1
|
Li L, Liu Z, Liang R, Yang M, Yan Y, Jiao Y, Jiao Z, Hu X, Li M, Shen Z, Peng G. Novel mutation N588 residue in the NS1 protein of feline parvovirus greatly augments viral replication. J Virol 2024; 98:e0009324. [PMID: 38591899 PMCID: PMC11092363 DOI: 10.1128/jvi.00093-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/19/2024] [Indexed: 04/10/2024] Open
Abstract
Feline parvovirus (FPV) infection is highly fatal in felines. NS1, which is a key nonstructural protein of FPV, can inhibit host innate immunity and promote viral replication, which is the main reason for the severe pathogenicity of FPV. However, the mechanism by which the NS1 protein disrupts host immunity and regulates viral replication is still unclear. Here, we identified an FPV M1 strain that is regulated by the NS1 protein and has more pronounced suppression of innate immunity, resulting in robust replication. We found that the neutralization titer of the FPV M1 strain was significantly lower than that of the other strains. Moreover, FPV M1 had powerful replication ability, and the FPV M1-NS1 protein had heightened efficacy in repressing interferon-stimulated genes (ISGs) expression. Subsequently, we constructed an FPV reverse genetic system, which confirmed that the N588 residue of FPV M1-NS1 protein is a key amino acid that bolsters viral proliferation. Recombinant virus containing N588 also had stronger ability to inhibit ISGs, and lower ISGs levels promoted viral replication and reduced the neutralization titer of the positive control serum. Finally, we confirmed that the difference in viral replication was abolished in type I IFN receptor knockout cell lines. In conclusion, our results demonstrate that the N588 residue of the NS1 protein is a critical amino acid that promotes viral proliferation by increasing the inhibition of ISGs expression. These insights provide a reference for studying the relationship between parvovirus-mediated inhibition of host innate immunity and viral replication while facilitating improved FPV vaccine production.IMPORTANCEFPV infection is a viral infectious disease with the highest mortality rate in felines. A universal feature of parvovirus is its ability to inhibit host innate immunity, and its ability to suppress innate immunity is mainly accomplished by the NS1 protein. In the present study, FPV was used as a viral model to explore the mechanism by which the NS1 protein inhibits innate immunity and regulates viral replication. Studies have shown that the FPV-NS1 protein containing the N588 residue strongly inhibits the expression of host ISGs, thereby increasing the viral proliferation titer. In addition, the presence of the N588 residue can increase the proliferation titer of the strain 5- to 10-fold without affecting its virulence and immunogenicity. In conclusion, our findings provide new insights and guidance for studying the mechanisms by which parvoviruses suppress innate immunity and for developing high-yielding FPV vaccines.
Collapse
Affiliation(s)
- Lisha Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Zirui Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Rui Liang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Mengfang Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yuanyuan Yan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yuzhou Jiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Zhe Jiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Xiaoshuai Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Mengxia Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Zhou Shen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Guiqing Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
2
|
Zhao S, Hu H, Lan J, Yang Z, Peng Q, Yan L, Luo L, Wu L, Lang Y, Yan Q. Characterization of a fatal feline panleukopenia virus derived from giant panda with broad cell tropism and zoonotic potential. Front Immunol 2023; 14:1237630. [PMID: 37662912 PMCID: PMC10469695 DOI: 10.3389/fimmu.2023.1237630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/02/2023] [Indexed: 09/05/2023] Open
Abstract
Represented by feline panleukopenia virus (FPV) and canine parvovirus (CPV), the species carnivore protoparvovirus 1 has a worldwide distribution through continuous ci13rculation in companion animals such as cats and dogs. Subsequently, both FPV and CPV had engaged in host-to-host transfer to other wild animal hosts of the order Carnivora. In the present study, we emphasized the significance of cross-species transmission of parvoviruses with the isolation and characterization of an FPV from giant panda displaying severe and fatal symptoms. The isolated virus, designated pFPV-sc, displayed similar morphology as FPV, while phylogenetic analysis indicated that the nucleotide sequence of pFPV-sc clades with Chinese FPV isolates. Despite pFPV-sc is seemingly an outcome of a spillover infection event from domestic cats to giant pandas, our study also provided serological evidence that FPV or other parvoviruses closely related to FPV could be already prevalent in giant pandas in 2011. Initiation of host transfer of pFPV-sc is likely with association to giant panda transferrin receptor (TfR), as TfR of giant panda shares high homology with feline TfR. Strikingly, our data also indicate that pFPV-sc can infect cell lines of other mammal species, including humans. To sum up, observations from this study shall promote future research of cross-host transmission and antiviral intervention of Carnivore protoparvovirus 1, and necessitate surveillance studies in thus far unacknowledged potential reservoirs.
Collapse
Affiliation(s)
- Shan Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Huanyuan Hu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Jingchao Lan
- Chengdu Research Base of Giant Panda Breeding, Chengdu, China
| | | | - Qianling Peng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Liheng Yan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Li Luo
- Chengdu Research Base of Giant Panda Breeding, Chengdu, China
| | - Lin Wu
- Sichuan Academy of Giant Panda, Chengdu, China
| | - Yifei Lang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qigui Yan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
3
|
Wang Y, Jiang S, Jiang X, Sun X, Guan X, Han Y, Zhong L, Song H, Xu Y. Cloning and codon optimization of a novel feline interferon omega gene for production by Pichia pastoris and its antiviral efficacy in polyethylene glycol-modified form. Virulence 2022; 13:297-309. [PMID: 35068319 PMCID: PMC8788361 DOI: 10.1080/21505594.2022.2029330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Feline viral diseases, such as feline panleukopenia, feline infectious peritonitis, and feline coronaviral enteritis, seriously endanger the health of cats, and restrict the development of pet industry. Meanwhile, there is a current lack of effective vaccines to protect against feline viral diseases. Thus, effective therapeutic agents are highly desirable. Interferons (IFNs) are important mediators of the antiviral host defense in animals, particularly type I IFNs. In this study, a novel feline IFN omega (feIFN-ω) gene was extracted from the cat stimulated with feline parvovirus (FPV) combined with poly(I:C), and following codon optimization encoding the feIFN-ω, the desired gene (feIFN-ω’) fragment was inserted into plasmid pPICZαA, and transformed into Pichia pastoris GS115, generating a recombinant P. pastoris GS115 strain expressing the feIFN-ω’. After induction, we found that the expression level of the feIFN-ω’ was two times more than that of feIFN-ω (p < 0.01). Subsequently, the feIFN-ω’ was purified and modified with polyethylene glycol, and its antiviral efficacy was evaluated in vitro and in vivo, using vesicular stomatitis virus (VSV) and FPV as model virus. Our results clearly demonstrated that the feIFN-ω’ had significant antiviral activities on both homologous and heterologous animal cells in vitro. Importantly, the feIFN-ω’ can effectively promote the expression of antiviral proteins IFIT3, ISG15, Mx1, and ISG56, and further enhance host defense to eliminate FPV infection in vivo, suggesting a potential candidate for the development of therapeutic agent against feline viral diseases.
Collapse
Affiliation(s)
- Yixin Wang
- Key Laboratory of Applied Technology on Green-eco-healthy Animal Husbandry of Zhejiang Province, College of Animal Science & Technology College of Veterinary Medicine, Zhejiang A&f University, Hangzhou, P.R. China
| | - Sheng Jiang
- Key Laboratory of Applied Technology on Green-eco-healthy Animal Husbandry of Zhejiang Province, College of Animal Science & Technology College of Veterinary Medicine, Zhejiang A&f University, Hangzhou, P.R. China
| | - Xiaoxia Jiang
- Key Laboratory of Applied Technology on Green-eco-healthy Animal Husbandry of Zhejiang Province, College of Animal Science & Technology College of Veterinary Medicine, Zhejiang A&f University, Hangzhou, P.R. China
| | - Xiaobo Sun
- Key Laboratory of Applied Technology on Green-eco-healthy Animal Husbandry of Zhejiang Province, College of Animal Science & Technology College of Veterinary Medicine, Zhejiang A&f University, Hangzhou, P.R. China
| | - Xueting Guan
- College of Animal Science & Technology, Northeast Agricultural University, Harbin, P.R. China
| | - Yanyan Han
- Key Laboratory of Applied Technology on Green-eco-healthy Animal Husbandry of Zhejiang Province, College of Animal Science & Technology College of Veterinary Medicine, Zhejiang A&f University, Hangzhou, P.R. China
| | - Linhan Zhong
- Key Laboratory of Applied Technology on Green-eco-healthy Animal Husbandry of Zhejiang Province, College of Animal Science & Technology College of Veterinary Medicine, Zhejiang A&f University, Hangzhou, P.R. China
| | - Houhui Song
- Key Laboratory of Applied Technology on Green-eco-healthy Animal Husbandry of Zhejiang Province, College of Animal Science & Technology College of Veterinary Medicine, Zhejiang A&f University, Hangzhou, P.R. China.,Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science & Technology College of Veterinary Medicine, Zhejiang A&f University, Hangzhou, P.R. China.,Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science & Technology College of Veterinary Medicine, Zhejiang A&f University, Hangzhou, P.R. China
| | - Yigang Xu
- Key Laboratory of Applied Technology on Green-eco-healthy Animal Husbandry of Zhejiang Province, College of Animal Science & Technology College of Veterinary Medicine, Zhejiang A&f University, Hangzhou, P.R. China.,Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science & Technology College of Veterinary Medicine, Zhejiang A&f University, Hangzhou, P.R. China.,Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science & Technology College of Veterinary Medicine, Zhejiang A&f University, Hangzhou, P.R. China
| |
Collapse
|
4
|
Sun L, Xu Z, Wu J, Cui Y, Guo X, Xu F, Li Y, Wang Y. A duplex SYBR green I-based real-time polymerase chain reaction assay for concurrent detection of feline parvovirus and feline coronavirus. J Virol Methods 2021; 298:114294. [PMID: 34547343 DOI: 10.1016/j.jviromet.2021.114294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/15/2021] [Accepted: 09/15/2021] [Indexed: 10/20/2022]
Abstract
Feline coronavirus (FCoV) contains two serotypes, feline enteric coronavirus (FECV) and Feline infectious peritonitis virus (FIPV). FECV and feline parvovirus (FPV) can cause similar clinical symptoms in cats, such as diarrhea. The objective of this study was to establish a duplex SYBR Green I-based quantitative polymerase chain reaction (qPCR) assay for rapid and simultaneous detection of FPV and FCoV. Two pairs of specific PCR primers were designed to target fragments of the VP2 gene of FPV and of the 5' UTR gene of FCoV, respectively. The assay distinguished between the two viruses based on the melting curves (melting temperatures 77.0 ± 0.5 °C [FPV] and 80.5 ± 0.5 °C [FCoV]). The minimum limits of FPV and FCoV detection were 4.74 × 101 copies/μL and 7.77 × 101 copies/μL, respectively. The assay showed excellent reproducibility and reliability, based on the mean coefficient of variation. In conclusion, this novel duplex SYBR Green I-based qPCR assay is sensitive and can specifically, reliably, and rapidly detect FPV and FCoV (co-)infections.
Collapse
Affiliation(s)
- Liting Sun
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, PR China
| | - Zhiqing Xu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, PR China
| | - Junhuang Wu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, PR China
| | - Yongqiu Cui
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, PR China
| | - Xu Guo
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, PR China
| | - Fazhi Xu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, PR China
| | - Yongdong Li
- Municipal Key Laboratory of Virology, Ningbo Municipal Center for Disease Control and Prevention, Ningb, 315010, PR China
| | - Yong Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, PR China.
| |
Collapse
|
5
|
Bhat S, Bialy D, Sealy JE, Sadeyen JR, Chang P, Iqbal M. A ligation and restriction enzyme independent cloning technique: an alternative to conventional methods for cloning hard-to-clone gene segments in the influenza reverse genetics system. Virol J 2020; 17:82. [PMID: 32576218 PMCID: PMC7309217 DOI: 10.1186/s12985-020-01358-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 06/17/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Reverse genetics is used in many laboratories around the world and enables the creation of tailor-made influenza viruses with a desired genotype or phenotype. However, the process is not flawless, and difficulties remain during cloning of influenza gene segments into reverse genetics vectors (pHW2000, pHH21, pCAGGS). Reverse genetics begins with making cDNA copies of influenza gene segments and cloning them into bi-directional (pHW2000) or uni-directional plasmids (pHH21, pCAGGS) followed by transfection of the recombinant plasmid(s) to HEK-293 T or any other suitable cells which are permissive to transfection. However, the presence of internal restriction sites in the gene segments of many field isolates of avian influenza viruses makes the cloning process difficult, if employing conventional methods. Further, the genetic instability of influenza gene-containing plasmids in bacteria (especially Polymerase Basic 2 and Polymerase Basic 1 genes; PB2 and PB1) also leads to erroneous incorporation of bacterial genomic sequences into the influenza gene of interest. METHODS Herein, we report an easy and efficient ligation and restriction enzyme independent (LREI) cloning method for cloning influenza gene segments into pHW2000 vector. The method involves amplification of megaprimers followed by PCR amplification of megaprimers using a bait plasmid, DpnI digestion and transformation. RESULTS Hard-to-clone genes: PB2 of A/chicken/Bangladesh/23527/2014 (H9N2) and PB1 of A/chicken/Bangladesh/23527/2014 (H9N2), A/chicken/Jiangxi/02.05YGYXG023-P/2015 (H5N6) and A/Chicken/Vietnam/H7F-14-BN4-315/2014 (H9N2) were cloned into pHW2000 using our LREI method and recombinant viruses were subsequently rescued. CONCLUSION The LREI cloning procedure represents an alternative strategy for cloning influenza gene segments which have internal restriction sites for the enzymes used in reverse genetics. Further, the problem of genetic instability in bacteria can be alleviated by growing recombinant bacterial cultures at a lower temperature. This technique can be applied to clone any influenza gene segment using universal primers, which would help in rapid generation of influenza viruses and facilitate influenza research and vaccine development.
Collapse
|
6
|
Construction and Immunogenicity of Virus-Like Particles of Feline Parvovirus from the Tiger. Viruses 2020; 12:v12030315. [PMID: 32188011 PMCID: PMC7150758 DOI: 10.3390/v12030315] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 01/13/2023] Open
Abstract
Feline panleukopenia, caused by feline parvovirus (FPV), is a highly infectious disease characterized by leucopenia and hemorrhagic gastroenteritis that severely affects the health of large wild Felidae. In this study, tiger FPV virus-like particles (VLPs) were developed using the baculovirus expression system. The VP2 gene from an infected Siberian tiger (Panthera tigris altaica) was used as the target gene. The key amino acids of this gene were the same as those of FPV, whereas the 101st amino acid was the same as that of canine parvovirus. Indirect immunofluorescence assay (IFA) results demonstrated that the VP2 protein was successfully expressed. SDS-PAGE and Western blotting (WB) results showed that the target protein band was present at approximately 65 kDa. Electron micrograph analyses indicated that the tiger FPV VLPs were successfully assembled and were morphologically similar to natural parvovirus particles. The hemagglutination (HA) titer of the tiger FPV VLPs was as high as 1:218. The necropsy and tissue sections at the cat injection site suggested that the tiger FPV VLPs vaccine was safe. Antibody production was induced in cats after subcutaneous immunization, with a >1:210 hemagglutination inhibition (HI) titer that persisted for at least 12 months. These results demonstrate that tiger FPV VLPs might provide a vaccine to prevent FPV-associated disease in the tiger.
Collapse
|