1
|
Jesudason T, Sharomi O, Fleetwood K, Cheuk AL, Bermudez M, Schirrmacher H, Hauck C, Matthijnssens J, Hungerford D, Tordrup D, Carias C. Systematic literature review and meta-analysis on the prevalence of rotavirus genotypes in Europe and the Middle East in the post-licensure period. Hum Vaccin Immunother 2024; 20:2389606. [PMID: 39257173 PMCID: PMC11404614 DOI: 10.1080/21645515.2024.2389606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/24/2024] [Accepted: 08/05/2024] [Indexed: 09/12/2024] Open
Abstract
Previous systematic literature reviews of rotavirus genotype circulation in Europe and the Middle East are limited because they do not include country-specific prevalence data. This study documents country-specific evidence on the prevalence of rotavirus genotypes in Europe and the Middle East to enable more precise epidemiological modeling and contribute to the evidence-base about circulating rotavirus genotypes in the post-vaccination era. This study systematically searched PubMed, Embase and Scopus for all empirical epidemiological studies that presented genotype-specific surveillance data for countries in Europe and the Middle East published between 2006 and 2021. The STROBE checklist was used to assess the quality of included studies. Proportional meta-analysis was conducted using the generic inverse variance method with arcsine transformation and generalized linear-mixed models to summarize genotype prevalence. Our analysis estimated the genotype prevalence by country across three date categories corresponding with rotavirus seasons: 2006-2010, 2011-2015, 2016-2021. A total of 7601 deduplicated papers were identified of which 88 studies were included in the final review. Rotavirus genotypes exhibited significant variability across regions and time periods, with G1P[8], G2P[4], G3P[8], G4P[8], G9P[8], and, to a lesser extent G12P[8], being the most prevalent genotypes through different regions and time-periods. Uncommon genotypes included G3P[9] in Poland, G2P[6] in Iraq, G4P[4] in Qatar, and G9P[4] as reported by the European Rotavirus Network. There was high genotype diversity with routinely identified genotypes being G1P[8], G2P[4], G3P[8], G4P[8], and G9P[8]; there was high variability across time periods and regions. Continued surveillance at the national and regional levels is relevant to support further research and inform public health decision-making.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jelle Matthijnssens
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Laboratory of Clinical and Epidemiological VirologyRega Institute, Leuven, Belgium
| | - Daniel Hungerford
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | | | | |
Collapse
|
2
|
Peng R, Li D, Wang J, Xiong G, Wang M, Liu D, Wei Y, Pang L, Sun X, Li H, Kong X, Shahar S, Duan Z. Reassortment and genomic analysis of a G9P[8]-E2 rotavirus isolated in China. Virol J 2023; 20:135. [PMID: 37349792 PMCID: PMC10286334 DOI: 10.1186/s12985-023-02064-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/07/2023] [Indexed: 06/24/2023] Open
Abstract
OBJECTIVE To isolate a prevalent G9P[8] group A rotavirus (RVA) (N4006) in China and investigate its genomic and evolutionary characteristics, with the goal of facilitating the development of a new rotavirus vaccine. METHODS The RVA G9P[8] genotype from a diarrhea sample was passaged in MA104 cells. The virus was evaluated by TEM, polyacrylamide gel electrophoresis, and indirect immunofluorescence assay. The complete genome of virus was obtained by RT-PCR and sequencing. The genomic and evolutionary characteristics of the virus were evaluated by nucleic acid sequence analysis with MEGA ver. 5.0.5 and DNASTAR software. The neutralizing epitopes of VP7 and VP4 (VP5* and VP8*) were analyzed using BioEdit ver. 7.0.9.0 and PyMOL ver. 2.5.2. RESULTS The RVA N4006 (G9P[8] genotype) was adapted in MA104 cells with a high titer (105.5 PFU/mL). Whole-genome sequence analysis showed N4006 to be a reassortant rotavirus of Wa-like G9P[8] RVA and the NSP4 gene of DS-1-like G2P[4] RVA, with the genotype constellation G9-P[8]-I1-R1-C1-M1-A1-N1-T1-E2-H1 (G9P[8]-E2). Phylogenetic analysis indicated that N4006 had a common ancestor with Japanese G9P[8]-E2 rotavirus. Neutralizing epitope analysis showed that VP7, VP5*, and VP8* of N4006 had low homology with vaccine viruses of the same genotype and marked differences with vaccine viruses of other genotypes. CONCLUSION The RVA G9P[8] genotype with the G9-P[8]-I1-R1-C1-M1-A1-N1-T1-E2-H1 (G9P[8]-E2) constellation predominates in China and may originate from reassortment between Japanese G9P[8] with Japanese DS-1-like G2P[4] rotaviruses. The antigenic variation of N4006 with the vaccine virus necessitates an evaluation of the effect of the rotavirus vaccine on G9P[8]-E2 genotype rotavirus.
Collapse
Affiliation(s)
- Rui Peng
- Department of Biosciences, Faculty of Sciences, Universiti Teknologi Malaysia, Johor Bahru, 81310 Malaysia
- NHC Key Laboratory of Medical Viruses and Viral Diseases, Institute of Viral Disease Prevention and Control, National Health Commission, Chinese Centre for Disease Control and Prevention, Beijing, 102206 China
- College of Life Science, Hengshui University, Hengshui, 053000 China
| | - Dandi Li
- NHC Key Laboratory of Medical Viruses and Viral Diseases, Institute of Viral Disease Prevention and Control, National Health Commission, Chinese Centre for Disease Control and Prevention, Beijing, 102206 China
| | - Jindong Wang
- Department of Pathogenic Biology, Weifang Medical University, Weifang, 261053 China
| | - Guangping Xiong
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, 730000 China
| | - Mengxuan Wang
- NHC Key Laboratory of Medical Viruses and Viral Diseases, Institute of Viral Disease Prevention and Control, National Health Commission, Chinese Centre for Disease Control and Prevention, Beijing, 102206 China
| | - Dan Liu
- NHC Key Laboratory of Medical Viruses and Viral Diseases, Institute of Viral Disease Prevention and Control, National Health Commission, Chinese Centre for Disease Control and Prevention, Beijing, 102206 China
| | - Yuhang Wei
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, 730000 China
| | - Lili Pang
- NHC Key Laboratory of Medical Viruses and Viral Diseases, Institute of Viral Disease Prevention and Control, National Health Commission, Chinese Centre for Disease Control and Prevention, Beijing, 102206 China
| | - Xiaoman Sun
- NHC Key Laboratory of Medical Viruses and Viral Diseases, Institute of Viral Disease Prevention and Control, National Health Commission, Chinese Centre for Disease Control and Prevention, Beijing, 102206 China
| | - Huiying Li
- NHC Key Laboratory of Medical Viruses and Viral Diseases, Institute of Viral Disease Prevention and Control, National Health Commission, Chinese Centre for Disease Control and Prevention, Beijing, 102206 China
| | - Xiangyu Kong
- NHC Key Laboratory of Medical Viruses and Viral Diseases, Institute of Viral Disease Prevention and Control, National Health Commission, Chinese Centre for Disease Control and Prevention, Beijing, 102206 China
| | - Saleha Shahar
- Department of Biosciences, Faculty of Sciences, Universiti Teknologi Malaysia, Johor Bahru, 81310 Malaysia
| | - Zhaojun Duan
- NHC Key Laboratory of Medical Viruses and Viral Diseases, Institute of Viral Disease Prevention and Control, National Health Commission, Chinese Centre for Disease Control and Prevention, Beijing, 102206 China
| |
Collapse
|
3
|
Prevalence and Genetic Diversity of Group A Rotavirus Genotypes in Moscow (2019-2020). Pathogens 2021; 10:pathogens10060674. [PMID: 34070814 PMCID: PMC8228337 DOI: 10.3390/pathogens10060674] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/20/2021] [Accepted: 05/28/2021] [Indexed: 11/23/2022] Open
Abstract
Group A rotavirus (RVA) infection is the leading cause of hospitalization of children under 5 years old, presenting with symptoms of acute gastroenteritis. The aim of our study was to explore the genetic diversity of RVA among patients admitted to Moscow Infectious Disease Clinical Hospital No. 1 with symptoms of acute gastroenteritis. A total of 653 samples were collected from May 2019 through March 2020. Out of them, 135 (20.67%) fecal samples were found to be positive for rotavirus antigen by ELISA. RT-PCR detected rotavirus RNA in 80 samples. Seven G-genotypes (G1, G2, G3, G4, G8, G9, and G12) and three P-genotypes (P[8], P[4], and P[6]) formed 9 different combinations. The most common combination was G9P[8]. However, for the first time in Moscow, the combination G3P[8] took second place. Moreover, all detected viruses of this combination belonged to Equine-like G3P[8] viruses that had never been detected in Russia before. The genotype G8P[8] and G9P[4] rotaviruses were also detected in Moscow for the first time. Among the studied rotaviruses, there were equal proportions of Wa and DS-1-like strains; previous studies showed that Wa-like strains accounted for the largest proportion of rotaviruses in Russia.
Collapse
|
4
|
Morozova OV, Sashina TA, Epifanova NV, Kashnikov AY, Novikova NA. Increasing detection of rotavirus G2P[4] strains in Nizhny Novgorod, Russia, between 2016 and 2019. Arch Virol 2020; 166:115-124. [PMID: 33079276 DOI: 10.1007/s00705-020-04853-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/10/2020] [Indexed: 01/28/2023]
Abstract
Rotavirus infection is one of the leading causes of acute gastroenteritis in children in their first years of life. We studied the genotypic diversity of rotavirus A (RVA) strains in Nizhny Novgorod, Russia, during the period 2016-19. In total, 4714 samples of faeces from children admitted to the Nizhny Novgorod Hospital for Infectious Diseases with acute gastroenteritis were examined. The share of rotavirus-positive samples was 31.5% in 2016-17. It decreased to 21.6% in 2018-19. In Nizhny Novgorod, all six global types of RVA were detected (G1P[8], G2P[4], G3P[8], G4P[8], G9P[8] and G12P[8]), as well as sporadic samples with genotypes G9P[4], G3P[9], G9P[9], G8P[8], G2P[8], G4P[4], G3P[9]. The fraction of strains with genotype G2P[4] gradually increased from 5.9% in 2016-17 to 39.1% in 2018-19. Simultaneously, the proportion of G9P[8] strains decreased from 63.2% to 27.7% in the same period. Phylogenetic analysis showed that rotaviruses with the G2P[4] genotype carried ubiquitous alleles of the VP7 and VP4 genes during the period of their prevalence: G2-IVa-1 and G2-IVa-3; P[4]-IVa and P[4]-IVb. As rotavirus vaccination is not widely used in the region because it is not included in the national vaccination calendar in Russia so far, the increase in the number of G2P[4] RVA is likely due to natural strain fluctuations.
Collapse
Affiliation(s)
- Olga V Morozova
- I.N. Blokhina Nizhny Novgorod Research Institute of Epidemiology and Microbiology, 71 Malaya Yamskaya Str., Nizhny Novgorod, Russian Federation, 603950.
| | - Tatiana A Sashina
- I.N. Blokhina Nizhny Novgorod Research Institute of Epidemiology and Microbiology, 71 Malaya Yamskaya Str., Nizhny Novgorod, Russian Federation, 603950
| | - Natalia V Epifanova
- I.N. Blokhina Nizhny Novgorod Research Institute of Epidemiology and Microbiology, 71 Malaya Yamskaya Str., Nizhny Novgorod, Russian Federation, 603950
| | - Alexander Yu Kashnikov
- I.N. Blokhina Nizhny Novgorod Research Institute of Epidemiology and Microbiology, 71 Malaya Yamskaya Str., Nizhny Novgorod, Russian Federation, 603950
| | - Nadezhda A Novikova
- I.N. Blokhina Nizhny Novgorod Research Institute of Epidemiology and Microbiology, 71 Malaya Yamskaya Str., Nizhny Novgorod, Russian Federation, 603950
| |
Collapse
|
5
|
Phylodynamics of G4P[8] and G2P[4] strains of rotavirus A isolated in Russia in 2017 based on full-genome analyses. Virus Genes 2020; 56:537-545. [PMID: 32472472 DOI: 10.1007/s11262-020-01771-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/22/2020] [Indexed: 01/08/2023]
Abstract
Rotavirus A is a dynamically evolving pathogen causing acute gastroenteritis in children during the first years of life. In the present study, we conducted a phylodynamic analysis based on the complete sequences of 11 segments of rotaviruses with the G4P[8] and G2P[4] genotypes isolated in Russia in 2017. Since rotavirus has a segmented genome, our analysis was performed using the Bayesian approach based on separate samples of nucleotide sequences for each gene of the strains studied. For the strain with the genotype G4P[8], the most likely geographical locations of the nearest common ancestor were Russia (VP7, VP4, VP6), China (VP1), Thailand (VP3), Belgium (NSP1), Hungary (VP2, NSP2, NSP3), Italy (NSP4) and Japan (NSP5). For the strain with the G2P[4] genotype, India (VP7, VP4, VP6, NSP1, NSP4), Malawi (VP2, NSP2, NSP3), Australia (VP1), Italy (NSP5) and Bangladesh (VP3). The closest common ancestor of the strain with the genotype G4P[8] circulated in 2001-2012, depending on the gene being analyzed. For the strain with the G2P[4] genotype, the closest common ancestor dates from 2006 to 2013.
Collapse
|
6
|
Novikova NA, Sashina TA, Epifanova NV, Kashnikov AU, Morozova OV. Long-term monitoring of G1P[8] rotaviruses circulating without vaccine pressure in Nizhny Novgorod, Russia, 1984-2019. Arch Virol 2020; 165:865-875. [DOI: 10.1007/s00705-020-04553-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/18/2020] [Indexed: 01/01/2023]
|
7
|
Verma M, Bhatnagar S, Kumari K, Mittal N, Sukhralia S, Gopirajan At S, Dhanaraj PS, Lal R. Highly conserved epitopes of DENV structural and non-structural proteins: Candidates for universal vaccine targets. Gene 2019; 695:18-25. [PMID: 30738967 PMCID: PMC7125761 DOI: 10.1016/j.gene.2019.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/22/2019] [Accepted: 02/01/2019] [Indexed: 12/11/2022]
Abstract
Dengue is a severe emerging arthropod borne viral disease occurring globally. Around two fifths of the world's population, or up to 3.9 billion people, are at a risk of dengue infection. Infection induces a life-long protective immunity to the homologous serotype but confers only partial and transient protection against subsequent infection caused by other serotypes. Thus, there is a need for a vaccine which is capable of providing a life- long protection against all the serotypes of dengue virus. In our study, comparative genomics of Dengue virus (DENV) was conducted to explore potential candidates for novel vaccine targets. From our analysis we successfully found 100% conserved epitopes in Envelope protein (RCPTQGE); NS3 (SAAQRRGR, PGTSGSPI); NS4A (QRTPQDNQL); NS4B (LQAKATREAQKRA) and NS5 proteins (QRGSGQV) in all DENV serotypes. Some serotype specific conserved motifs were also found in NS1, NS5, Capsid, PrM and Envelope proteins. Using comparative genomics and immunoinformatics approach, we could find conserved epitopes which can be explored as peptide vaccine candidates to combat dengue worldwide. Serotype specific epitopes can also be exploited for rapid diagnostics. All ten proteins are explored to find the conserved epitopes in DENV serotypes, thus making it the most extensively studied viral genome so far.
Collapse
Affiliation(s)
- Mansi Verma
- Sri Venkateswara College, South Campus, University of Delhi, New Delhi 110021, India; Molecular Biology Laboratory, Department of Zoology, University of Delhi, Delhi 110007, India.
| | - Shradha Bhatnagar
- Sri Venkateswara College, South Campus, University of Delhi, New Delhi 110021, India
| | - Kavita Kumari
- Sri Venkateswara College, South Campus, University of Delhi, New Delhi 110021, India
| | - Nidhi Mittal
- Sri Venkateswara College, South Campus, University of Delhi, New Delhi 110021, India
| | - Shivani Sukhralia
- Sri Venkateswara College, South Campus, University of Delhi, New Delhi 110021, India
| | - Shruthi Gopirajan At
- Sri Venkateswara College, South Campus, University of Delhi, New Delhi 110021, India
| | - P S Dhanaraj
- Sri Venkateswara College, South Campus, University of Delhi, New Delhi 110021, India
| | - Rup Lal
- Molecular Biology Laboratory, Department of Zoology, University of Delhi, Delhi 110007, India
| |
Collapse
|
8
|
Pietsch C, Liebert UG. Evidence for presumable feline origin of sporadic G6P[9] rotaviruses in humans. INFECTION GENETICS AND EVOLUTION 2018; 63:180-194. [PMID: 29860097 DOI: 10.1016/j.meegid.2018.05.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/28/2018] [Accepted: 05/30/2018] [Indexed: 01/19/2023]
Abstract
Species A rotaviruses are highly diverse and impose a substantial burden to human and animal health. Interspecies transmission between livestock, domestic animals and humans is commonly observed, but spread of animal-like rotaviruses within the human population is limited. During the continued monitoring of rotavirus strains in Germany, an unusual G6P[9] rotavirus strain was detected in feces of a child. The complete rotavirus coding sequences revealed a unique G6-P[9]-I2-R2-C2-M2-A3-N2-T3-E2-H3 genotype constellation. The virus was phylogenetically related to feline G3P[9] strains and other human G6P[9] rotaviruses of presumable zoonotic origin. Analysis of primer binding sites of G6 specific genotyping revealed further evidence of a G6P[9] feline reservoir. Moreover, substantial deficits of conventional semi-nested PCR genotyping approaches in detecting contemporary G6P[9] were revealed. Rotavirus strain GER29-14 most likely resulted from a direct or recent interspecies transmission from a cat to human. Further studies could assess nucleic acid sequences and genotype constellations of feline rotavirus to confirm the likely feline origin of sporadic human G6P[9] strains.
Collapse
Affiliation(s)
- Corinna Pietsch
- Institute of Virology, Leipzig University, Leipzig, Germany.
| | - Uwe G Liebert
- Institute of Virology, Leipzig University, Leipzig, Germany
| |
Collapse
|