1
|
Zaborowska M, Wyszkowska J, Borowik A, Kucharski J. Perna canaliculus as an Ecological Material in the Removal of o-Cresol Pollutants from Soil. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6685. [PMID: 34772211 PMCID: PMC8588315 DOI: 10.3390/ma14216685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/25/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022]
Abstract
Soil contamination with cresol is a problem of the 21st century and poses a threat to soil microorganisms, humans, animals, and plants. The lack of precise data on the potential toxicity of o-cresol in soil microbiome and biochemical activity, as well as the search for effective remediation methods, inspired the aim of this study. Soil is subjected to four levels of contamination with o-cresol: 0, 0.1, 1, 10, and 50 mg o-cresol kg-1 dry matter (DM) of soil and the following are determined: the count of eight groups of microorganisms, colony development index (CD) and ecophysiological diversity index (EP) for organotrophic bacteria, actinobacteria and fungi, and the bacterial genetic diversity. Moreover, the responses of seven soil enzymes are investigated. Perna canaliculus is a recognized biosorbent of organic pollutants. Therefore, microbial biostimulation with Perna canaliculus shells is used to eliminate the negative effect of the phenolic compound on the soil microbiome. Fungi appears to be the microorganisms most sensitive to o-cresol, while Pseudomonas sp. is the least sensitive. In o-cresol-contaminated soils, the microbiome is represented mainly by the bacteria of the Proteobacteria and Firmicutes phyla. Acid phosphatase, alkaline phosphatase and urease can be regarded as sensitive indicators of soil disturbance. Perna canaliculus shells prove to be an effective biostimulator of soil under pressure with o-cresol.
Collapse
Affiliation(s)
| | - Jadwiga Wyszkowska
- Department of Soil Science and Microbiology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10727 Olsztyn, Poland; (M.Z.); (A.B.); (J.K.)
| | | | | |
Collapse
|
2
|
Mohanakrishna G, Al-Raoush RI, Abu-Reesh IM. Sewage enhanced bioelectrochemical degradation of petroleum hydrocarbons in soil environment through bioelectro-stimulation. ACTA ACUST UNITED AC 2020; 27:e00478. [PMID: 32518761 PMCID: PMC7270540 DOI: 10.1016/j.btre.2020.e00478] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/30/2020] [Accepted: 05/24/2020] [Indexed: 11/25/2022]
Abstract
Acetate and sewage were evaluated for enhanced hydrocarbons degradation in soil bioelectrochemical systems. Sewage has superior function in improving in situ bioelectrochemical degradation. Both acetate and sewage improved power density, substrate and sulfate removal. Soil contaminated with produced water was remediated by more than 70 %.
The impact of readily biodegradable substrates (sewage and acetate) in bioelectroremediation of hydrocarbons (PW) was evaluated in a bench-scale soil-based hybrid bioelectrochemical system. Addition of bioelectro-stimulants evidenced efficient degradation than control operation. Acetate and sewage were exhibited power density of 1126 mW/m2 and 1145 mW/m2, respectively, which is almost 15 % higher than control (without stimulant, 974 mW/m2). Increased electrochemical activity was correlated well with total petroleum hydrocarbons (TPH) degradation through addition of acetate (TPHR, 525 mg/L, 67.4 %) and sewage (TPHR, 560 mg/L,71.8 %) compared to the control operation (TPHR, 503 mg/L, 64.5 %). Similarly, chemical oxygen demand (COD) reduction was also enhanced from 69.0 % (control) to 72.1 % and 74.6 % with acetate and sewage, respectively. Sewage and acetate also showed a positive role in sulfates removal, which enhanced from 56.0 % (control) to 62.9 % (acetate) and 72.6 % (sewage). This study signifies the superior function of sewage as biostimulant compared to acetate for the bioelectroremediation of hydrocarbons in contaminated soils.
Collapse
Key Words
- Applied potential
- BES, Bioelectrochemical system
- BET, Bioelectrochemical treatment
- COD, Chemical oxygen demand
- DROs, Diesel range organics
- EAB, Electroactive anodic biofilms
- In situ bioelectroremediation
- MFC, Microbial fuel cell
- PRW, Petroleum refinery wastewater
- PW, Produced water
- Petroleum hydrocarbons
- Produced water
- SRB, Sulfate reducing bacteria
- Sewage supplementation
- TDS, Total dissolved solids
- TPH, Total petroleum hydrocarbons
- TPHR, Total petroleum hydrocarbons removal
Collapse
Affiliation(s)
- Gunda Mohanakrishna
- Department of Civil and Architectural Engineering, College of Engineering, Qatar University, P O Box 2713, Doha, Qatar
| | - Riyadh I Al-Raoush
- Department of Civil and Architectural Engineering, College of Engineering, Qatar University, P O Box 2713, Doha, Qatar
| | - Ibrahim M Abu-Reesh
- Department of Chemical Engineering, College of Engineering, Qatar University, P O Box 2713, Doha, Qatar
| |
Collapse
|
3
|
Zaborowska M, Kucharski J, Wyszkowska J. Biochemical and microbiological activity of soil contaminated with o-cresol and biostimulated with Perna canaliculus mussel meal. ENVIRONMENTAL MONITORING AND ASSESSMENT 2018; 190:602. [PMID: 30242485 PMCID: PMC6153515 DOI: 10.1007/s10661-018-6979-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 09/13/2018] [Indexed: 06/08/2023]
Abstract
The choice of the study subject was a consequence of the growing interest in volatile organic compounds which are strongly dispersed in the environment. The knowledge of o-cresol's capability for being broken down by bacteria should be supplemented by studies aimed at determining the biochemical and microbiological activity of soils. o-Cresol was applied at the following rates: 0, 0.1, 1, 10, and 50 mg of o-cresol kg-1 d.m. of soil to determine its effect on the biological properties of soil. The activity of dehydrogenases, catalase, urease, acid phosphatase, alkaline phosphatase, arylsulfatase, and β-glucosidase, the eight groups of microorganism counts, was determined in soil samples after 45 days and the barley yield was determined. Preventive biostimulation with Perna canaliculus mussel meal, illustrated by means of the index of fertility (IF), was conducted in order to eliminate the adverse effect of o-cresol. The soil and crop resistance index (RS) was used to illustrate the response of barley, and R:S-the rhizosphere effect index was used to determine the effect of the crop on the enzymatic activity of soil. o-Cresol had a beneficial effect on the biological activity of soil at an acceptable rate of 0.1 and 1 mg kg-1 d.m. of soil, and it became its inhibitor after being applied at 10 and 50 mg kg-1 d.m. of soil, which also brought about a decrease in the resistance of spring barley. Dehydrogenases are the most sensitive, and catalase is the least sensitive, to the pressure of o-cresol in soil. Mussel meal can be recommended as a biostimulator of soil fertility. It also eliminated the negative effect of o-cresol on its biological activity.
Collapse
Affiliation(s)
- Magdalena Zaborowska
- University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland
| | - Jan Kucharski
- University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland
| | - Jadwiga Wyszkowska
- University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland
| |
Collapse
|
4
|
Hegedüs B, Kós PB, Bende G, Bounedjoum N, Maróti G, Laczi K, Szuhaj M, Perei K, Rákhely G. Starvation- and xenobiotic-related transcriptomic responses of the sulfanilic acid-degrading bacterium, Novosphingobium resinovorum SA1. Appl Microbiol Biotechnol 2017; 102:305-318. [PMID: 29051988 DOI: 10.1007/s00253-017-8553-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/19/2017] [Accepted: 09/26/2017] [Indexed: 10/18/2022]
Abstract
Novosphingobium resinovorum SA1 was the first single isolate capable of degrading sulfanilic acid, a widely used representative of sulfonated aromatic compounds. The genome of the strain was recently sequenced, and here, we present whole-cell transcriptome analyses of cells exposed to sulfanilic acid as compared to cells grown on glucose. The comparison of the transcript profiles suggested that the primary impact of sulfanilic acid on the cell transcriptome was a starvation-like effect. The genes of the peripheral, central, and common pathways of sulfanilic acid biodegradation had distinct transcript profiles. The peripheral genes located on a plasmid had very high basal expressions which were hardly upregulated by sulfanilic acid. The genomic context and the codon usage preference of these genes suggested that they were acquired by horizontal gene transfer. The genes of the central pathways were remarkably inducible by sulfanilic acid indicating the presence of a substrate-specific regulatory system in the cells. Surprisingly, the genes of the common part of the metabolic pathway had low and sulfanilic acid-independent transcript levels. The approach applied resulted in the identification of the genes of proteins involved in auxiliary processes such as electron transfer, substrate and iron transports, sulfite oxidases, and sulfite transporters. The whole transcriptome analysis revealed that the cells exposed to xenobiotics had multiple responses including general starvation-like, substrate-specific, and substrate-related effects. From the results, we propose that the genes of the peripheral, central, and common parts of the pathway have been evolved independently.
Collapse
Affiliation(s)
- Botond Hegedüs
- Department of Biotechnology, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary.,Institute of Biophysics, Biological Research Center, Temesvári krt. 62, Szeged, 6726, Hungary
| | - Péter B Kós
- Department of Biotechnology, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary.,Institute of Plant Biology, Biological Research Center, Temesvári krt. 62, Szeged, 6726, Hungary
| | - Gábor Bende
- Department of Biotechnology, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary.,Institute of Biophysics, Biological Research Center, Temesvári krt. 62, Szeged, 6726, Hungary
| | - Naila Bounedjoum
- Department of Biotechnology, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary
| | - Gergely Maróti
- Seqomics Ltd, Mórahalom, Vállalkozók útja 7, Mórahalom, 6782, Hungary
| | - Krisztián Laczi
- Department of Biotechnology, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary
| | - Márk Szuhaj
- Department of Biotechnology, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary
| | - Katalin Perei
- Department of Biotechnology, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary
| | - Gábor Rákhely
- Department of Biotechnology, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary. .,Institute of Biophysics, Biological Research Center, Temesvári krt. 62, Szeged, 6726, Hungary. .,Institute of Environmental and Technological Sciences, Közép fasor 52, Szeged, 6726, Hungary.
| |
Collapse
|
5
|
Genomic and transcriptomic analysis of the toluene degrading black yeast Cladophialophora immunda. Sci Rep 2017; 7:11436. [PMID: 28900256 PMCID: PMC5595782 DOI: 10.1038/s41598-017-11807-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 08/30/2017] [Indexed: 12/30/2022] Open
Abstract
Cladophialophora immunda is an ascomycotal species belonging to the group of the black yeasts. These fungi have a thick and melanized cell wall and other physiological adaptations that allows them to cope with several extreme physical and chemical conditions. Member of the group can colonize some of the most extremophilic environments on Earth. Cladophialophora immunda together with a few other species of the order Chaetothyriales show a special association with hydrocarbon polluted environments. The finding that the fungus is able to completely mineralize toluene makes it an interesting candidate for bioremediation purposes. The present study is the first transcriptomic investigation of a fungus grown in presence of toluene as sole carbon and energy source. We could observe the activation of genes involved in toluene degradatation and several stress response mechanisms which allowed the fungus to survive the toluene exposure. The thorough comparative genomics analysis allowed us to identify several events of horizontal gene transfer between bacteria and Cladophialophora immunda and unveil toluene degradation steps that were previously reported in bacteria. The work presented here aims to give new insights into the ecology of Cladophialophora immunda and its adaptation strategies to hydrocarbon polluted environments.
Collapse
|
6
|
Dörsam S, Kirchhoff J, Bigalke M, Dahmen N, Syldatk C, Ochsenreither K. Evaluation of Pyrolysis Oil as Carbon Source for Fungal Fermentation. Front Microbiol 2016; 7:2059. [PMID: 28066378 PMCID: PMC5177650 DOI: 10.3389/fmicb.2016.02059] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 12/07/2016] [Indexed: 02/02/2023] Open
Abstract
Pyrolysis oil, a complex mixture of several organic compounds, produced during flash pyrolysis of organic lignocellulosic material was evaluated for its suitability as alternative carbon source for fungal growth and fermentation processes. Therefore several fungi from all phyla were screened for their tolerance toward pyrolysis oil. Additionally Aspergillus oryzae and Rhizopus delemar, both established organic acid producers, were chosen as model organisms to investigate the suitability of pyrolysis oil as carbon source in fungal production processes. It was observed that A. oryzae tolerates pyrolysis oil concentrations between 1 and 2% depending on growth phase or stationary production phase, respectively. To investigate possible reasons for the low tolerance level, eleven substances from pyrolysis oil including aldehydes, organic acids, small organic compounds and phenolic substances were selected and maximum concentrations still allowing growth and organic acid production were determined. Furthermore, effects of substances to malic acid production were analyzed and compounds were categorized regarding their properties in three groups of toxicity. To validate the results, further tests were also performed with R. delemar. For the first time it could be shown that small amounts of phenolic substances are beneficial for organic acid production and A. oryzae might be able to degrade isoeugenol. Regarding pyrolysis oil toxicity, 2-cyclopenten-1-on was identified as the most toxic compound for filamentous fungi; a substance never described for anti-fungal or any other toxic properties before and possibly responsible for the low fungal tolerance levels toward pyrolysis oil.
Collapse
Affiliation(s)
- Stefan Dörsam
- Technical Biology, Institute of Process Engineering in Life Sciences, Karlsruhe Institute of Technology (KIT) Karlsruhe, Germany
| | - Jennifer Kirchhoff
- Technical Biology, Institute of Process Engineering in Life Sciences, Karlsruhe Institute of Technology (KIT) Karlsruhe, Germany
| | - Michael Bigalke
- Technical Biology, Institute of Process Engineering in Life Sciences, Karlsruhe Institute of Technology (KIT) Karlsruhe, Germany
| | - Nicolaus Dahmen
- Thermochemical Conversation of Biomass, Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology (KIT) Karlsruhe, Germany
| | - Christoph Syldatk
- Technical Biology, Institute of Process Engineering in Life Sciences, Karlsruhe Institute of Technology (KIT) Karlsruhe, Germany
| | - Katrin Ochsenreither
- Technical Biology, Institute of Process Engineering in Life Sciences, Karlsruhe Institute of Technology (KIT) Karlsruhe, Germany
| |
Collapse
|
7
|
Zhou W, Guo W, Zhou H, Chen X. Phenol degradation by Sulfobacillus acidophilus TPY via the meta -pathway. Microbiol Res 2016; 190:37-45. [DOI: 10.1016/j.micres.2016.05.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 05/11/2016] [Accepted: 05/13/2016] [Indexed: 11/30/2022]
|
8
|
|
9
|
Abe Y, Asami K, Inose Y, Ueshima K, Ohtaguchi K. Study of Mono-Substituted Phenol Derivatives Bioremoval Reaction by White-Rot Basidiomycete. KAGAKU KOGAKU RONBUN 2014. [DOI: 10.1252/kakoronbunshu.40.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yuta Abe
- Department of Chemical Engineering, Tokyo Institute of Technology
| | - Kazuhiro Asami
- Department of Chemical Engineering, Tokyo Institute of Technology
| | - Yu Inose
- Department of Chemical Engineering, Tokyo Institute of Technology
| | - Katsuhiro Ueshima
- Center for Water Quality, Enterprise Agency of Kanagawa Prefectural Government
| | | |
Collapse
|
10
|
Krastanov A, Alexieva Z, Yemendzhiev H. Microbial degradation of phenol and phenolic derivatives. Eng Life Sci 2013. [DOI: 10.1002/elsc.201100227] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Albert Krastanov
- Department of Biotechnology; University of Food Technologies; Plovdiv; Bulgaria
| | - Zlatka Alexieva
- Institute of Microbiology; Bulgarian Academy of Sciences; Sofia; Bulgaria
| | - Husein Yemendzhiev
- Department of Water Technology; University “Prof. Asen Zlatarov”; Burgas; Bulgaria
| |
Collapse
|
11
|
Mohamed AT, El Hussein AA, El Siddig MA, Osman AG. Degradation of Oxyfluorfen Herbicide by Soil Microorganisms Biodegradation of Herbicides. ACTA ACUST UNITED AC 2011. [DOI: 10.3923/biotech.2011.274.279] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Firdaus-e-Bareen, Nazir A. Metal decontamination of tannery solid waste using Tagetes patula in association with saprobic and mycorrhizal fungi. ACTA ACUST UNITED AC 2009. [DOI: 10.1007/s10669-009-9241-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
|
14
|
Wang G, Wen J, Li H, Qiu C. Biodegradation of phenol and m-cresol by Candida albicans PDY-07 under anaerobic condition. J Ind Microbiol Biotechnol 2009; 36:809-14. [DOI: 10.1007/s10295-009-0555-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Accepted: 03/02/2009] [Indexed: 10/21/2022]
|
15
|
Stable isotope probing reveals Trichosporon yeast to be active in situ in soil phenol metabolism. ISME JOURNAL 2008; 3:477-85. [PMID: 19092862 DOI: 10.1038/ismej.2008.122] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The aim of this study was to extend the results of our previous stable isotope probing (SIP) investigation: we identified a soil fungus involved in phenol biodegradation at an agricultural field site. DNA extracts from our previous study were examined using fungi-specific PCR amplification of the 18S-28S internal transcribed spacer (ITS) region. We prepared an 80-member clone library using PCR-amplified, (13)C-labeled DNA derived from field soil that received 12 daily doses of (13)C-phenol. Restriction-fragment-length-polymorphism screening and DNA sequencing revealed a dominant clone (41% of the clone library), the ITS sequence of which corresponded to that of the fungal genus Trichosporon. We successfully grew and isolated a white, filamentous fungus from site soil samples after plating soil dilutions on mineral salts agar containing 250 p.p.m. phenol. Restreaking on both yeast extract-peptone-galactose and Sabouraud dextrose agar plates led to further purification of the fungus, the morphological characteristics of which matched those of the genus Trichosporon. The ITS sequence of our isolated fungus was identical to that of a clone from our SIP-based library, confirming it to be Trichosporon multisporum. High-performance liquid chromatography and turbidometeric analyses showed that the culture was able to metabolize and grow on 200 p.p.m. phenol in an aqueous mineral salts medium within 24 h at room temperature. Gas chromatography-mass spectrometry analysis of (13)CO(2) respiration from laboratory soil incubations demonstrated accelerated phenol mineralization in treatments inoculated with T. multisporum. These findings show that T. multisporum actively degraded phenol in our field-based, soil experiments.
Collapse
|
16
|
Stanchev V, Stoilova I, Krastanov A. Biodegradation dynamics of high catechol concentrations by Aspergillus awamori. JOURNAL OF HAZARDOUS MATERIALS 2008; 154:396-402. [PMID: 18037238 DOI: 10.1016/j.jhazmat.2007.10.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Revised: 09/28/2007] [Accepted: 10/10/2007] [Indexed: 05/25/2023]
Abstract
The biodegradation process of high catechol concentrations by Aspergillus awamori was investigated. The values of the kinetic constants for a model of specific growth rate at different initial conditions were determined. At 1.0 g/L catechol concentration, the biodegradation process proceeded in the conditions of substrate limitation. At higher catechol concentrations (2.0 and 3.0 g/L) a presence of substrate inhibition was established. The dynamics of the specific catechol degradation rate was studied and the values of catechol and biomass concentrations, maximizing the specific catechol degradation rate, were estimated analytically. The specified ratio catechol/biomass could serve as a starting base for determination of the initial conditions for a batch process, for specifying the moment of feeding for a fed-batch process, and for monitoring and control of a continuous process by the aim of time-optimal control.
Collapse
Affiliation(s)
- Veselin Stanchev
- Department of Automatics, Information and Control Systems, University of Food Technologies, 26 Maritza Boulevard, 4002 Plovdiv, Bulgaria
| | | | | |
Collapse
|
17
|
D'Annibale A, Rosetto F, Leonardi V, Federici F, Petruccioli M. Role of autochthonous filamentous fungi in bioremediation of a soil historically contaminated with aromatic hydrocarbons. Appl Environ Microbiol 2006; 72:28-36. [PMID: 16391021 PMCID: PMC1352206 DOI: 10.1128/aem.72.1.28-36.2006] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nine fungal strains isolated from an aged and heavily contaminated soil were identified and screened to assess their degradative potential. Among them, Allescheriella sp. strain DABAC 1, Stachybotrys sp. strain DABAC 3, and Phlebia sp. strain DABAC 9 were selected for remediation trials on the basis of Poly R-478 decolorization associated with lignin-modifying enzyme (LME) production. These autochthonous fungi were tested for the abilities to grow under nonsterile conditions and to degrade various aromatic hydrocarbons in the same contaminated soil. After 30 days, fungal colonization was clearly visible and was confirmed by ergosterol determination. In spite of subalkaline pH conditions and the presence of heavy metals, the autochthonous fungi produced laccase and Mn and lignin peroxidases. No LME activities were detected in control microcosms. All of the isolates led to a marked removal of naphthalene, dichloroaniline isomers, o-hydroxybiphenyl, and 1,1'-binaphthalene. Stachybotrys sp. strain DABAC 3 was the most effective isolate due to its ability to partially deplete the predominant contaminants 9,10-anthracenedione and 7H-benz[DE]anthracen-7-one. A release of chloride ions was observed in soil treated with either Allescheriella sp. strain DABAC 1 or Stachybotrys sp. strain DABAC 3, suggesting the occurrence of oxidative dehalogenation. The autochthonous fungi led to a significant decrease in soil toxicity, as assessed by both the Lepidium sativum L. germination test and the Collembola mortality test.
Collapse
Affiliation(s)
- A D'Annibale
- Dipartimento di Agrobiologia e Agrochimica, University of Tuscia, Via S. C. De Lellis, 01100 Viterbo, Italy
| | | | | | | | | |
Collapse
|