res-treated groups, higher levels of cytokines in serum, including interferon gama, interleukin 12, tumor necrosis factor-alpha and interferon alpha were observed at 7 days post infection. These results indicated that Res possesses potent inhibitory activity against PRV-infection through inhibiting viral reproduction, alleviating PRV-induced inflammation and enhancing animal immunity, suggesting that Res is expected to be a new alternative control measure for PRV infection.
Collapse
|
36
|
Ye C, Chen J, Wang T, Xu J, Zheng H, Wu J, Li G, Yu Z, Tong W, Cheng X, Zhou S, Tong G. Generation and characterization of UL41 null pseudorabies virus variant in vitro and in vivo. Virol J 2018; 15:119. [PMID: 30071879 PMCID: PMC6090798 DOI: 10.1186/s12985-018-1025-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/16/2018] [Indexed: 01/11/2023] Open
Abstract
Background The alphaherpesvirus virion host shutoff (vhs) gene, UL41, can induce degradation of host mRNAs and shut off host protein synthesis. The roles of vhs in HSV-1 and HSV-2 have been studied extensively in previous studies, however, relatively little is known about the vhs protein of PRV. Methods A novel method combining CRISPR/Cas9 and Gibson assembly was developed to generate UL41 null PRV variant. The properties of UL41 null PRV in vitro and in vivo were further characterized. And the vhs activity of UL41 protein of PRV variant was evaluated by luciferase assay, Western-blot and RT-qPCR. Results Gibson assembly based on homologous recombination can accomplish one-step insertion of viral DNA fragments into donor plasmids efficiently (> 80%). Cas9/gRNA further largely enhanced the efficiency of homologous recombination. Using this method we were able to rapidly generate the UL41 null and revertant viruses of PRV variant. Compared to wild type (JS-2012), the UL41 null virus showed significantly smaller plaques and lower titers in Vero cells and impaired lethality and neuroinvasion in mice. Further the UL41 protein from different PRV strains exhibited unequal vhs activity in vitro, which of JS-2012 showed significantly weaker vhs activity than that of European-American strains. In addition UL41 null virus can also significantly decrease the expression of host genes during the early period of infection, which suggests other viral factors may be also involved in host shutoff. Conclusions CRISPR/Cas9 combined with Gibson assembly efficiently generated UL41 null PRV. Compared to wild type, UL41 null PRV showed impaired both replication capability in vitro and neuroinvasion in vivo. Further UL41 protein of PRV variant showed significantly weaker vhs activity than that of PRV SC (European-American-like strain), suggesting the deficiency of vhs activity by the PRV variant UL41 protein. Electronic supplementary material The online version of this article (10.1186/s12985-018-1025-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chao Ye
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518, Ziyue Road, Minhang District, Shanghai, 200241, People's Republic of China
| | - Jing Chen
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518, Ziyue Road, Minhang District, Shanghai, 200241, People's Republic of China
| | - Tao Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518, Ziyue Road, Minhang District, Shanghai, 200241, People's Republic of China
| | - Jingjing Xu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518, Ziyue Road, Minhang District, Shanghai, 200241, People's Republic of China
| | - Hao Zheng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518, Ziyue Road, Minhang District, Shanghai, 200241, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
| | - Jiqiang Wu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518, Ziyue Road, Minhang District, Shanghai, 200241, People's Republic of China
| | - Guoxin Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518, Ziyue Road, Minhang District, Shanghai, 200241, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
| | - Zhiqing Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518, Ziyue Road, Minhang District, Shanghai, 200241, People's Republic of China
| | - Wu Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518, Ziyue Road, Minhang District, Shanghai, 200241, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
| | - Xuefei Cheng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518, Ziyue Road, Minhang District, Shanghai, 200241, People's Republic of China
| | - Shasha Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518, Ziyue Road, Minhang District, Shanghai, 200241, People's Republic of China
| | - Guangzhi Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518, Ziyue Road, Minhang District, Shanghai, 200241, People's Republic of China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
37
|
Wang X, Wu CX, Song XR, Chen HC, Liu ZF. Comparison of pseudorabies virus China reference strain with emerging variants reveals independent virus evolution within specific geographic regions. Virology 2017; 506:92-98. [DOI: 10.1016/j.virol.2017.03.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/23/2017] [Accepted: 03/24/2017] [Indexed: 01/01/2023]
|
38
|
A live gI/gE-deleted pseudorabies virus (PRV) protects weaned piglets against lethal variant PRV challenge. Virus Genes 2017; 53:565-572. [DOI: 10.1007/s11262-017-1454-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 04/06/2017] [Indexed: 12/24/2022]
|
39
|
Molecular epidemiology of pseudorabies virus in Yunnan and the sequence analysis of its gD gene. Virus Genes 2017; 53:392-399. [PMID: 28130636 DOI: 10.1007/s11262-017-1429-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 01/12/2017] [Indexed: 12/19/2022]
Abstract
Outbreaks of pseudorabies (PRs) have occurred in Yunnan, China, which caused significant economic loss. To determine the prevalence and origin of PR in Yunnan, especially among vaccinated pigs, overall 791 samples of blood, tissue, semen, and sera were analyzed by serological methods, PCR, and sequence analysis of gD gene. Detection with viral gI antibody or PCR showed that the yearly positive rates of PR virus (PRV) in Yunnan from 2010 to 2014 were 48.15, 21.26, 2.17, 5.22, and 0.35%, respectively, with an average of 15.43%. In general, the incidence declined through the period of 2010-2014 probably due to the application of PRV eradication strategies. A phylogenetic tree was constructed based on the complete sequence of gD gene, with all strains clustered into two independent clades, i.e., Asian and European-American clades. The virus isolates from Henan, Tianjin, Heilongjiang, Sichuan, Shandong, Fujian, Xinjiang, Hubei, Guangdong, and Yunnan fell into Asian group, which harbored South Korea isolate. Four Yunnan virus isolates together with South Korean Namyangju fell into in the European-American clade. It showed that PR was pandemic as there was not a clear clue about the geographical origin of the PRV isolates in China since 2010.
Collapse
|
40
|
Wang J, Guo R, Qiao Y, Xu M, Wang Z, Liu Y, Gu Y, Liu C, Hou J. An inactivated gE-deleted pseudorabies vaccine provides complete clinical protection and reduces virus shedding against challenge by a Chinese pseudorabies variant. BMC Vet Res 2016; 12:277. [PMID: 27923365 PMCID: PMC5142131 DOI: 10.1186/s12917-016-0897-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 11/24/2016] [Indexed: 01/27/2023] Open
Abstract
Background Since the end of 2011 an outbreak of pseudorabies affected Chinese pig herds that had been vaccinated with the commercial vaccine made of Bartha K61 strain. It is now clear that the outbreak was caused by an emergent PRV variant. Even though vaccines made of PRV Bartha K61 strain can confer certain cross protection against PRV variants based on experimental data, less than optimal clinical protection and virus shedding reduction were observed, making the control or eradication of this disease difficult. Results An infectious clone of PRV AH02LA strain was constructed to generate a gE deletion mutant PRV(LA-AB) strain. PRV(LA-AB) strain can reach a titer of 108.43 TCID50 /mL (50% tissue culture infectious dose) on BHK-21 cells. To evaluate the efficiency of the inactivated vaccine made of PRV(LA-AB) strain, thirty 3-week-old PRV-negative piglets were divided randomly into six groups for vaccination and challenge test. All five piglets in the challenge control showed typical clinical symptoms of pseudorabies post challenge. Sneezing and nasal discharge were observed in four and three piglets in groups C(vaccinated with inactivated PRV Bartha K61 strain vaccine) and D(vaccinated with live PRV Bartha K61 strain vaccine) respectively. In contrast, piglets in both groups A(vaccinated with inactivated PRV LA-AB strain vaccine) and B(vaccinated with inactivated PRV LA-AB strain vaccine with adjuvant) presented mild or no clinical symptoms. Moreover, viral titers detected via nasal swabs were approximately 100 times lower in group B than in the challenge control, and the duration of virus shedding (3–4 days) was shorter than in either the challenge control (5–10 days) or groups C and D (5–6 days). Conclusions The infectious clone constructed in this study harbors the whole genome of the PRV variant AH02LA strain. The gE deletion mutant PRV(LA-AB)strain generated from PRV AH02LA strain can reach a high titer on BHK-21 cells. An inactivated vaccine of PRV LA-AB provides clinical protection and significantly reduces virus shedding post challenge, especially if accompanied by the adjuvant CVC1302. While Inactivated or live vaccines made of PRV Barth K61 strain can provide only partial protection in this test.
Collapse
Affiliation(s)
- Jichun Wang
- National Research Center of Engineering and Technology for Veterinary Biologicals/Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Rongli Guo
- National Research Center of Engineering and Technology for Veterinary Biologicals/Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yongfeng Qiao
- National Research Center of Engineering and Technology for Veterinary Biologicals/Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Mengwei Xu
- National Research Center of Engineering and Technology for Veterinary Biologicals/Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Zhisheng Wang
- National Research Center of Engineering and Technology for Veterinary Biologicals/Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yamei Liu
- National Research Center of Engineering and Technology for Veterinary Biologicals/Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yiqi Gu
- National Research Center of Engineering and Technology for Veterinary Biologicals/Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China.,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chang Liu
- National Research Center of Engineering and Technology for Veterinary Biologicals/Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China.,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jibo Hou
- National Research Center of Engineering and Technology for Veterinary Biologicals/Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.
| |
Collapse
|
41
|
Liu H, Li XT, Hu B, Deng XY, Zhang L, Lian SZ, Zhang HL, Lv S, Xue XH, Lu RG, Shi N, Yan MH, Xiao PP, Yan XJ. Outbreak of severe pseudorabies virus infection in pig-offal-fed farmed mink in Liaoning Province, China. Arch Virol 2016; 162:863-866. [PMID: 27885561 DOI: 10.1007/s00705-016-3170-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 10/23/2016] [Indexed: 11/29/2022]
Abstract
An outbreak of severe pseudorabies virus (PRV) infection in farmed mink occurred in northern China in late 2014, causing significant economic losses in the local fur industry. Here, we report the first case of a PRV outbreak in mink in northeastern China, caused by feeding farmed mink with raw pork or organs contaminated by PRV. Mink infected with virulent PRV exhibited diarrhea, neurologic signs, and higher mortality, which can be misdiagnosed as highly pathogenic mink enteritis virus (MEV), canine distemper virus (CDV), and food poisoning. However, these were excluded as causative agents by PCR or bacteria isolation. The duration of disease was 3-7 days, and the mortality rate was 80-90%. PRV was characterized using indirect immunofluorescence assays (IFA) and electron microscopy (EM). Phylogenetic analysis based on full-length genome sequences and those of individual genes of this novel virus strain showed that it clustered in an independent branch with several other PRV isolates from China.
Collapse
Affiliation(s)
- Hao Liu
- Division of Infectious Diseases of Special Economic Animals, State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Xin-Tong Li
- Division of Infectious Diseases of Special Economic Animals, State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Bo Hu
- Division of Infectious Diseases of Special Economic Animals, State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Xiao-Yu Deng
- Division of Infectious Diseases of Special Economic Animals, State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Lei Zhang
- Division of Infectious Diseases of Special Economic Animals, State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Shi-Zhen Lian
- Division of Infectious Diseases of Special Economic Animals, State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Hai-Ling Zhang
- Division of Infectious Diseases of Special Economic Animals, State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Shuang Lv
- Division of Infectious Diseases of Special Economic Animals, State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Xiang-Hong Xue
- Division of Infectious Diseases of Special Economic Animals, State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Rong-Guang Lu
- Division of Infectious Diseases of Special Economic Animals, State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Ning Shi
- Division of Infectious Diseases of Special Economic Animals, State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Ming-Hao Yan
- Department of Veterinary Medicine, Agriculture College of Yanbian University, Yanji, China
| | | | - Xi-Jun Yan
- Division of Infectious Diseases of Special Economic Animals, State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130122, China.
| |
Collapse
|
42
|
Wu CY, Liao CM, Chi JN, Chien MS, Huang C. Growth properties and vaccine efficacy of recombinant pseudorabies virus defective in glycoprotein E and thymidine kinase genes. J Biotechnol 2016; 229:58-64. [PMID: 27164258 DOI: 10.1016/j.jbiotec.2016.05.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/28/2016] [Accepted: 05/03/2016] [Indexed: 10/21/2022]
Abstract
Pseudorabies virus (PRV) is an alphaherpesvirus that causes pseudorabies (PR), an economically important viral disease of pigs. Marker vaccines were widely used in PR prevention and eradication programs. The purpose of this study was to construct a novel recombinant virus with deletions at defined regions in the glycoprotein E (gE) and thymine kinase (TK) genes by homologous recombination. This study also evaluated the safety and efficacy of the virus for a live attenuated marker vaccine. No significant difference was observed in virus replication between gE gene-deleted (gE(-)), gE/TK double gene-deleted (gE(-)TK(-)), and wild-type PRV by growth curve analysis. However, gE(-)TK(-) PRV was completely attenuated in mice. To evaluate the immunogenicity of gE(-)TK(-) PRV, four 12-week-old specific-pathogen-free pigs per group were immunized intramuscularly with viral titers of 1×10(4), 1×10(5), or 1×10(6) TCID50, followed by intranasal challenge infection with virulent PRV (1×10(8) TCID50) at 3 weeks post vaccination. The gE(-)TK(-) PRV-vaccinated pigs displayed no general adverse effects after immunization and had protective immune responses after PRV challenge. Thus, gE(-)TK(-) PRV was safe and efficacious and might be a potential candidate for a live attenuated marker vaccine against PRV.
Collapse
Affiliation(s)
- Ching-Ying Wu
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, 250 Kuo Kuang Road, Taichung 40227, Taiwan, ROC
| | | | - Jiun-Ni Chi
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, 250 Kuo Kuang Road, Taichung 40227, Taiwan, ROC
| | - Maw-Sheng Chien
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, 250 Kuo Kuang Road, Taichung 40227, Taiwan, ROC.
| | - Chienjin Huang
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, 250 Kuo Kuang Road, Taichung 40227, Taiwan, ROC.
| |
Collapse
|
43
|
Tong W, Li G, Liang C, Liu F, Tian Q, Cao Y, Li L, Zheng X, Zheng H, Tong G. A live, attenuated pseudorabies virus strain JS-2012 deleted for gE/gI protects against both classical and emerging strains. Antiviral Res 2016; 130:110-7. [PMID: 26946112 DOI: 10.1016/j.antiviral.2016.03.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 02/20/2016] [Accepted: 03/01/2016] [Indexed: 10/22/2022]
Abstract
Emerging pseudorabies virus (PRV) variant have led to pseudorabies outbreaks in Chinese pig farms. The commercially available PRV vaccine provides poor protection against the PRV variant. In this study, a gE/gI deleted PRV strain JS-2012-△gE/gI was generated from a PRV variant strain using homologous DNA recombination. Compared to the parental strain JS-2012, JS-2012-△gE/gI grew slowly and showed small plaque morphology on Vero cells. The safety and immunological efficacy of JS-2012-△gE/gI was evaluated as a vaccine candidate. JS-2012-△gE/gI was avirulent to suckling piglets, but was able to provide full protection for young piglets against challenge with both the classical virulent PRV and the emerging PRV variant. After sows were vaccinated with the gE/gI-deleted strain, their suckling offspring were resistant to an otherwise lethal challenge with the classical and the variant PRVs. Piglets inoculated with JS-2012-△gE/gI did not develop PRV-specific gE-ELISA antibodies. Thus, JS-2012-△gE/gI appears to be a promising marker vaccine candidate to control PRV variant circulating in pig farms in China.
Collapse
Affiliation(s)
- Wu Tong
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Guoxin Li
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Chao Liang
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Fei Liu
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Qing Tian
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Yanyun Cao
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Lin Li
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Xuchen Zheng
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Hao Zheng
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| | - Guangzhi Tong
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China.
| |
Collapse
|
44
|
Liang X, Sun L, Yu T, Pan Y, Wang D, Hu X, Fu Z, He Q, Cao G. A CRISPR/Cas9 and Cre/Lox system-based express vaccine development strategy against re-emerging Pseudorabies virus. Sci Rep 2016; 6:19176. [PMID: 26777545 PMCID: PMC4726036 DOI: 10.1038/srep19176] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 12/02/2015] [Indexed: 12/17/2022] Open
Abstract
Virus evolves rapidly to escape vaccine-induced immunity, posing a desperate demand for efficient vaccine development biotechnologies. Here we present an express vaccine development strategy based on CRISPR/Cas9 and Cre/Lox system against re-emerging Pseudorabies virus, which caused the recent devastating swine pseudorabies outbreak in China. By CRISPR/Cas9 system, the virulent genes of the newly isolated strain were simultaneously substituted by marker genes, which were subsequently excised using Cre/Lox system for vaccine safety concern. Notably, single cell FACS technology was applied to further promote virus purification efficiency. The combination of these state-of-art technologies greatly accelerated vaccine development. Finally, vaccination and challenge experiments proved this vaccine candidate's protective efficacy in pigs and the promise to control current pseudorabies outbreak. This is, to our knowledge, the first successful vaccine development based on gene edit technologies, demonstrating these technologies leap from laboratory to industry. It may pave the way for future express antiviral vaccine development.
Collapse
Affiliation(s)
- Xun Liang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Leqiang Sun
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Teng Yu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yongfei Pan
- Guangdong Wen’s Group Academy, Guangdong Wen’s Foodstuffs Group Co.,Ltd., Yunfu, 527300, China
| | - Dongdong Wang
- Guangdong Wen’s Group Academy, Guangdong Wen’s Foodstuffs Group Co.,Ltd., Yunfu, 527300, China
| | - Xueying Hu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhenfang Fu
- Departments of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Qigai He
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Gang Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
45
|
Huang Y, Xing N, Wang Z, Zhang X, Zhao X, Du Q, Chang L, Tong D. Ultrasensitive Detection of RNA and DNA Viruses Simultaneously Using Duplex UNDP-PCR Assay. PLoS One 2015; 10:e0141545. [PMID: 26544710 PMCID: PMC4636378 DOI: 10.1371/journal.pone.0141545] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/10/2015] [Indexed: 12/03/2022] Open
Abstract
Mixed infection of multiple viruses is common in modern intensive pig rearing. However, there are no methods available to detect DNA and RNA viruses in the same reaction system in preclinical level. In this study, we aimed to develop a duplex ultrasensitive nanoparticle DNA probe-based PCR assay (duplex UNDP-PCR) that was able to simultaneously detect DNA and RNA viruses in the same reaction system. PCV2 and TGEV are selected as representatives of the two different types of viruses. PCV2 DNA and TGEV RNA were simultaneously released from the serum sample by boiling with lysis buffer, then magnetic beads and gold nanoparticles coated with single and/or duplex specific probes for TGEV and PCV2 were added to form a sandwich-like complex with nucleic acids released from viruses. After magnetic separation, DNA barcodes specific for PCV2 and TGEV were eluted using DTT and characterized by specific PCR assay for specific DNA barcodes subsequently. The duplex UNDP-PCR showed similar sensitivity as that of single UNDP-PCR and was able to detect 20 copies each of PCV2 and TGEV in the serum, showing approximately 250-fold more sensitivity than conventional duplex PCR/RT-PCR assays. No cross-reaction was observed with other viruses. The positive detection rate of single MMPs- and duplex MMPs-based duplex UNDP-PCR was identical, with 29.6% for PCV2, 9.3% for TGEV and 3.7% for PCV2 and TGEV mixed infection. This duplex UNDP-PCR assay could detect TGEV (RNA virus) and PCV2 (DNA virus) from large-scale serum samples simultaneously without the need for DNA/RNA extraction, purification and reverse transcription of RNA, and showed a significantly increased positive detection rate for PCV2 (29%) and TGEV (11.7%) preclinical infection than conventional duplex PCR/RT-PCR. Therefore, the established duplex UNDP-PCR is a rapid and economical detection method, exhibiting high sensitivity, specificity and reproducibility.
Collapse
Affiliation(s)
- Yong Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Na Xing
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Zengguo Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Xiujuan Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Xiaomin Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Qian Du
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Lingling Chang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Dewen Tong
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
- * E-mail:
| |
Collapse
|
46
|
Novel pseudorabies virus variant with defects in TK, gE and gI protects growing pigs against lethal challenge. Vaccine 2015; 33:5733-5740. [DOI: 10.1016/j.vaccine.2015.09.066] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 09/17/2015] [Accepted: 09/21/2015] [Indexed: 11/22/2022]
|