1
|
Colleran A, Lima C, Xu Y, Millichope A, Murray S, Goodacre R. Using surface-enhanced Raman scattering for simultaneous multiplex detection and quantification of thiols associated to axillary malodour. Analyst 2024; 149:3989-4001. [PMID: 38948950 PMCID: PMC11262063 DOI: 10.1039/d4an00762j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/23/2024] [Indexed: 07/02/2024]
Abstract
Axillary malodour is caused by the microbial conversion of human-derived precursors to volatile organic compounds. Thiols strongly contribute to this odour but are hard to detect as they are present at low concentrations. Additionally, thiols are highly volatile and small making sampling and quantification difficult, including by gas chromatography-mass spectrometry. In this study, surface-enhanced Raman scattering (SERS), combined with chemometrics, was utilised to simultaneously quantify four malodourous thiols associated with axillary odour, both in individual and multiplex solutions. Univariate and multivariate methods of partial least squares regression (PLS-R) were used to calculate the limit of detection (LoD) and results compared. Both methods yielded comparable LoD values, with LoDs using PLS-R ranging from 0.0227 ppm to 0.0153 ppm for the thiols studied. These thiols were then examined and quantified simultaneously in 120 mixtures using PLS-R. The resultant models showed high linearity (Q2 values between 0.9712 and 0.9827 for both PLS-1 and PLS-2) and low values of root mean squared error of predictions (0.0359 ppm and 0.0459 ppm for PLS-1 and PLS-2, respectively). To test this approach further, these models were challenged with 15 new blind test samples, collected independently from the initial samples. This test demonstrated that SERS combined with PLS-R could be used to predict the unknown concentrations of these thiols in a mixture. These results display the ability of SERS for the simultaneous multiplex detection and quantification of analytes and its potential for future development for detecting gaseous thiols produced from skin and other body sites.
Collapse
Affiliation(s)
- Amy Colleran
- Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St, Liverpool, L69 7ZB, UK.
| | - Cassio Lima
- Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St, Liverpool, L69 7ZB, UK.
| | - Yun Xu
- Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St, Liverpool, L69 7ZB, UK.
| | - Allen Millichope
- Unilever Research and Development, Port Sunlight, Bebington, CH63 3JW, UK
| | - Stephanie Murray
- Unilever Research and Development, Port Sunlight, Bebington, CH63 3JW, UK
| | - Royston Goodacre
- Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St, Liverpool, L69 7ZB, UK.
| |
Collapse
|
2
|
Di Cicco F, Evans RL, James AG, Weddell I, Chopra A, Smeets MAM. Intrinsic and extrinsic factors affecting axillary odor variation. A comprehensive review. Physiol Behav 2023; 270:114307. [PMID: 37516230 DOI: 10.1016/j.physbeh.2023.114307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/14/2023] [Accepted: 07/27/2023] [Indexed: 07/31/2023]
Abstract
Humans produce odorous secretions from multiple body sites according to the microbiomic profile of each area and the types of secretory glands present. Because the axilla is an active, odor-producing region that mediates social communication via the sense of smell, this article focuses on the biological mechanisms underlying the creation of axillary odor, as well as the intrinsic and extrinsic factors likely to impact the odor and determine individual differences. The list of intrinsic factors discussed includes sex, age, ethnicity, emotions, and personality, and extrinsic factors include dietary choices, diseases, climate, and hygienic habits. In addition, we also draw attention to gaps in our understanding of each factor, including, for example, topical areas such as the effect of climate on body odor variation. Fundamental challenges and emerging research opportunities are further outlined in the discussion. Finally, we suggest guidelines and best practices based on the factors reviewed herein for preparatory protocols of sweat collection, data analysis, and interpretation.
Collapse
Affiliation(s)
- Francesca Di Cicco
- Faculty of Social and Behavioural Sciences, Utrecht University, Heidelberglaan 1, Utrecht, CS 3584, the Netherlands.
| | - Richard L Evans
- Unilever Research & Development, Port Sunlight Laboratory, Bebington, UK
| | - A Gordon James
- Unilever Research & Development, Colworth House, Sharnbrook, UK
| | - Iain Weddell
- Unilever Research & Development, Port Sunlight Laboratory, Bebington, UK
| | - Anita Chopra
- Unilever Research & Development, Port Sunlight Laboratory, Bebington, UK
| | - Monique A M Smeets
- Faculty of Social and Behavioural Sciences, Utrecht University, Heidelberglaan 1, Utrecht, CS 3584, the Netherlands; Unilever Research & Development, Rotterdam, the Netherlands
| |
Collapse
|
3
|
Showering A, Martinez J, Benavente ED, Gezan SA, Jones RT, Oke C, Tytheridge S, Pretorius E, Scott D, Allen RL, D'Alessandro U, Lindsay SW, Armour JAL, Pickett J, Logan JG. Skin microbiome alters attractiveness to Anopheles mosquitoes. BMC Microbiol 2022; 22:98. [PMID: 35410125 PMCID: PMC9004177 DOI: 10.1186/s12866-022-02502-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/21/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Some people produce specific body odours that make them more attractive than others to mosquitoes, and consequently are at higher risk of contracting vector-borne diseases. The skin microbiome can break down carbohydrates, fatty acids and peptides on the skin into volatiles that mosquitoes can differentiate. RESULTS Here, we examined how skin microbiome composition of women differs in relation to level of attractiveness to Anopheles coluzzii mosquitoes, to identify volatiles in body odour and metabolic pathways associated with individuals that tend to be poorly-attractive to mosquitoes. We used behavioural assays to measure attractiveness of participants to An. coluzzii mosquitoes, 16S rRNA amplicon sequencing of the bacteria sampled from the skin and gas chromatography of volatiles in body odour. We found differences in skin microbiome composition between the poorly- and highly-attractive groups, particularly eight Amplicon Sequence Variants (ASVs) belonging to the Proteobacteria, Actinobacteria and Firmicutes phyla. Staphylococcus 2 ASVs are four times as abundant in the highly-attractive compared to poorly-attractive group. Associations were found between these ASVs and volatiles known to be attractive to Anopheles mosquitoes. Propanoic pathways are enriched in the poorly-attractive participants compared to those found to be highly-attractive. CONCLUSIONS Our findings suggest that variation in attractiveness of people to mosquitoes is related to the composition of the skin microbiota, knowledge that could improve odour-baited traps or other next generation vector control tools.
Collapse
Affiliation(s)
- Alicia Showering
- Department of Disease Control, London School of Hygiene & Tropical Medicine, London, UK.
| | - Julien Martinez
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, 464 Bearsden Road, Glasgow, G61 1QH, UK
| | - Ernest Diez Benavente
- Department of Experimental Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Robert T Jones
- Department of Disease Control, London School of Hygiene & Tropical Medicine, London, UK
| | - Catherine Oke
- Department of Disease Control, London School of Hygiene & Tropical Medicine, London, UK
| | - Scott Tytheridge
- Department of Disease Control, London School of Hygiene & Tropical Medicine, London, UK
| | - Elizabeth Pretorius
- Department of Disease Control, London School of Hygiene & Tropical Medicine, London, UK
| | - Darren Scott
- Department of Medical Statistics, London School of Hygiene & Tropical Medicine, London, UK
| | - Rachel L Allen
- Institute for Infection and Immunity, St George's, University of London, London, UK
| | - Umberto D'Alessandro
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, Gambia
| | | | - John A L Armour
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - John Pickett
- School of Chemistry, Cardiff University, Cardiff, Wales, UK
| | - James G Logan
- Department of Disease Control, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
4
|
Rankin-Turner S, McMeniman CJ. A headspace collection chamber for whole body volatilomics. Analyst 2022; 147:5210-5222. [DOI: 10.1039/d2an01227h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The human body secretes a complex blend of volatile organic compounds (VOCs) via the skin, breath and bodily fluids. In this study, we have developed a headspace collection chamber for whole body volatilome profiling.
Collapse
Affiliation(s)
- Stephanie Rankin-Turner
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Conor J. McMeniman
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
5
|
Huff RM, Pitts RJ. Functional conservation of Anopheline linalool receptors through 100 million years of evolution. Chem Senses 2022; 47:bjac032. [PMID: 36458901 PMCID: PMC9717389 DOI: 10.1093/chemse/bjac032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Insects rely on olfactory receptors to detect and respond to diverse environmental chemical cues. Detection of semiochemicals by these receptors modulates insect behavior and has a direct impact on species fitness. Volatile organic compounds (VOCs) are released by animals and plants and can provide contextual cues that a blood meal host or nectar source is present. One such VOC is linalool, an enantiomeric monoterpene, that is emitted from plants and bacteria species. This compound exists in nature as one of two possible stereoisomers, (R)-(-)-linalool or (S)-(+)-linalool. In this study, we use a heterologous expression system to demonstrate differential responsiveness of a pair of Anopheline odorant receptors (Ors) to enantiomers of linalool. The mosquitoes Anopheles gambiae and Anopheles stephensi encode single copies of Or29 and Or53, which are expressed in the labella of An. gambiae. (S)-(+)-linalool activates Or29 orthologs with a higher potency than (R)-(-)-linalool, while the converse is observed for Or53 orthologs. The conservation of these receptors across a broad range of Anopheline species suggests they may function in the discrimination of linalool stereoisomers, thereby influencing the chemical ecology of mosquitoes. One potential application of this knowledge would be in the design of novel attractants or repellents to be used in integrated pest management practices.
Collapse
Affiliation(s)
- Robert M Huff
- Department of Biology, Baylor University, Waco, TX 76706, USA
| | | |
Collapse
|
6
|
Omolo MO, Ndiege IO, Hassanali A. Semiochemical signatures associated with differential attraction of Anopheles gambiae to human feet. PLoS One 2021; 16:e0260149. [PMID: 34860850 PMCID: PMC8641859 DOI: 10.1371/journal.pone.0260149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 11/03/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Several human-produced volatiles have been reported to mediate the host-seeking process under laboratory conditions, yet no effective lure or repellent has been developed for field application. Previously, we found a gradation of the attractiveness of foot odors of different malaria free individuals to Anopheles gambiae sensu stricto Giles. In this study, foot odor of the individual with the most attractive 'smelly' feet to the An. gambiae was collected, analyzed and attractive blend components identified. METHODS The foot odor of the individual with the most attractive 'smelly' feet to the An. gambiae was trapped on Porapak Q and analyzed by gas chromatography-linked mass spectrometry (GC-MS). Specific constituents perceived by the insect olfactory system were then identified by GC-linked to electro-antennography detector (GC-EAD) and characterized by GC-MS. The contribution of each constituent to the behavioral response of An. gambiae was assessed through subtractive assays under semi-field conditions in a screen-house using Counter Flow Geometry (CFG traps) baited with (i) the blend of all the EAD-active and (ii) other blends containing all components with exclusion of one component at a time. The number of mosquitoes trapped in the baited CFG traps were compared with those in the control traps. RESULTS Eleven major and minor constituents: 2 carboxylic acids, six aldehydes, two ketones and one phenolic compound, were confirmed to be EAD-active. The contribution of each constituent to the behavioral response of An. gambiae was assessed through subtractive assays under semi- field conditions. Exclusion/ subtraction of one of the following compounds: i-butyric acid, i-valeric acid, n-octanal, n-nonanal, n-decanal, n-dodecanal, undecanal or n-tridecanal, from each blend led to reduction in the attractiveness of all the resulting blends, suggesting that all of them are critical/important for the attractiveness of the foot odor to An. gambiae mosquitoes. However, exclusion/subtraction of 4-ethoxyacetophenone, 4-ethylacetophenone and/or 2-methylphenol, led to significant enhancements in the attractiveness of the resulting blends, suggesting that each of these compounds had repellent effect on An. gambiae ss. Undecanal exhibited kairomonal activity at low natural concentrations under semi-field conditions but repellent activity at high unnatural conditions in the laboratory. Furthermore, the comparison of the mean mosquito catches in traps baited with the nine-component blend without 4-ethoxyacetophenone, 4-ethylacetophenone and the complete foot odor collection revealed that the former is significantly more attractive and confirmed the repellent effect of the two carbonyl compounds at low natural concentration levels. CONCLUSION These results suggest that differential attractiveness of An. gambiae to human feet is due to qualitative and/or qualitative differences in the chemical compositions of the foot odors from individual human beings and relative proportions of the two chemical signatures (attractants versus repellents) as observed from the ratios of the bioactive components in the foot odors of the most attractive and least attractive individuals. Chemical signature means the ensemble of the compounds released by the organism in a specific physiological state. The chemical signature is emitter-dependent, but does not depend on receiver response. Thus, there is only one chemical signature for one individual or species that may eventually include inactive, attractive and repellent components for another organism. The nine-component attractive blend has a potential as an effective field bait for trapping of malaria vectors in human dwellings.
Collapse
Affiliation(s)
- Maurice O. Omolo
- Department of Chemistry, School of Pure and Applied Sciences, Kenyatta University, Nairobi, Kenya
- Behavioural and Chemical Ecology Department (BCED), International Center of Insect Physiology and Ecology (ICIPE), Nairobi, Kenya
- Department of Pure & Applied Chemistry, Faculty of Science, Masinde Muliro University of Science and Technology (MMUST), Kakamega, Kenya
- Center for African Medicinal & Nutritional Flora & Fauna (CAMNFF), Masinde Muliro University of Science and Technology (MMUST), Kakamega, Kenya
| | - Isaiah O. Ndiege
- Department of Chemistry, School of Pure and Applied Sciences, Kenyatta University, Nairobi, Kenya
| | - Ahmed Hassanali
- Department of Chemistry, School of Pure and Applied Sciences, Kenyatta University, Nairobi, Kenya
- Behavioural and Chemical Ecology Department (BCED), International Center of Insect Physiology and Ecology (ICIPE), Nairobi, Kenya
| |
Collapse
|
7
|
Abstract
Colonization of textiles and subsequent metabolic degradation of sweat and sebum components by axillary skin bacteria cause the characteristic sweat malodor and discoloring of dirty clothes. Once inside the textile, the bacteria can form biofilms that are hard to remove by conventional washing. When the biofilm persists after washing, the textiles retain the sweat odor. To design biofilm removal and prevention strategies, the bacterial behavior needs to be understood in depth. Here, we aim to study the bacterial behavior in each of the four stages of the bacterial life cycle in textiles: adhesion, growth, drying, and washing. To accomplish this, we designed a novel in vitro model to mimic physiological sweating in cotton and polyester textiles, in which many of the parameters that influence bacterial behavior could be controlled. Due to the higher hydrophobicity, polyester adhered more bacteria and absorbed more sebum, the bacteria's primary nutrient source. Bacteria were therefore also more active in polyester textiles. However, polyester did not bind water as well as cotton. The increased water content of cotton allowed some species to retain a higher activity after the textile had dried. However, none of the textiles retained enough water upon drying to prevent the bacteria from adhering irreversibly to the textile fibers. This work demonstrates that bacterial colonization of textiles depends partially on the hydrophobic and hygroscopic properties of the textile material, indicating that it might be possible to direct bacterial behavior in a more favorable direction by modifying these surface properties. IMPORTANCE During sweating, bacteria from the skin enter the worn textile along with the sweat. Once inside the clothes, the bacteria produce sweat malodor and form colonies that are extremely hard to remove by washing. Over time, this leads to a decreasing textile quality and consumer comfort. To design prevention and removal mechanisms, we investigated the behavior of bacteria during the four stages of their life cycle in textiles: adhesion, growth, drying, and washing. The bacterial behavior in textiles during all four stages is found to be affected by the textile's ability to bind water and fat. The study indicates that sweat malodor and bacterial accumulation in textiles over time can be reduced by making the textiles more repellant to water and fat.
Collapse
|
8
|
Kim MJ, Tagele SB, Jo H, Kim MC, Jung Y, Park YJ, So JH, Kim HJ, Kim HJ, Lee DG, Kang S, Shin JH. Effect of a bioconverted product of Lotus corniculatus seed on the axillary microbiome and body odor. Sci Rep 2021; 11:10138. [PMID: 33980951 PMCID: PMC8115508 DOI: 10.1038/s41598-021-89606-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/07/2021] [Indexed: 02/01/2023] Open
Abstract
The skin microbiome, especially the axillary microbiome, consists of odor-causing bacteria that decompose odorless sweat into malodor compounds, which contributes to the formation of body odor. Plant-derived products are a cheap source of bioactive compounds that are common ingredients in cosmetics. Microbial bioconversion of natural products is an ecofriendly and economical method for production of new or improved biologically active compounds. Therefore, in this study, we tested the potential of a Lactobacillus acidophilus KNU-02-mediated bioconverted product (BLC) of Lotus corniculatus seed to reduce axillary malodor and its effect on the associated axillary microbiota. A chemical profile analysis revealed that benzoic acid was the most abundant chemical compound in BLC, which increased following bioconversion. Moreover, BLC treatment was found to reduce the intensity of axillary malodor. We tested the axillary microbiome of 18 study participants, divided equally into BLC and placebo groups, and revealed through 16S rRNA gene sequencing that Staphylococcus, Corynebacterium, and Anaerococcus were the dominant taxa, and some of these taxa were significantly associated with axillary malodor. After one week of BLC treatment, the abundance of Corynebacterium and Anaerococcus, which are associated with well-known odor-related genes that produce volatile fatty acids, had significantly reduced. Likewise, the identified odor-related genes decreased after the application of BLC. BLC treatment enhanced the richness and network density of the axillary microbial community. The placebo group, on the other hand, showed no difference in the microbial richness, odor associated taxa, and predicted functional genes after a week. The results demonstrated that BLC has the potential to reduce the axillary malodor and the associated odor-causing bacteria, which makes BLC a viable deodorant material in cosmetic products.
Collapse
Affiliation(s)
- Min-Ji Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Setu Bazie Tagele
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - HyungWoo Jo
- R&I Center, COSMAX BTI, Seongnam, 13486, Republic of Korea
| | - Min-Chul Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - YeonGyun Jung
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Yeong-Jun Park
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jai-Hyun So
- National Development Institute of Korean Medicine, 94, Hwarang-ro, Gyeongsan, Gyeongsangbuk-do, 38540, Republic of Korea
| | - Hae Jin Kim
- Experiment Research Institute, National Agricultural Products Quality Management Service, Gimcheon, Gyeongsangbuk-do, 39660, Republic of Korea
| | - Ho Jin Kim
- Experiment Research Institute, National Agricultural Products Quality Management Service, Gimcheon, Gyeongsangbuk-do, 39660, Republic of Korea
| | - Dong-Geol Lee
- R&I Center, COSMAX BTI, Seongnam, 13486, Republic of Korea
| | - Seunghyun Kang
- R&I Center, COSMAX BTI, Seongnam, 13486, Republic of Korea
| | - Jae-Ho Shin
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
9
|
Mayer S, Hazenkamp M, Kluttig M, Ochs D. Inhibition of microbial production of the malodorous substance isovaleric acid by 4,4' dichloro 2-hydroxydiphenyl ether (DCPP). Microbiologyopen 2021; 10:e1174. [PMID: 33970541 PMCID: PMC8033842 DOI: 10.1002/mbo3.1174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 01/24/2023] Open
Abstract
Human body malodour is a complex phenomenon. Several types of sweat glands produce odorless secretions that are metabolized by a consortium of skin‐resident microorganisms to a diverse set of malodorous substances. Isovaleric acid, a sweaty‐smelling compound, is one major malodorous component produced by staphylococci with the skin‐derived amino acid L‐leucine as a substrate. During wearing, fabrics are contaminated with sweat and microorganisms and high humidity propagates growth and microbial malodour production. Incomplete removal of sweat residues and microorganisms from fabrics during laundry with bleach‐free detergents and at low temperatures elevate the problem of textile malodour. This study aimed to analyze the inhibitory effect of the antimicrobial 4,4ʹ dichloro 2‐hydroxydiphenyl ether (DCPP) on the formation of isovaleric acid on fabrics. Therefore, GC‐FID‐ and GC–MS‐based methods for the analysis of isovaleric acid in an artificial human sweat‐mimicking medium and in textile extracts were established. Here, we show that antimicrobials capable to deposit on fabrics during laundry, such as DCPP, are effective in growth inhibition of typical malodour‐generating bacteria and prevent the staphylococcal formation of isovaleric acid on fabrics in a simple experimental setup. This can contribute to increased hygiene for mild laundry care approaches, where bacterial contamination and malodour production represent a considerable consumer problem.
Collapse
Affiliation(s)
- Sonja Mayer
- BASF Grenzach GmbH, Grenzach-Wyhlen, Germany
| | | | | | | |
Collapse
|
10
|
Dormont L, Mulatier M, Carrasco D, Cohuet A. Mosquito Attractants. J Chem Ecol 2021; 47:351-393. [PMID: 33725235 DOI: 10.1007/s10886-021-01261-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/18/2021] [Accepted: 03/02/2021] [Indexed: 01/01/2023]
Abstract
Vector control and personal protection against anthropophilic mosquitoes mainly rely on the use of insecticides and repellents. The search for mosquito-attractive semiochemicals has been the subject of intense studies for decades, and new compounds or odor blends are regularly proposed as lures for odor-baited traps. We present a comprehensive and up-to-date review of all the studies that have evaluated the attractiveness of volatiles to mosquitoes, including individual chemical compounds, synthetic blends of compounds, or natural host or plant odors. A total of 388 studies were analysed, and our survey highlights the existence of 105 attractants (77 volatile compounds, 17 organism odors, and 11 synthetic blends) that have been proved effective in attracting one or several mosquito species. The exhaustive list of these attractants is presented in various tables, while the most common mosquito attractants - for which effective attractiveness has been demonstrated in numerous studies - are discussed throughout the text. The increasing knowledge on compounds attractive to mosquitoes may now serve as the basis for complementary vector control strategies, such as those involving lure-and-kill traps, or the development of mass trapping. This review also points out the necessity of further improving the search for new volatile attractants, such as new compound blends in specific ratios, considering that mosquito attraction to odors may vary over the life of the mosquito or among species. Finally, the use of mosquito attractants will undoubtedly have an increasingly important role to play in future integrated vector management programs.
Collapse
Affiliation(s)
- Laurent Dormont
- CEFE, Univ Paul Valéry Montpellier 3, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, France.
| | - Margaux Mulatier
- Institut Pasteur de Guadeloupe, Laboratoire d'étude sur le contrôle des vecteurs (LeCOV), Lieu-Dit Morne Jolivièrex, 97139, Les Abymes, Guadeloupe, France
| | - David Carrasco
- MIVEGEC, Univ. Montpellier, IRD, CNRS, Montpellier, France
| | - Anna Cohuet
- MIVEGEC, Univ. Montpellier, IRD, CNRS, Montpellier, France
| |
Collapse
|
11
|
Martinez J, Showering A, Oke C, Jones RT, Logan JG. Differential attraction in mosquito-human interactions and implications for disease control. Philos Trans R Soc Lond B Biol Sci 2020; 376:20190811. [PMID: 33357061 PMCID: PMC7776937 DOI: 10.1098/rstb.2019.0811] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Mosquito-borne diseases are a major burden on human health worldwide and their eradication through vector control methods remains challenging. In particular, the success of vector control interventions for targeting diseases such as malaria is under threat, in part due to the evolution of insecticide resistance, while for other diseases effective control solutions are still lacking. The rate at which mosquitoes encounter and bite humans is a key determinant of their capacity for disease transmission. Future progress is strongly reliant on improving our understanding of the mechanisms leading to a mosquito bite. Here, we review the biological factors known to influence the attractiveness of mosquitoes to humans, such as body odour, the skin microbiome, genetics and infection by parasites. We identify the knowledge gaps around the relative contribution of each factor, and the potential links between them, as well as the role of natural selection in shaping vector–host–parasite interactions. Finally, we argue that addressing these questions will contribute to improving current tools and the development of novel interventions for the future. This article is part of the theme issue ‘Novel control strategies for mosquito-borne diseases'.
Collapse
Affiliation(s)
- Julien Martinez
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Alicia Showering
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Catherine Oke
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Robert T Jones
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - James G Logan
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| |
Collapse
|
12
|
Multi-strain volatile profiling of pathogenic and commensal cutaneous bacteria. Sci Rep 2020; 10:17971. [PMID: 33087843 PMCID: PMC7578783 DOI: 10.1038/s41598-020-74909-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/08/2020] [Indexed: 12/12/2022] Open
Abstract
The detection of volatile organic compounds (VOC) emitted by pathogenic bacteria has been proposed as a potential non-invasive approach for characterising various infectious diseases as well as wound infections. Studying microbial VOC profiles in vitro allows the mechanisms governing VOC production and the cellular origin of VOCs to be deduced. However, inter-study comparisons of microbial VOC data remains a challenge due to the variation in instrumental and growth parameters across studies. In this work, multiple strains of pathogenic and commensal cutaneous bacteria were analysed using headspace solid phase micro-extraction coupled with gas chromatography-mass spectrometry. A kinetic study was also carried out to assess the relationship between bacterial VOC profiles and the growth phase of cells. Comprehensive bacterial VOC profiles were successfully discriminated at the species-level, while strain-level variation was only observed in specific species and to a small degree. Temporal emission kinetics showed that the emission of particular compound groups were proportional to the respective growth phase for individual S. aureus and P. aeruginosa samples. Standardised experimental workflows are needed to improve comparability across studies and ultimately elevate the field of microbial VOC profiling. Our results build on and support previous literature and demonstrate that comprehensive discriminative results can be achieved using simple experimental and data analysis workflows.
Collapse
|
13
|
Rudden M, Herman R, Rose M, Bawdon D, Cox DS, Dodson E, Holden MTG, Wilkinson AJ, James AG, Thomas GH. The molecular basis of thioalcohol production in human body odour. Sci Rep 2020; 10:12500. [PMID: 32719469 PMCID: PMC7385124 DOI: 10.1038/s41598-020-68860-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/26/2020] [Indexed: 11/09/2022] Open
Abstract
Body odour is a characteristic trait of Homo sapiens, however its role in human behaviour and evolution is poorly understood. Remarkably, body odour is linked to the presence of a few species of commensal microbes. Herein we discover a bacterial enzyme, limited to odour-forming staphylococci that are able to cleave odourless precursors of thioalcohols, the most pungent components of body odour. We demonstrated using phylogenetics, biochemistry and structural biology that this cysteine-thiol lyase (C-T lyase) is a PLP-dependent enzyme that moved horizontally into a unique monophyletic group of odour-forming staphylococci about 60 million years ago, and has subsequently tailored its enzymatic function to human-derived thioalcohol precursors. Significantly, transfer of this enzyme alone to non-odour producing staphylococci confers odour production, demonstrating that this C-T lyase is both necessary and sufficient for thioalcohol formation. The structure of the C-T lyase compared to that of other related enzymes reveals how the adaptation to thioalcohol precursors has evolved through changes in the binding site to create a constrained hydrophobic pocket that is selective for branched aliphatic thioalcohol ligands. The ancestral acquisition of this enzyme, and the subsequent evolution of the specificity for thioalcohol precursors implies that body odour production in humans is an ancient process.
Collapse
Affiliation(s)
- Michelle Rudden
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Reyme Herman
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Matthew Rose
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Daniel Bawdon
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Diana S Cox
- Unilever R&D, Colworth Science Park, Sharnbrook, Bedford, MK44 1LQ, UK
| | - Eleanor Dodson
- Department of Chemistry, University of York, Wentworth Way, York, YO10 5DD, UK
| | | | - Anthony J Wilkinson
- Department of Chemistry, University of York, Wentworth Way, York, YO10 5DD, UK.
| | - A Gordon James
- Unilever R&D, Colworth Science Park, Sharnbrook, Bedford, MK44 1LQ, UK
| | - Gavin H Thomas
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK.
| |
Collapse
|
14
|
Natsch A, Emter R. The specific biochemistry of human axilla odour formation viewed in an evolutionary context. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190269. [PMID: 32306870 PMCID: PMC7209930 DOI: 10.1098/rstb.2019.0269] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2019] [Indexed: 12/17/2022] Open
Abstract
Human body odour is dominated by the scent of specific odourants emanating from specialized glands in the axillary region. These specific odourants are produced by an intricate interplay between biochemical pathways in the host and odour-releasing enzymes present in commensal microorganisms of the axillary microbiome. Key biochemical steps for the release of highly odouriferous carboxylic acids and sulfur compounds have been elucidated over the past 15 years. Based on the profound molecular understanding and specific analytical methods developed, evolutionary questions could be asked for the first time with small population studies: (i) a genetic basis for body odour could be shown with a twin study, (ii) no effect of genes in the human leukocyte antigen complex on the pattern of odourant carboxylic acid was found, and (iii) loss of odour precursor secretion by a mutation in the ABCC11 gene could explain why a large fraction of the population in the Far East lack body odour formation. This review summarizes what is currently known at the molecular level on the biochemistry of the formation of key odourants in the human axilla. At the same time, we present for the first time the crystal structure of the Nα-acyl-aminoacylase, a key human odour-releasing enzyme, thus describing at the molecular level how bacteria on the skin surface have adapted their enzyme to the specific substrates secreted by the human host. This article is part of the Theo Murphy meeting issue 'Olfactory communication in humans'.
Collapse
Affiliation(s)
- Andreas Natsch
- Givaudan Schweiz AG, Kemptpark 50, CH-8310 Kemptthal, Switzerland
| | | |
Collapse
|
15
|
Cock IE, Wright MH, Matthews B, White A. Bioactive compounds sourced from Terminalia spp. in bacterial malodour prevention: an effective alternative to chemical additives. Int J Cosmet Sci 2019; 41:496-508. [PMID: 31381160 DOI: 10.1111/ics.12567] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 12/01/2022]
Abstract
OBJECTIVE Recently, our group reported that extracts prepared from the Australian native plant Terminalia ferdinandiana Exell. are potent inhibitors of the growth malodorous bacteria with similar efficacy to triclosan and through these results, we highlighted a potential biological alternative to the current chemical additives. Other members of the genus Terminalia are also well documented for their antibacterial potential and tannin contents and thus were investigated as potential deodorant additives. METHODS Solvent extractions prepared from of selected Indian, Australian and South African Terminalia spp. were screened by disc diffusion and liquid dilution assays against C. jeikeium, S. epidermidis, P. acnes and B. linens. The antibacterial activity was quantified by liquid dilution MIC assays. The extracts were screened for toxicity using Atremia franciscana nauplii and HDF cell viability bioassays. High-resolution time-of-flight (TOF) LC-MS and GC-MS headspace fingerprint analysis was used to detect tannin, flavonoid and terpenoid components in the extracts. RESULTS Bacterial growth inhibition was observed in all Terminalia extracts with the methanolic T. chebula, T. carpenteriae and T. sericea extracts the most promising bacterial growth inhibitors, yielding MIC values as low as 200 µg mL-1 . Toxicity analyses of the extracts were favourable, and we determined that the methanolic T. chebula, T. carpenteriae and T. sericea extracts were all non-toxic. Using previously detected T. ferdinandiana antimicrobials as benchmarks, LC-MS and GC-MS fingerprint analyses revealed similar compounds in the methanolic T. chebula, T. carpenteriae and T. sericea extracts. CONCLUSION Through these results, we propose that Terminalia spp. extracts may be useful deodorant additives to inhibit the growth of axillary and plantar malodorous bacteria, offering a biological alternative to their chemically synthesized counterparts.
Collapse
Affiliation(s)
- I E Cock
- Environmental Futures Research Institute, Nathan Campus, Griffith University, Brisbane, QLD, Australia.,School of Environment and Science, Nathan Campus, Griffith University, Brisbane, QLD, Australia
| | - M H Wright
- Department of Research and Development, First Choice College, Gold Coast, QLD, Australia.,Division of Education Quality, iLearn eCollege, Gold Coast, QLD, Australia
| | - B Matthews
- NSW Health Pathology, Prince of Wales Hospital, Department of Clinical Chemistry and Endocrinology, Sydney, NSW, Australia
| | - A White
- School of Environment and Science, Nathan Campus, Griffith University, Brisbane, QLD, Australia
| |
Collapse
|
16
|
Methanolic Extract of Artemia salina Eggs and Various Fractions in Different Solvents Contain Potent Compounds That Decrease Cell Viability of Colon and Skin Cancer Cell Lines and Show Antibacterial Activity against Pseudomonas aeruginosa. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:9528256. [PMID: 31198432 PMCID: PMC6526577 DOI: 10.1155/2019/9528256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/10/2019] [Accepted: 04/22/2019] [Indexed: 11/29/2022]
Abstract
Artemia salina, crustaceans of class Branchiopoda and order Anostraca, are living and reproducing only in highly saline natural lakes and in other reservoirs where sea water is evaporated to produce salt. Artemia salina eggs can be purchased from pet stores, where they are sold as tropical fish food and a ready source for hatching shrimp. In the current study, methanolic crude extracts and various fractions of Artemia salina eggs extracted in other solvents were tested for effects on cell viability of human colorectal cancer cells (HCT116) and melanoma cells (B16F10) using an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. A methanolic crude extract of eggs was obtained by cold maceration, followed by fractionation to obtain hexane, chloroform, ethyl acetate, n-butanol, and aqueous fractions. The methanolic crude extract decreased cell viability of HCT-116 and B16F10 cell lines at higher concentrations. The other fractions were evaluated using a cell viability assay, and chloroform and hexane showed the highest activity at significantly lower concentrations than did the methanolic fraction. Full scan profiles of the methanolic crude extract and the chloroform and hexane fractions were obtained by gas chromatography mass spectrometry (GC-MS), and the resultant compounds were identified by comparing their spectral data to those available in spectral matching libraries. ROS generation assay, flow cytometry, and western blot analysis provided supporting evidence that the hexane and chloroform fractions induced cell death in HCT116 and B16-F10 cell lines. All fractions were further tested for antibacterial activity against Pseudomonas aeruginosa, among which the hexane fraction showed the highest zone of inhibition on LB nutrient agar plates. This study demonstrated promising anticancer and antibacterial effects of Artemia salina egg extracts. Our results suggest that pure bioactive compounds obtained from Artemia salina eggs can provide new insights into the mechanisms of colon and skin cancer, as well as Pseudomonas aeruginosa inhibition.
Collapse
|
17
|
Leclaire S, Strandh M, Dell'Ariccia G, Gabirot M, Westerdahl H, Bonadonna F. Plumage microbiota covaries with the major histocompatibility complex in blue petrels. Mol Ecol 2019; 28:833-846. [PMID: 30582649 DOI: 10.1111/mec.14993] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/05/2018] [Accepted: 12/17/2018] [Indexed: 01/04/2023]
Abstract
To increase fitness, a wide range of vertebrates preferentially mate with partners that are dissimilar at the major histocompatibility complex (MHC) or that have high MHC diversity. Although MHC often can be assessed through olfactory cues, the mechanism by which MHC genes influence odour remains largely unclear. MHC class IIB molecules, which enable recognition and elimination of extracellular bacteria, have been suggested to influence odour indirectly by shaping odour-producing microbiota, i.e. bacterial communities. However, there is little evidence of the predicted covariation between an animal's MHC genotype and its bacterial communities in scent-producing body surfaces. Here, using high-throughput sequencing, we tested the covariation between MHC class IIB genotypes and feather microbiota in the blue petrel (Halobaena caerulea), a seabird with highly developed olfaction that has been suggested to rely on oduor cues during an MHC-based mate choice. First, we show that individuals with similar MHC class IIB profiles also have similar bacterial assemblages in their feathers. Then, we show that individuals with high MHC diversity have less diverse feather microbiota and also a reduced abundance of a bacterium of the genus Arsenophonus, a genus in which some species are symbionts of avian ectoparasites. Our results, showing that feather microbiota covary with MHC, are consistent with the hypothesis that individual MHC genotype may shape the semiochemical-producing microbiota in birds.
Collapse
Affiliation(s)
- Sarah Leclaire
- Laboratoire Evolution & Diversité Biologique, UMR 5174 (CNRS, Université Paul Sabatier, ENFA), Toulouse, France.,Centre d'Ecologie Fonctionnelle et Evolutive, CNRS-CEFE, Montpellier, France
| | - Maria Strandh
- Molecular Ecology and Evolution Lab, Lund University, Lund, Sweden
| | - Gaia Dell'Ariccia
- Centre d'Ecologie Fonctionnelle et Evolutive, CNRS-CEFE, Montpellier, France
| | - Marianne Gabirot
- Centre d'Ecologie Fonctionnelle et Evolutive, CNRS-CEFE, Montpellier, France
| | | | - Francesco Bonadonna
- Centre d'Ecologie Fonctionnelle et Evolutive, CNRS-CEFE, Montpellier, France
| |
Collapse
|
18
|
Minhas GS, Bawdon D, Herman R, Rudden M, Stone AP, James AG, Thomas GH, Newstead S. Structural basis of malodour precursor transport in the human axilla. eLife 2018; 7:e34995. [PMID: 29966586 PMCID: PMC6059767 DOI: 10.7554/elife.34995] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 06/23/2018] [Indexed: 01/10/2023] Open
Abstract
Mammals produce volatile odours that convey different types of societal information. In Homo sapiens, this is now recognised as body odour, a key chemical component of which is the sulphurous thioalcohol, 3-methyl-3-sulfanylhexan-1-ol (3M3SH). Volatile 3M3SH is produced in the underarm as a result of specific microbial activity, which act on the odourless dipeptide-containing malodour precursor molecule, S-Cys-Gly-3M3SH, secreted in the axilla (underarm) during colonisation. The mechanism by which these bacteria recognise S-Cys-Gly-3M3SH and produce body odour is still poorly understood. Here we report the structural and biochemical basis of bacterial transport of S-Cys-Gly-3M3SH by Staphylococcus hominis, which is converted to the sulphurous thioalcohol component 3M3SH in the bacterial cytoplasm, before being released into the environment. Knowledge of the molecular basis of precursor transport, essential for body odour formation, provides a novel opportunity to design specific inhibitors of malodour production in humans.
Collapse
Affiliation(s)
- Gurdeep S Minhas
- Department of BiochemistryUniversity of OxfordOxfordUnited Kingdom
| | - Daniel Bawdon
- Department of BiologyUniversity of YorkYorkUnited Kingdom
| | - Reyme Herman
- Department of BiologyUniversity of YorkYorkUnited Kingdom
| | | | - Andrew P Stone
- Department of BiologyUniversity of YorkYorkUnited Kingdom
| | | | - Gavin H Thomas
- Department of BiologyUniversity of YorkYorkUnited Kingdom
| | - Simon Newstead
- Department of BiochemistryUniversity of OxfordOxfordUnited Kingdom
| |
Collapse
|
19
|
Tabares M, Ortiz M, Gonzalez M, Carazzone C, Vives Florez MJ, Molina J. Behavioral responses of Rhodnius prolixus to volatile organic compounds released in vitro by bacteria isolated from human facial skin. PLoS Negl Trop Dis 2018; 12:e0006423. [PMID: 29684012 PMCID: PMC5933807 DOI: 10.1371/journal.pntd.0006423] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 05/03/2018] [Accepted: 04/02/2018] [Indexed: 12/12/2022] Open
Abstract
Background Previous studies have demonstrated the role of volatile organic compounds (VOCs) produced by skin microbiota in the attraction of mosquitoes to humans. Recently, behavioral experiments confirmed the importance of VOCs released by skin microbiota in the attraction of Rhodnius prolixus (Hemiptera: Triatominae), a vector of Chagas disease. Methods/Findings In this study, we screened for VOCs released in vitro by bacteria isolated from human facial skin that were able to elicit behavioral responses in R. prolixus. The VOCs released in vitro by eight bacterial species during two growth phases were tested with adult Rhodnius prolixus insects using a dual-choice “T”-shaped olfactometer. In addition, the VOCs released by the bacteria were analyzed with headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS). The VOCs produced by Staphylococcus capitis 11C, Staphylococcus warneri and Staphylococcus epidermidis 1 were attractive to R. prolixus, while the VOCs released by Citrobacter koseri 6P, Brevibacterium epidermidis and Micrococcus luteus 23 were non-attractive. Conclusions The results shown here indicate that VOCs released by bacteria isolated from human facial skin have a potential for biotechnological uses as a strategy to prevent the vectorial transmission of Chagas disease mediated by Rhodnius prolixus. Volatile organic compounds released by bacteria growing on human skin are mediating human-blood-sucking insects interactions. In this study we were interested in those volatile organic compounds produced in vitro by skin bacterial metabolism that are involved in the Rhodnius prolixus interaction with humans. Rhodnius prolixus is the main vector of Chagas disease in Northern South America. Using behavioral experiments, chemical analysis and microbiological techniques we determined the volatile organic compounds released in vitro by bacteria isolated from human faces and its effects on Rhodnius prolixus. We found that most of the Staphylococcus species tested here are mediating attraction, while non-Staphylococcus species are non-attractive. As a conclusion, our results showed that volatile organic compounds released by bacteria isolated from human faces have a potential for biotechnological uses as a strategy to control the vectorial transmission of Chagas disease mediated by Rhodnius prolixus.
Collapse
Affiliation(s)
- Marcela Tabares
- Centro de Investigaciones Microbiológicas (CIMIC), Universidad de los Andes, Bogotá, Colombia
| | - Mario Ortiz
- Centro de Investigaciones en Microbiología y Parasitología Tropical (CIMPAT), Universidad de los Andes, Bogotá, Colombia
| | - Mabel Gonzalez
- Laboratory of Advanced Analytical Techniques in Natural Products (LATNAP), Universidad de los Andes, Bogotá, Colombia
| | - Chiara Carazzone
- Laboratory of Advanced Analytical Techniques in Natural Products (LATNAP), Universidad de los Andes, Bogotá, Colombia
| | - Martha J. Vives Florez
- Centro de Investigaciones Microbiológicas (CIMIC), Universidad de los Andes, Bogotá, Colombia
| | - Jorge Molina
- Centro de Investigaciones en Microbiología y Parasitología Tropical (CIMPAT), Universidad de los Andes, Bogotá, Colombia
- * E-mail:
| |
Collapse
|
20
|
Monitoring of selected skin- and breath-borne volatile organic compounds emitted from the human body using gas chromatography ion mobility spectrometry (GC-IMS). J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1076:29-34. [DOI: 10.1016/j.jchromb.2018.01.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/12/2017] [Accepted: 01/10/2018] [Indexed: 11/24/2022]
|
21
|
OKAMOTO HIROYA, KOIZUMI SHOKO, SHIMIZU HIRONORI, CHO OTOMI, SUGITA TAKASHI. Characterization of the Axillary Microbiota of Japanese Male Subjects with Spicy and Milky Odor Types by Pyrosequencing. Biocontrol Sci 2018; 23:1-5. [DOI: 10.4265/bio.23.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
| | | | | | - OTOMI CHO
- Department of Microbiology, Meiji Pharmaceutical University
| | - TAKASHI SUGITA
- Department of Microbiology, Meiji Pharmaceutical University
| |
Collapse
|
22
|
Verhulst NO, Umanets A, Weldegergis BT, Maas JPA, Visser TM, Dicke M, Smidt H, Takken W. Do apes smell like humans? The role of skin bacteria and volatiles of primates in mosquito host selection. J Exp Biol 2018; 221:jeb.185959. [DOI: 10.1242/jeb.185959] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/20/2018] [Indexed: 12/16/2022]
Abstract
Anthropophilic mosquitoes are effective vectors of human diseases because of their biting preference. To find their host, these mosquitoes are guided by human odours, primarily produced by human skin bacteria. By analysing the skin bacterial and skin volatile profiles of humans, bonobos, chimpanzees, gorillas, lemurs and cows, we investigated whether primates that are more closely related to humans have a skin bacterial community and odour profile that is similar to humans. We then investigated whether this affected discrimination between humans and closely related primates by anthropophilic and zoophilic mosquitoes that search for hosts. Humans had a lower skin bacterial diversity than the other animals and their skin bacterial composition was more similar to the other primates than to the skin bacterial composition of cows. Like the skin bacterial profiles, the volatile profiles of the animal groups were clearly different from each other. The cow and lemur volatile profiles were more closely related to the human profiles than expected. Human volatiles were indeed preferred above cow volatiles by anthropophilic mosquitoes and no preference was observed when tested against non-human primate odour, except for bonobo volatiles that were preferred over human volatiles. Unravelling the differences between mosquito hosts and their effect on host selection is important for a better understanding of cross-species transmission of vector-borne diseases.
Collapse
Affiliation(s)
- Niels O. Verhulst
- Laboratory of Entomology, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, the Netherlands
- National Centre for Vector Entomology, Institute of Parasitology, Faculty of Veterinary Science (Vetsuisse), University of Zurich, Zurich, Switzerland
| | - Alexander Umanets
- Laboratory of Microbiology, Wageningen University & Research, P.O. Box 8033, 6700 EH, Wageningen, the Netherlands
| | - Berhane T. Weldegergis
- Laboratory of Entomology, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, the Netherlands
| | - Jeroen P. A. Maas
- Laboratory of Entomology, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, the Netherlands
| | - Tessa M. Visser
- Laboratory of Entomology, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, the Netherlands
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, the Netherlands
| | - Hauke Smidt
- National Centre for Vector Entomology, Institute of Parasitology, Faculty of Veterinary Science (Vetsuisse), University of Zurich, Zurich, Switzerland
| | - Willem Takken
- Laboratory of Entomology, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, the Netherlands
| |
Collapse
|
23
|
Adams RI, Lymperopoulou DS, Misztal PK, De Cassia Pessotti R, Behie SW, Tian Y, Goldstein AH, Lindow SE, Nazaroff WW, Taylor JW, Traxler MF, Bruns TD. Microbes and associated soluble and volatile chemicals on periodically wet household surfaces. MICROBIOME 2017; 5:128. [PMID: 28950891 PMCID: PMC5615633 DOI: 10.1186/s40168-017-0347-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/20/2017] [Indexed: 05/21/2023]
Abstract
BACKGROUND Microorganisms influence the chemical milieu of their environment, and chemical metabolites can affect ecological processes. In built environments, where people spend the majority of their time, very little is known about how surface-borne microorganisms influence the chemistry of the indoor spaces. Here, we applied multidisciplinary approaches to investigate aspects of chemical microbiology in a house. METHODS We characterized the microbial and chemical composition of two common and frequently wet surfaces in a residential setting: kitchen sink and bathroom shower. Microbial communities were studied using culture-dependent and independent techniques, including targeting RNA for amplicon sequencing. Volatile and soluble chemicals from paired samples were analyzed using state-of-the-art techniques to explore the links between the observed microbiota and chemical exudates. RESULTS Microbial analysis revealed a rich biological presence on the surfaces exposed in kitchen sinks and bathroom shower stalls. Microbial composition, matched for DNA and RNA targets, varied by surface type and sampling period. Bacteria were found to have an average of 25× more gene copies than fungi. Biomass estimates based on qPCR were well correlated with measured total volatile organic compound (VOC) emissions. Abundant VOCs included products associated with fatty acid production. Molecular networking revealed a diversity of surface-borne compounds that likely originate from microbes and from household products. CONCLUSIONS Microbes played a role in structuring the chemical profiles on and emitted from kitchen sinks and shower stalls. Microbial VOCs (mVOCs) were predominately associated with the processing of fatty acids. The mVOC composition may be more stable than that of microbial communities, which can show temporal and spatial variation in their responses to changing environmental conditions. The mVOC output from microbial metabolism on kitchen sinks and bathroom showers should be apparent through careful measurement, even against a broader background of VOCs in homes, some of which may originate from microbes in other locations within the home. A deeper understanding of the chemical interactions between microbes on household surfaces will require experimentation under relevant environmental conditions, with a finer temporal resolution, to build on the observational study results presented here.
Collapse
Affiliation(s)
- Rachel I. Adams
- Plant and Microbial Biology, University of California, Berkeley, CA USA
| | | | - Pawel K. Misztal
- Environmental Science, Policy, and Management, University of California, Berkeley, CA USA
| | | | - Scott W. Behie
- Plant and Microbial Biology, University of California, Berkeley, CA USA
| | - Yilin Tian
- Civil and Environmental Engineering, University of California, Berkeley, CA USA
| | - Allen H. Goldstein
- Environmental Science, Policy, and Management, University of California, Berkeley, CA USA
- Civil and Environmental Engineering, University of California, Berkeley, CA USA
| | - Steven E. Lindow
- Plant and Microbial Biology, University of California, Berkeley, CA USA
| | - William W. Nazaroff
- Civil and Environmental Engineering, University of California, Berkeley, CA USA
| | - John W. Taylor
- Plant and Microbial Biology, University of California, Berkeley, CA USA
| | - Matt F. Traxler
- Plant and Microbial Biology, University of California, Berkeley, CA USA
| | - Thomas D. Bruns
- Plant and Microbial Biology, University of California, Berkeley, CA USA
| |
Collapse
|
24
|
McManus K, Wood A, Wright MH, Matthews B, Greene AC, Cock IE. Terminalia ferdinandiana Exell. Extracts inhibit the growth of body odour-forming bacteria. Int J Cosmet Sci 2017; 39:500-510. [PMID: 28488331 DOI: 10.1111/ics.12403] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/04/2017] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Terminalia ferdinandiana extracts are potent growth inhibitors of many bacterial pathogens. They may also inhibit the growth of malodour-producing bacteria and thus be useful deodorant components, although this is yet to be tested. METHODS Terminalia ferdinandiana fruit and leaf solvent extracts were investigated by disc diffusion and liquid dilution MIC assays against the most significant bacterial contributors to axillary and plantar malodour formation. Toxicity was determined using the Artemia franciscana nauplii bioassay. Non-targeted HPLC separation of the methanolic leaf extract coupled to high-resolution time-of-flight (TOF) mass spectroscopy was used for the identification and characterization of individual components in the extract. RESULTS The T. ferdinandiana leaf extracts were the most potent bacterial growth inhibitors. The leaf methanolic extract was particularly potent, with low MIC values against C. jeikeium (233 μg mL-1 ), S. epidermidis (220 μg mL-1 ), P. acnes (625 μg mL-1 ) and B. linens (523 μg mL-1 ). The aqueous and ethyl acetate leaf extracts were also potent growth inhibitors of C. jeikeium and S. epidermidis (MICs < 1000 μg mL-1 ). In comparison, the fruit extracts were substantially less potent antibacterial agents, although still with MIC values indicative of moderate growth inhibitory activity. All T. ferdinandiana leaf extracts were non-toxic in the Artemia franciscana bioassay. Non-biased phytochemical analysis of the methanolic leaf extract revealed the presence of high levels of and high diversity of tannins and high levels of the flavone luteolin. CONCLUSION The low toxicity of the T. ferdinandiana leaf extracts and their potent growth inhibition of axillary and plantar malodour-producing bacteria indicate their potential as deodorant components.
Collapse
Affiliation(s)
- K McManus
- School of Natural Sciences, Nathan Campus, Griffith University, Brisbane, Qld, 4111, Australia
| | - A Wood
- School of Natural Sciences, Nathan Campus, Griffith University, Brisbane, Qld, 4111, Australia
| | - M H Wright
- Division of Environmental and Biomolecular Systems, Institute of Environmental Health, Oregon Health & Science University, Portland, OR, 97239, USA
| | - B Matthews
- Smartwaters Research Centre, Griffith University, Gold Coast Campus, Southport, Qld, 4222, Australia
| | - A C Greene
- School of Natural Sciences, Nathan Campus, Griffith University, Brisbane, Qld, 4111, Australia
| | - I E Cock
- School of Natural Sciences, Nathan Campus, Griffith University, Brisbane, Qld, 4111, Australia.,Environmental Futures Research Institute, Nathan Campus, Griffith University, Brisbane, Qld, 4111, Australia
| |
Collapse
|
25
|
Lakey PSJ, Wisthaler A, Berkemeier T, Mikoviny T, Pöschl U, Shiraiwa M. Chemical kinetics of multiphase reactions between ozone and human skin lipids: Implications for indoor air quality and health effects. INDOOR AIR 2017; 27:816-828. [PMID: 27943451 DOI: 10.1111/ina.12360] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 11/30/2016] [Indexed: 05/03/2023]
Abstract
Ozone reacts with skin lipids such as squalene, generating an array of organic compounds, some of which can act as respiratory or skin irritants. Thus, it is important to quantify and predict the formation of these products under different conditions in indoor environments. We developed the kinetic multilayer model that explicitly resolves mass transport and chemical reactions at the skin and in the gas phase (KM-SUB-Skin). It can reproduce the concentrations of ozone and organic compounds in previous measurements and new experiments. This enabled the spatial and temporal concentration profiles in the skin oil and underlying skin layers to be resolved. Upon exposure to ~30 ppb ozone, the concentrations of squalene ozonolysis products in the gas phase and in the skin reach up to several ppb and on the order of ~10 mmol m-3 . Depending on various factors including the number of people, room size, and air exchange rates, concentrations of ozone can decrease substantially due to reactions with skin lipids. Ozone and dicarbonyls quickly react away in the upper layers of the skin, preventing them from penetrating deeply into the skin and hence reaching the blood.
Collapse
Affiliation(s)
- P S J Lakey
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - A Wisthaler
- Department of Chemistry, University of Oslo, Oslo, Norway
| | - T Berkemeier
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - T Mikoviny
- Department of Chemistry, University of Oslo, Oslo, Norway
| | - U Pöschl
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - M Shiraiwa
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
- Department of Chemistry, University of California, Irvine, CA, USA
| |
Collapse
|
26
|
Social odours covary with bacterial community in the anal secretions of wild meerkats. Sci Rep 2017; 7:3240. [PMID: 28607369 PMCID: PMC5468246 DOI: 10.1038/s41598-017-03356-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 04/27/2017] [Indexed: 02/07/2023] Open
Abstract
The fermentation hypothesis for animal signalling posits that bacteria dwelling in an animal’s scent glands metabolize the glands’ primary products into odorous compounds used by the host to communicate with conspecifics. There is, however, little evidence of the predicted covariation between an animal’s olfactory cues and its glandular bacterial communities. Using gas chromatography-mass spectrometry, we first identified the volatile compounds present in ‘pure’ versus ‘mixed’ anal-gland secretions (‘paste’) of adult meerkats (Suricata suricatta) living in the wild. Low-molecular-weight chemicals that likely derive from bacterial metabolism were more prominent in mixed than pure secretions. Focusing thereafter on mixed secretions, we showed that chemical composition varied by sex and was more similar between members of the same group than between members of different groups. Subsequently, using next-generation sequencing, we identified the bacterial assemblages present in meerkat paste and documented relationships between these assemblages and the host’s sex, social status and group membership. Lastly, we found significant covariation between the volatile compounds and bacterial assemblages in meerkat paste, particularly in males. Together, these results are consistent with a role for bacteria in the production of sex- and group-specific scents, and with the evolution of mutualism between meerkats and their glandular microbiota.
Collapse
|
27
|
Takken W, Verhulst NO. Chemical signaling in mosquito-host interactions: the role of human skin microbiota. CURRENT OPINION IN INSECT SCIENCE 2017; 20:68-74. [PMID: 28602238 DOI: 10.1016/j.cois.2017.03.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/23/2017] [Accepted: 03/31/2017] [Indexed: 06/07/2023]
Abstract
Anthropophilic mosquitoes use host-derived volatile compounds for host seeking. Recently it has become evident that many of these compounds are of microbial origin. Host seeking of mosquitoes is, therefore, a tritrophic relationship and suggests co-evolution between blood hosts and their microbial community to the benefit of the mosquito. Chemical analysis of bacterial headspace resulted in discovery of several compounds that make up the attractive blend to which mosquitoes respond. Future studies should determine which host factors shape the skin microbial community and attractive volatiles produced. It is argued that skin microbial volatiles can be exploited for the control of mosquitoes and hence as a tool for mosquito-borne disease control and thus aid in the elimination of vector-borne disease.
Collapse
Affiliation(s)
- Willem Takken
- Laboratory of Entomology, Wageningen University and Research, PO Box 16, 6700 AA Wageningen, The Netherlands.
| | - Niels O Verhulst
- Laboratory of Entomology, Wageningen University and Research, PO Box 16, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
28
|
Martin HJ, Turner MA, Bandelow S, Edwards L, Riazanskaia S, Thomas CLP. Volatile organic compound markers of psychological stress in skin: a pilot study. J Breath Res 2016; 10:046012. [DOI: 10.1088/1752-7155/10/4/046012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
29
|
Kanďár R, Drábková P, Andrlová L, Kostelník A, Čegan A. Determination of selected fatty acids in dried sweat spot using gas chromatography with flame ionization detection. J Sep Sci 2016; 39:4377-4383. [DOI: 10.1002/jssc.201600513] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 09/05/2016] [Accepted: 09/06/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Roman Kanďár
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology; University of Pardubice; Pardubice Czech Republic
| | - Petra Drábková
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology; University of Pardubice; Pardubice Czech Republic
| | - Lenka Andrlová
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology; University of Pardubice; Pardubice Czech Republic
| | - Adam Kostelník
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology; University of Pardubice; Pardubice Czech Republic
| | - Alexander Čegan
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology; University of Pardubice; Pardubice Czech Republic
| |
Collapse
|
30
|
Verhulst NO, Weldegergis BT, Menger D, Takken W. Attractiveness of volatiles from different body parts to the malaria mosquito Anopheles coluzzii is affected by deodorant compounds. Sci Rep 2016; 6:27141. [PMID: 27251017 PMCID: PMC4890431 DOI: 10.1038/srep27141] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 05/13/2016] [Indexed: 01/27/2023] Open
Abstract
Mosquitoes display biting preferences among different sites of the human body. In addition to height or convection currents, body odour may play a role in the selection of these biting sites. Previous studies have shown that skin emanations are important host-finding cues for mosquitoes. In this study, skin emanations were collected from armpits, hands and feet; the volatile profiles were analysed and tested for their attractiveness to the malaria mosquito Anopheles coluzzii. Skin emanations collected from armpits were less attractive to An. coluzzii compared to hands or/and feet. The difference may have been caused by deodorant residues, which were found in the armpit samples and not in those of hands and feet. In a subsequent experiment, volunteers were asked to avoid using skincare products for five days, and thereafter, no differences in attractiveness of the body parts to mosquitoes were found. The detected deodorant compound isopropyl tetradecanoate inhibited mosquito landings in a repellent bioassay. It is concluded that the volatiles emanated from different body parts induced comparable levels of attraction in mosquitoes, and that skincare products may reduce a person’s attractiveness to mosquitoes.
Collapse
Affiliation(s)
- Niels O Verhulst
- Laboratory of Entomology, Wageningen University, P.O. Box 8031, 6700 EH Wageningen, the Netherlands
| | - Berhane T Weldegergis
- Laboratory of Entomology, Wageningen University, P.O. Box 8031, 6700 EH Wageningen, the Netherlands
| | - David Menger
- Laboratory of Entomology, Wageningen University, P.O. Box 8031, 6700 EH Wageningen, the Netherlands
| | - Willem Takken
- Laboratory of Entomology, Wageningen University, P.O. Box 8031, 6700 EH Wageningen, the Netherlands
| |
Collapse
|
31
|
van Loon JJA, Smallegange RC, Bukovinszkiné-Kiss G, Jacobs F, De Rijk M, Mukabana WR, Verhulst NO, Menger DJ, Takken W. Mosquito Attraction: Crucial Role of Carbon Dioxide in Formulation of a Five-Component Blend of Human-Derived Volatiles. J Chem Ecol 2015; 41:567-73. [PMID: 26026743 PMCID: PMC4463982 DOI: 10.1007/s10886-015-0587-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 04/28/2015] [Accepted: 05/01/2015] [Indexed: 01/19/2023]
Abstract
Behavioral responses of the malaria mosquito Anopheles coluzzii (An. gambiae sensu stricto molecular 'M form') to an expanded blend of human-derived volatiles were assessed in a dual-port olfactometer. A previously documented attractive three-component blend consisting of NH3, (S)-lactic acid, and tetradecanoic acid served as the basis for expansion. Adding 4.5% CO2 to the basic blend significantly enhanced its attractiveness. Expansion of the blend with four human-derived C4-volatiles was then assessed, both with and without CO2. Only when CO2 was offered simultaneously, did addition of a specific concentration of 3-methyl-1-butanol or 3-methyl-butanoic acid significantly enhance attraction. The functional group at the terminal C of the 3-methyl-substituted C4 compounds influenced behavioral effectiveness. In the absence of CO2, addition of three concentrations of butan-1-amine caused inhibition when added to the basic blend. In contrast, when CO2 was added, butan-1-amine added to the basic blend strongly enhanced attraction at all five concentrations tested, the lowest being 100,000 times diluted. The reversal of inhibition to attraction by adding CO2 is unique in the class Insecta. We subsequently augmented the three-component basic blend by adding both butan-1-amine and 3-methyl-1-butanol and optimizing their concentrations in the presence of CO2 in order to significantly enhance the attractiveness to An. coluzzii compared to the three- and four-component blends. This novel blend holds potential to enhance malaria vector control based on behavioral disruption.
Collapse
Affiliation(s)
- Joop J A van Loon
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700 AA, Wageningen, The Netherlands,
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Pöschl U, Shiraiwa M. Multiphase chemistry at the atmosphere-biosphere interface influencing climate and public health in the anthropocene. Chem Rev 2015; 115:4440-75. [PMID: 25856774 DOI: 10.1021/cr500487s] [Citation(s) in RCA: 232] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ulrich Pöschl
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
| | - Manabu Shiraiwa
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
| |
Collapse
|
33
|
Mweresa CK, Otieno B, Omusula P, Weldegergis BT, Verhulst NO, Dicke M, van Loon JJA, Takken W, Mukabana WR. Understanding the long-lasting attraction of malaria mosquitoes to odor baits. PLoS One 2015; 10:e0121533. [PMID: 25798818 PMCID: PMC4370609 DOI: 10.1371/journal.pone.0121533] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 02/02/2015] [Indexed: 11/18/2022] Open
Abstract
The use of odor baits for surveillance and control of malaria mosquitoes requires robust dispensing tools. In this study, the residual activity of a synthetic mosquito attractant blend dispensed from nylon or low density polyethylene (LDPE) sachets was evaluated at weekly intervals for one year without re-impregnation. The potential role of bacteria in modulating the attraction of mosquitoes to odor-treated nylon that had been used repeatedly over the one year study period, without re-impregnation, was also investigated. Significantly higher proportions of female Anopheles gambiae sensu stricto mosquitoes were consistently attracted to treated nylon strips than the other treatments, up to one year post-treatment. Additional volatile organic compounds and various bacterial populations were found on the treated nylon strips after one year of repeated use. The most abundant bacteria were Bacillus thuringiensis and Acinetobacter baumannii. Autoclaving of treated nylon strips prior to exposure had no effect on trap collections of laboratory-reared female An. Gambiae (P = 0.17) or wild female An. Gambiae sensu lato (P = 0.26) and Mansonia spp. (P = 0.17) mosquitoes. Trap catches of wild female An. Funestus (P < 0.001) and other anophelines (P < 0.007) were higher when treated strips had been autoclaved prior to deployment as opposed to when the treated nylon strips were not autoclaved. By contrast, wild female Culex mosquitoes were more strongly attracted to non-autoclaved compared to autoclaved treated nylon strips (P < 0.042). This study demonstrates the feasibility of using odor baits for sampling and surveillance of malaria as well as other mosquito vectors over prolonged periods of time. Preliminary evidence points towards the potential role of bacteria in sustaining prolonged use of nylon material for dispensing synthetic attractant odorants for host-seeking malaria and other mosquito vectors but further investigations are required.
Collapse
Affiliation(s)
- Collins K. Mweresa
- International Centre of Insect Physiology and Ecology, P.O. Box 30772 GPO, Nairobi, Kenya
- Laboratory of Entomology, Wageningen University and Research Centre, P.O. Box 8031, EH Wageningen, The Netherlands
- * E-mail:
| | - Bruno Otieno
- International Centre of Insect Physiology and Ecology, P.O. Box 30772 GPO, Nairobi, Kenya
| | - Philemon Omusula
- International Centre of Insect Physiology and Ecology, P.O. Box 30772 GPO, Nairobi, Kenya
| | - Berhane T. Weldegergis
- Laboratory of Entomology, Wageningen University and Research Centre, P.O. Box 8031, EH Wageningen, The Netherlands
| | - Niels O. Verhulst
- Laboratory of Entomology, Wageningen University and Research Centre, P.O. Box 8031, EH Wageningen, The Netherlands
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University and Research Centre, P.O. Box 8031, EH Wageningen, The Netherlands
| | - Joop J. A. van Loon
- Laboratory of Entomology, Wageningen University and Research Centre, P.O. Box 8031, EH Wageningen, The Netherlands
| | - Willem Takken
- Laboratory of Entomology, Wageningen University and Research Centre, P.O. Box 8031, EH Wageningen, The Netherlands
| | - Wolfgang R. Mukabana
- International Centre of Insect Physiology and Ecology, P.O. Box 30772 GPO, Nairobi, Kenya
- School of Biological Sciences, University of Nairobi, P.O. Box 30197 GPO, Nairobi, Kenya
| |
Collapse
|
34
|
Candida and Fusarium species known as opportunistic human pathogens from customer-accessible parts of residential washing machines. Fungal Biol 2015; 119:95-113. [PMID: 25749362 DOI: 10.1016/j.funbio.2014.10.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 10/22/2014] [Accepted: 10/24/2014] [Indexed: 11/22/2022]
Abstract
Energy constraints have altered consumer practice regarding the use of household washing machines. Washing machines were developed that use lower washing temperatures, smaller amounts of water and biodegradable detergents. These conditions may favour the enrichment of opportunistic human pathogenic fungi. We focused on the isolation of fungi from two user-accessible parts of washing machines that often contain microbial biofilms: drawers for detergents and rubber door seals. Out of 70 residential washing machines sampled in Slovenia, 79% were positive for fungi. In total, 72 strains belonging to 12 genera and 26 species were isolated. Among these, members of the Fusarium oxysporum and Fusarium solani species complexes, Candida parapsilosis and Exophiala phaeomuriformis represented 44% of fungi detected. These species are known as opportunistic human pathogens and can cause skin, nail or eye infections also in healthy humans. A machine learning analysis revealed that presence of detergents and softeners followed by washing temperature, represent most critical factors for fungal colonization. Three washing machines with persisting malodour that resulted in bad smelling laundry were analysed for the presence of fungi and bacteria. In these cases, fungi were isolated in low numbers (7.5 %), while bacteria Micrococcus luteus, Pseudomonas aeruginosa, and Sphingomonas species prevailed.
Collapse
|
35
|
Microbial odor profile of polyester and cotton clothes after a fitness session. Appl Environ Microbiol 2014; 80:6611-9. [PMID: 25128346 DOI: 10.1128/aem.01422-14] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clothing textiles protect our human body against external factors. These textiles are not sterile and can harbor high bacterial counts as sweat and bacteria are transmitted from the skin. We investigated the microbial growth and odor development in cotton and synthetic clothing fabrics. T-shirts were collected from 26 healthy individuals after an intensive bicycle spinning session and incubated for 28 h before analysis. A trained odor panel determined significant differences between polyester versus cotton fabrics for the hedonic value, the intensity, and five qualitative odor characteristics. The polyester T-shirts smelled significantly less pleasant and more intense, compared to the cotton T-shirts. A dissimilar bacterial growth was found in cotton versus synthetic clothing textiles. Micrococci were isolated in almost all synthetic shirts and were detected almost solely on synthetic shirts by means of denaturing gradient gel electrophoresis fingerprinting. A selective enrichment of micrococci in an in vitro growth experiment confirmed the presence of these species on polyester. Staphylococci were abundant on both cotton and synthetic fabrics. Corynebacteria were not enriched on any textile type. This research found that the composition of clothing fibers promotes differential growth of textile microbes and, as such, determines possible malodor generation.
Collapse
|
36
|
Callewaert C, Buysschaert B, Vossen E, Fievez V, Van de Wiele T, Boon N. Artificial sweat composition to grow and sustain a mixed human axillary microbiome. J Microbiol Methods 2014; 103:6-8. [DOI: 10.1016/j.mimet.2014.05.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 05/11/2014] [Accepted: 05/12/2014] [Indexed: 10/25/2022]
|
37
|
Deodorants and antiperspirants affect the axillary bacterial community. Arch Dermatol Res 2014; 306:701-10. [PMID: 25077920 DOI: 10.1007/s00403-014-1487-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 05/27/2014] [Accepted: 07/10/2014] [Indexed: 02/07/2023]
Abstract
The use of underarm cosmetics is common practice in the Western society to obtain better body odor and/or to prevent excessive sweating. A survey indicated that 95 % of the young adult Belgians generally use an underarm deodorant or antiperspirant. The effect of deodorants and antiperspirants on the axillary bacterial community was examined on nine healthy subjects, who were restrained from using deodorant/antiperspirant for 1 month. Denaturing gradient gel electrophoresis was used to investigate the individual microbial dynamics. The microbial profiles were unique for every person. A stable bacterial community was seen when underarm cosmetics were applied on a daily basis and when no underarm cosmetics were applied. A distinct community difference was seen when the habits were changed from daily use to no use of deodorant/antiperspirant and vice versa. The richness was higher when deodorants and antiperspirants were applied. Especially when antiperspirants were applied, the microbiome showed an increase in diversity. Antiperspirant usage led toward an increase of Actinobacteria, which is an unfavorable situation with respect to body odor development. These initial results show that axillary cosmetics modify the microbial community and can stimulate odor-producing bacteria.
Collapse
|
38
|
Kwaszewska A, Sobiś-Glinkowska M, Szewczyk EM. Cohabitation--relationships of corynebacteria and staphylococci on human skin. Folia Microbiol (Praha) 2014; 59:495-502. [PMID: 24880250 PMCID: PMC4194702 DOI: 10.1007/s12223-014-0326-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 05/20/2014] [Indexed: 01/12/2023]
Abstract
Skin microbiome main cultivable aerobes in human are coagulase-negative staphylococci and lipophilic corynebacteria. Staphylococcus strains (155) belonging to 10 species and 105 strains of Corynebacterium belonging to nine species from the skin swabs of healthy male volunteers were investigated to determine their enzymatic activity to main metabolic substrates: carbohydrates, proteins, lipids, and response to factors present on the skin such as osmotic pressure, pH, and organic acids. The results showed that lipophilic corynebacteria have different capacity for adaptation on the skin than staphylococci. Most of Corynebacterium spp. expressed lack of proteinase, phospholipase, and saccharolytic enzymes activity. Corynebacteria were also more sensitive than Staphylococcus spp. to antimicrobial agents existing on human skin, especially to low pH. These characters can explain domination of Staphylococcus genera on healthy human skin. It can be suggested that within these two bacterial genus, there exists conceivable cooperation and reciprocal protection which results in their quantitative ratio. Such behavior must be considered as crucial for the stability of the population on healthy skin.
Collapse
Affiliation(s)
- Anna Kwaszewska
- Department of Pharmaceutical Microbiology and Microbiological Diagnostics, Medical University of Łódź, Pomorska 137, Łódź, 90-235, Poland,
| | | | | |
Collapse
|
39
|
Fujii T, Shinozaki J, Kajiura T, Iwasaki K, Fudou R. A newly discoveredAnaerococcusstrain responsible for axillary odor and a new axillary odor inhibitor, pentagalloyl glucose. FEMS Microbiol Ecol 2014; 89:198-207. [DOI: 10.1111/1574-6941.12347] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 03/24/2014] [Accepted: 04/19/2014] [Indexed: 12/15/2022] Open
Affiliation(s)
- Takayoshi Fujii
- Frontier Research Laboratories; Institute for Innovation; Ajinomoto Co. INC.; Kanagawa Japan
| | - Junko Shinozaki
- Frontier Research Laboratories; Institute for Innovation; Ajinomoto Co. INC.; Kanagawa Japan
| | - Takayuki Kajiura
- Frontier Research Laboratories; Institute for Innovation; Ajinomoto Co. INC.; Kanagawa Japan
| | - Keiji Iwasaki
- Frontier Research Laboratories; Institute for Innovation; Ajinomoto Co. INC.; Kanagawa Japan
| | - Ryosuke Fudou
- Frontier Research Laboratories; Institute for Innovation; Ajinomoto Co. INC.; Kanagawa Japan
| |
Collapse
|
40
|
Daily battle against body odor: towards the activity of the axillary microbiota. Trends Microbiol 2013; 21:305-12. [DOI: 10.1016/j.tim.2013.03.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 03/04/2013] [Accepted: 03/06/2013] [Indexed: 01/17/2023]
|
41
|
Human skin volatiles: a review. J Chem Ecol 2013; 39:569-78. [PMID: 23615881 DOI: 10.1007/s10886-013-0286-z] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 04/02/2013] [Accepted: 04/03/2013] [Indexed: 10/26/2022]
Abstract
Odors emitted by human skin are of great interest to biologists in many fields; applications range from forensic studies to diagnostic tools, the design of perfumes and deodorants, and the ecology of blood-sucking insect vectors of human disease. Numerous studies have investigated the chemical composition of skin odors, and various sampling methods have been used for this purpose. The literature shows that the chemical profile of skin volatiles varies greatly among studies, and the use of different sampling procedures is probably responsible for some of these variations. To our knowledge, this is the first review focused on human skin volatile compounds. We detail the different sampling techniques, each with its own set of advantages and disadvantages, which have been used for the collection of skin odors from different parts of the human body. We present the main skin volatile compounds found in these studies, with particular emphasis on the most frequently studied body regions, axillae, hands, and feet. We propose future directions for promising experimental studies on odors from human skin, particularly in relation to the chemical ecology of blood-sucking insects.
Collapse
|
42
|
James AG, Austin CJ, Cox DS, Taylor D, Calvert R. Microbiological and biochemical origins of human axillary odour. FEMS Microbiol Ecol 2012; 83:527-40. [PMID: 23278215 DOI: 10.1111/1574-6941.12054] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Revised: 10/23/2012] [Accepted: 11/29/2012] [Indexed: 10/27/2022] Open
Abstract
The generation of malodour on various sites of the human body is caused by the microbial biotransformation of odourless natural secretions into volatile odorous molecules. On the skin surface, distinctive odours emanate, in particular, from the underarm (axilla), where a large and permanent population of microorganisms thrives on secretions from the eccrine, apocrine and sebaceous glands. Traditional culture-based microbiological studies inform us that this resident microbiota consists mainly of Gram-positive bacteria of the genera Staphylococcus, Micrococcus, Corynebacterium and Propionibacterium. Among the molecular classes that have been implicated in axillary malodour are short- and medium-chain volatile fatty acids, 16-androstene steroids and, most recently, thioalcohols. Most of the available evidence suggests that members of the Corynebacterium genus are the primary causal agents of axillary odour, with the key malodour substrates believed to originate from the apocrine gland. In this article, we examine, in detail, the microbiology and biochemistry of malodour formation on axillary skin, focussing on precursor-product relationships, odour-forming enzymes and metabolic pathways and causal organisms. As well as reviewing the literature, some relevant new data are presented and considered alongside that already available in the public domain to reach an informed view on the current state-of-the-art, as well as future perspectives.
Collapse
|
43
|
Gordon James A, Abraham KH, Cox DS, Moore AE, Pople JE. Metabolic analysis of the cutaneous fungiMalassezia globosaandM. restrictafor insights on scalp condition and dandruff. Int J Cosmet Sci 2012; 35:169-75. [DOI: 10.1111/ics.12022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 10/19/2012] [Indexed: 11/27/2022]
Affiliation(s)
- A. Gordon James
- Unilever Discover; Colworth Science Park; Sharnbrook; Bedford; MK44 1LQ; UK
| | - Karen H. Abraham
- Unilever Discover; Colworth Science Park; Sharnbrook; Bedford; MK44 1LQ; UK
| | - Diana S. Cox
- Unilever Discover; Colworth Science Park; Sharnbrook; Bedford; MK44 1LQ; UK
| | - Alison E. Moore
- Unilever Discover; Colworth Science Park; Sharnbrook; Bedford; MK44 1LQ; UK
| | - Jennifer E. Pople
- Unilever Discover; Colworth Science Park; Sharnbrook; Bedford; MK44 1LQ; UK
| |
Collapse
|
44
|
Barzantny H, Guttmann S, Lässig C, Brune I, Tauch A. Transcriptional control of lipid metabolism by the MarR-like regulator FamR and the global regulator GlxR in the lipophilic axilla isolate Corynebacterium jeikeium K411. Microb Biotechnol 2012; 6:118-30. [PMID: 23163914 PMCID: PMC3917454 DOI: 10.1111/1751-7915.12004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 10/12/2012] [Accepted: 10/13/2012] [Indexed: 11/28/2022] Open
Abstract
Corynebacterial fatty acid metabolism has been associated with human body odour, and is therefore discussed as a potential target for the development of new deodorant additives. For this reason, the transcription levels of fad genes associated with lipid metabolism in the axilla isolate Corynebacterium jeikeium were analysed during growth on different lipid sources. The transcription of several fad genes was induced two- to ninefold in the presence of Tween 60, including the acyl-CoA dehydrogenase gene fadE6. DNA affinity chromatography identified the MarR-like protein FamR as candidate regulator of fadE6. DNA band shift assays and in vivo reporter gene fusions confirmed the direct interaction of FamR with the mapped fadE6 promoter region. Moreover, DNA affinity chromatography and DNA band shift assays detected the binding of GlxR to the promoter regions of fadE6 and famR, revealing a hierarchical control of fadE6 transcription by a feed-forward loop. Binding of GlxR and FamR to additional fad gene regions was demonstrated in vitro by DNA band shift assays, resulting in the co-regulation of fadA, fadD, fadE and fadH genes. These results shed first light on the hierarchical transcriptional control of lipid metabolism in C. jeikeium, a pathway associated with the development of human axillary odour.
Collapse
Affiliation(s)
- Helena Barzantny
- Institut für Genomforschung und Systembiologie, Centrum für Biotechnologie, Universität Bielefeld, Bielefeld, Germany.
| | | | | | | | | |
Collapse
|
45
|
Barzantny H, Schröder J, Strotmeier J, Fredrich E, Brune I, Tauch A. The transcriptional regulatory network of Corynebacterium jeikeium K411 and its interaction with metabolic routes contributing to human body odor formation. J Biotechnol 2012; 159:235-48. [DOI: 10.1016/j.jbiotec.2012.01.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 01/12/2012] [Accepted: 01/17/2012] [Indexed: 01/08/2023]
|
46
|
Moraxella species are primarily responsible for generating malodor in laundry. Appl Environ Microbiol 2012; 78:3317-24. [PMID: 22367080 DOI: 10.1128/aem.07816-11] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many people in Japan often detect an unpleasant odor generated from laundry that is hung to dry indoors or when using their already-dried laundry. Such an odor is often described as a "wet-and-dirty-dustcloth-like malodor" or an "acidic or sweaty odor." In this study, we isolated the major microorganisms associated with such a malodor, the major component of which has been identified as 4-methyl-3-hexenoic acid (4M3H). The isolates were identified as Moraxella osloensis by morphological observation and biochemical and phylogenetic tree analyses. M. osloensis has the potential to generate 4M3H in laundry. The bacterium is known to cause opportunistic infections but has never been known to generate a malodor in clothes. We found that M. osloensis exists at a high frequency in various living environments, particularly in laundry in Japan. The bacterium showed a high tolerance to desiccation and UV light irradiation, providing one of the possible reasons why they survive in laundry during and even after drying.
Collapse
|
47
|
|
48
|
Barzantny H, Brune I, Tauch A. Molecular basis of human body odour formation: insights deduced from corynebacterial genome sequences. Int J Cosmet Sci 2011; 34:2-11. [PMID: 21790661 DOI: 10.1111/j.1468-2494.2011.00669.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
During the past few decades, there has been an increased interest in the essential role of commensal skin bacteria in human body odour formation. It is now generally accepted that skin bacteria cause body odour by biotransformation of sweat components secreted in the human axillae. Especially, aerobic corynebacteria have been shown to contribute strongly to axillary malodour, whereas other human skin residents seem to have little influence. Analysis of odoriferous sweat components has shown that the major odour-causing substances in human sweat include steroid derivatives, short volatile branched-chain fatty acids and sulphanylalkanols. In this mini-review, we describe the molecular basis of the four most extensively studied routes of human body odour formation, while focusing on the underlying enzymatic processes. Considering the previously reported role of β-oxidation in odour formation, we analysed the genetic repertoire of eight Corynebacterium species concerning fatty acid metabolism. We particularly focused on the metabolic abilities of the lipophilic axillary isolate Corynebacterium jeikeium K411.
Collapse
Affiliation(s)
- H Barzantny
- Institut für Genomforschung und Systembiologie, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstraße 27, D-33615 Bielefeld, Germany.
| | | | | |
Collapse
|
49
|
Leclaire S, Merkling T, Raynaud C, Giacinti G, Bessière JM, Hatch SA, Danchin E. An individual and a sex odor signature in kittiwakes?: study of the semiochemical composition of preen secretion and preen down feathers. Naturwissenschaften 2011; 98:615-24. [PMID: 21656004 DOI: 10.1007/s00114-011-0809-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2011] [Revised: 05/25/2011] [Accepted: 05/25/2011] [Indexed: 11/27/2022]
Abstract
The importance of olfaction in birds' social behavior has long been denied. Avian chemical signaling has thus been relatively unexplored. The black-legged kittiwake provides a particularly appropriate model for investigating this topic. Kittiwakes preferentially mate with genetically dissimilar individuals, but the cues used to assess genetic characteristics remain unknown. As in other vertebrates, their body odors may carry individual and sexual signatures thus potentially reliably signaling individual genetic makeup. Here, we test whether body odors in preen gland secretion and preen down feathers in kittiwakes may provide a sex and an individual signature. Using gas chromatography and mass spectrometry, we found that male and female odors differ quantitatively, suggesting that scent may be one of the multiple cues used by birds to discriminate between sexes. We further detected an individual signature in the volatile and nonvolatile fractions of preen secretion and preen down feathers. These results suggest that kittiwake body odor may function as a signal associated with mate recognition. It further suggests that preen odor might broadcast the genetic makeup of individuals, and could be used in mate choice to assess the genetic compatibility of potential mates.
Collapse
Affiliation(s)
- Sarah Leclaire
- Université Paul Sabatier, (Laboratoire Évolution et Diversité Biologique), Toulouse, France.
| | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Body malodour, including foot odour, suppresses social interaction by diminishing self-confidence and accelerating damage to the wearer's clothes and shoes. Most treatment agents, including aluminium anti-perspirant salts, inhibit the growth of malodourous bacteria. These metallic salts also reduce sweat by blocking the excretory ducts of sweat glands, minimizing the water source that supports bacterial growth. However, there are some drawback effects that limit the use of aluminium anti-perspirant salts. In addition, over-the-counter anti-perspirant and deodourant products may not be sufficiently effective for heavy sweaters, and strong malodour producers. Body odour treatment agents are rarely mentioned in the literature compared with other cosmetic ingredients. This review briefly summarizes the relationship among sweat, skin bacteria, and body odour; describes how odourous acids, thiols, and steroids are formed; and discusses the active ingredients, including metallic salts and herbs, that are used to treat body odour. A new class of ingredients that function by regulating the release of malodourants will also be described. These ingredients do not alter the balance of the skin flora.
Collapse
|