1
|
Srivastava S, Mathur G. Statistical optimization of bioprocess parameters for enhanced production of bacterial cellulose from K. saccharivorans BC-G1. Braz J Microbiol 2024; 55:2199-2210. [PMID: 38819773 PMCID: PMC11405357 DOI: 10.1007/s42770-024-01397-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/20/2024] [Indexed: 06/01/2024] Open
Abstract
Bacterial Cellulose (BC) offers a wide range of applications across various industries, including food, biomedical, and textiles, owing to its distinctive properties. Its unique 3D reticulated network of cellulose nanofibers, imparts excellent mechanical qualities, a high water-holding capacity, and thermal stability. Additionally, it possesses remarkable biocompatibility, biodegradability, high crystallinity, and purity. These attributes have offered significant interest in BC within both academic and industrial sectors. However, BC production is associated with high costs due to the use of expensive growth media and low yields. The study reports the potential of our indigenous isolate, Komagataeibacter saccharivorans BC-G1, as BC producer. Statistical optimization of BC production was carried out using Placket-Burman design and Central composite design, by selecting different parameters. Eight significant factors such as temperature, pH, glucose, yeast, peptone, acetic acid, incubation time and % inoculum were studies using ANOVA-based response surface methodology. Results showed that BC yield (8.5 g/L) with 1.8-fold after optimization of parameters. Maximum cellulose production (8.5 ± 1.8 g/L) was obtained using 2% glucose, 0.3% yeast extract, 0.3% peptone, 0.75% (v/v) acetic acid at pH 7.0 for 10 days of incubation with 4% inoculum at 25 °C under static culture. Main effect graph showed incubation time and acetic acid concentration as the most significant parameters affecting BC production in our study. The physicochemical characterization of produced BC was done using FTIR, XRD and SEM techniques.
Collapse
Affiliation(s)
- Samriddh Srivastava
- Plant and Microbial Biotechnology Centre, Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sec-62, Noida, UP, 201309, India
| | - Garima Mathur
- Plant and Microbial Biotechnology Centre, Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sec-62, Noida, UP, 201309, India.
| |
Collapse
|
2
|
Shishparenok AN, Furman VV, Dobryakova NV, Zhdanov DD. Protein Immobilization on Bacterial Cellulose for Biomedical Application. Polymers (Basel) 2024; 16:2468. [PMID: 39274101 PMCID: PMC11397966 DOI: 10.3390/polym16172468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024] Open
Abstract
New carriers for protein immobilization are objects of interest in various fields of biomedicine. Immobilization is a technique used to stabilize and provide physical support for biological micro- and macromolecules and whole cells. Special efforts have been made to develop new materials for protein immobilization that are non-toxic to both the body and the environment, inexpensive, readily available, and easy to modify. Currently, biodegradable and non-toxic polymers, including cellulose, are widely used for protein immobilization. Bacterial cellulose (BC) is a natural polymer with excellent biocompatibility, purity, high porosity, high water uptake capacity, non-immunogenicity, and ease of production and modification. BC is composed of glucose units and does not contain lignin or hemicellulose, which is an advantage allowing the avoidance of the chemical purification step before use. Recently, BC-protein composites have been developed as wound dressings, tissue engineering scaffolds, three-dimensional (3D) cell culture systems, drug delivery systems, and enzyme immobilization matrices. Proteins or peptides are often added to polymeric scaffolds to improve their biocompatibility and biological, physical-chemical, and mechanical properties. To broaden BC applications, various ex situ and in situ modifications of native BC are used to improve its properties for a specific application. In vivo studies showed that several BC-protein composites exhibited excellent biocompatibility, demonstrated prolonged treatment time, and increased the survival of animals. Today, there are several patents and commercial BC-based composites for wounds and vascular grafts. Therefore, further research on BC-protein composites has great prospects. This review focuses on the major advances in protein immobilization on BC for biomedical applications.
Collapse
Affiliation(s)
| | - Vitalina V Furman
- The Center for Chemical Engineering, ITMO University, 197101 Saint Petersburg, Russia
| | | | - Dmitry D Zhdanov
- Institute of Biomedical Chemistry, 10/8 Pogodinskaya St., 119121 Moscow, Russia
- Department of Biochemistry, People's Friendship University of Russia Named after Patrice Lumumba (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
| |
Collapse
|
3
|
De la Cruz Gómez N, Poza-Carrión C, Del Castillo-González L, Martínez Sánchez ÁI, Moliner A, Aranaz I, Berrocal-Lobo M. Enhancing Solanum lycopersicum Resilience: Bacterial Cellulose Alleviates Low Irrigation Stress and Boosts Nutrient Uptake. PLANTS (BASEL, SWITZERLAND) 2024; 13:2158. [PMID: 39124276 PMCID: PMC11313925 DOI: 10.3390/plants13152158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024]
Abstract
The use of natural-origin biomaterials in bioengineering has led to innovative approaches in agroforestry. Bacterial cellulose (BC), sharing the same chemical formula as plant-origin cellulose (PC), exhibits significantly different biochemical properties, including a high degree of crystallinity and superior water retention capacity. Previous research showed that natural-origin glucose-based chitin enhanced plant growth in both herbaceous and non-herbaceous plants. In this study, we produced BC in the laboratory and investigated its effects on the substrate and on Solanum lycopersicum seedlings. Soil amended with BC increased root growth compared with untreated seedlings. Additionally, under limited irrigation conditions, BC increased global developmental parameters including fresh and dry weight, as well as total carbon and nitrogen content. Under non-irrigation conditions, BC contributed substantially to plant survival. RNA sequencing (Illumina®) on BC-treated seedlings revealed that BC, despite its bacterial origin, did not stress the plants, confirming its innocuous nature, and it lightly induced genes related to root development and cell division as well as inhibition of stress responses and defense. The presence of BC in the organic substrate increased soil availability of phosphorus (P), iron (Fe), and potassium (K), correlating with enhanced nutrient uptake in plants. Our results demonstrate the potential of BC for improving soil nutrient availability and plant tolerance to low irrigation, making it valuable for agricultural and forestry purposes in the context of global warming.
Collapse
Affiliation(s)
- Noelia De la Cruz Gómez
- Centro para la Biodiversidad y Desarrollo Sostenible (CBDS), Universidad Politécnica de Madrid, 28040 Madrid, Spain; (N.D.l.C.G.); (C.P.-C.); (L.D.C.-G.); (Á.I.M.S.)
- Arquimea Agrotech S.L.U, 28400 Madrid, Spain
| | - César Poza-Carrión
- Centro para la Biodiversidad y Desarrollo Sostenible (CBDS), Universidad Politécnica de Madrid, 28040 Madrid, Spain; (N.D.l.C.G.); (C.P.-C.); (L.D.C.-G.); (Á.I.M.S.)
| | - Lucía Del Castillo-González
- Centro para la Biodiversidad y Desarrollo Sostenible (CBDS), Universidad Politécnica de Madrid, 28040 Madrid, Spain; (N.D.l.C.G.); (C.P.-C.); (L.D.C.-G.); (Á.I.M.S.)
| | - Ángel Isidro Martínez Sánchez
- Centro para la Biodiversidad y Desarrollo Sostenible (CBDS), Universidad Politécnica de Madrid, 28040 Madrid, Spain; (N.D.l.C.G.); (C.P.-C.); (L.D.C.-G.); (Á.I.M.S.)
| | - Ana Moliner
- Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
| | - Inmaculada Aranaz
- Instituto Pluridisciplinar, Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense, 28040 Madrid, Spain;
| | - Marta Berrocal-Lobo
- Centro para la Biodiversidad y Desarrollo Sostenible (CBDS), Universidad Politécnica de Madrid, 28040 Madrid, Spain; (N.D.l.C.G.); (C.P.-C.); (L.D.C.-G.); (Á.I.M.S.)
| |
Collapse
|
4
|
Mauro F, Corrado B, De Gregorio V, Lagreca E, Di Natale C, Vecchione R, Netti PA. Exploring the evolution of bacterial cellulose precursors and their potential use as cellulose-based building blocks. Sci Rep 2024; 14:11613. [PMID: 38773229 PMCID: PMC11109180 DOI: 10.1038/s41598-024-62462-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/16/2024] [Indexed: 05/23/2024] Open
Abstract
Natural polymers have found increased use in a wider range of applications due to their less harmful effects. Notably, bacterial cellulose has gained significant consideration due to its exceptional physical and chemical properties and its substantial biocompatibility, which makes it an attractive candidate for several biomedical applications. This study attempts to thoroughly unravel the microstructure of bacterial cellulose precursors, known as bioflocculants, which to date have been poorly characterised, by employing both electron and optical microscopy techniques. Here, starting from bioflocculants from Symbiotic Culture of Bacteria and Yeast (SCOBY), we proved that their microstructural features, such as porosity percentage, cellulose assembly degree, fibres' density and fraction, change in a spatio-temporal manner during their rising toward the liquid-air interface. Furthermore, our research identified a correlation between electron and optical microscopy parameters, enabling the assessment of bioflocculants' microstructure without necessitating offline sample preparation procedures. The ultimate goal was to determine their potential suitability as a novel cellulose-based building block material with tuneable structural properties. Our investigations substantiate the capability of SCOBY bioflocculants, characterized by distinct microstructures, to successfully assemble within a microfluidic device, thereby generating a cellulose sheet endowed with specific and purposefully designed structural features.
Collapse
Affiliation(s)
- Francesca Mauro
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples, Italy
- Istituto Italiano di Tecnologia, Naples, Italy
| | - Brunella Corrado
- Interdisciplinary Research Centre on Biomaterials, University of Naples Federico II, Naples, Italy
| | | | | | - Concetta Di Natale
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples, Italy
| | | | - Paolo Antonio Netti
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples, Italy
- Istituto Italiano di Tecnologia, Naples, Italy
- Interdisciplinary Research Centre on Biomaterials, University of Naples Federico II, Naples, Italy
| |
Collapse
|
5
|
Almihyawi RAH, Musazade E, Alhussany N, Zhang S, Chen H. Production and characterization of bacterial cellulose by Rhizobium sp. isolated from bean root. Sci Rep 2024; 14:10848. [PMID: 38740945 DOI: 10.1038/s41598-024-61619-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 05/07/2024] [Indexed: 05/16/2024] Open
Abstract
Bacterial cellulose (BC) is a natural polymer renowned for its unique physicochemical and mechanical attributes, including notable water-holding capacity, crystallinity, and a pristine fiber network structure. While BC has broad applications spanning agriculture, industry, and medicine, its industrial utilization is hindered by production costs and yield limitations. In this study, Rhizobium sp. was isolated from bean roots and systematically assessed for BC synthesis under optimal conditions, with a comparative analysis against BC produced by Komagataeibacter hansenii. The study revealed that Rhizobium sp. exhibited optimal BC synthesis when supplied with a 1.5% glucose carbon source and a 0.15% yeast extract nitrogen source. Under static conditions at 30 °C and pH 6.5, the most favorable conditions for growth and BC production (2.5 g/L) were identified. Modifications were introduced using nisin to enhance BC properties, and the resulting BC-nisin composites were comprehensively characterized through various techniques, including FE-SEM, FTIR, porosity, swelling, filtration, and antibacterial activity assessments. The results demonstrated that BC produced by Rhizobium sp. displayed properties comparable to K. hansenii-produced BC. Furthermore, the BC-nisin composites exhibited remarkable inhibitory activity against Escherichia coli and Pseudomonas aeruginosa. This study contributes valuable insights into BC's production, modification, and characterization utilizing Rhizobium sp., highlighting the exceptional properties that render it efficacious across diverse applications.
Collapse
Affiliation(s)
- Raed A H Almihyawi
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China
- Department of Quality Control, Baghdad Water Authority, Baghdad, 10011, Iraq
| | - Elshan Musazade
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China
| | | | - Sitong Zhang
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China.
- Key Laboratory of Straw Biology and Utilization, Ministry of Education, Changchun, 130118, China.
| | - Huan Chen
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China.
- Key Laboratory of Straw Biology and Utilization, Ministry of Education, Changchun, 130118, China.
| |
Collapse
|
6
|
Sangta J, Ruksiriwanich W, Chittasupho C, Sringarm K, Rachtanapun P, Bakshani C, Willats W, Sommano S. Utilization of the sugar fraction from Arabica coffee pulp as a carbon source for bacteria producing cellulose and cytotoxicity with human keratinocyte. Prep Biochem Biotechnol 2024; 54:587-596. [PMID: 37747818 DOI: 10.1080/10826068.2023.2258195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Coffee pulp (CP), a by-product of coffee production, is an underutilized resource with significant potential value. CP contains monosaccharides that can serve as an ideal carbon source for bacterial cultivation, enabling the production of value-added components such as medical-grade cellulose. Herein, we extracted the sugar fraction from Arabica CP and used it as a supplement in a growing media of a bacteria cellulose (BC), Komagataeibacter nataicola. The BC was then characterized and tested for cytotoxicity. The CP sugar fraction yielded approximately 7% (w/w) and contained glucose at 4.52 mg/g extract and fructose at 7.34 mg/g extract. Supplementing the sugar fraction at different concentrations (0.1, 0.3, 0.5, 0.7, and 1 g/10 mL) in sterilized glucose yeast extract broth, the highest yield of cellulose (0.0020 g) occurred at 0.3 g/10 mL. It possessed similar physicochemical attributes to the BC using glucose, with some notable improvements in fine structure and arrangement of the functional groups. In cytotoxicity assessments on HaCaT keratinocyte cells, bacterial cellulose concentrations of 2-1000 µg/mL exhibited viability of ≥ 80%. However, higher concentrations were toxic. This research innovatively uses coffee pulp for bacterial cellulose, aligning with the principles of a bio-circular economy that focuses on sustainable biomass utilization.
Collapse
Affiliation(s)
- Jiraporn Sangta
- Interdisciplinary Program in Biotechnology, Graduate School, Chiang Mai University, Chiang Mai, Thailand
- Plant Bioactive Compound Laboratory, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Warintorn Ruksiriwanich
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
| | - Chuda Chittasupho
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| | - Korawan Sringarm
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Department of Animal and Aquatic Science, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Pornchai Rachtanapun
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Division of Packaging Technology, Faculty of Agro-Industry, School of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
| | - Cassie Bakshani
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - William Willats
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Sarana Sommano
- Plant Bioactive Compound Laboratory, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
7
|
Scott C, Wisdom NH, Coulter K, Bardin S, Strap JL, Trevani L. Interdisciplinary Undergraduate Laboratory for an Integrated Chemistry/Biology Program: Synthesis of Silver Nanoparticles (AgNPs)-Cellulose Composite Materials with Antimicrobial Activity. JOURNAL OF CHEMICAL EDUCATION 2023; 100:1446-1454. [PMID: 37067876 PMCID: PMC10100815 DOI: 10.1021/acs.jchemed.2c00712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 02/15/2023] [Indexed: 06/19/2023]
Abstract
This laboratory exercise integrates chemistry and biology concepts to give third/fourth-year undergraduate students an opportunity to apply knowledge from different subject areas to address a real-world biomedical issue such as pathogen inhibition using composite materials. It involves the preparation of a bacteria-derived cellulosic biopolymer through microbial cultivation, impregnation of the bacterial cellulose (BC) with silver nanoparticles (AgNPs), followed by the analysis of the materials and the antimicrobial properties of the biomaterial-AgNPs composites. The methods are relatively simple and use inexpensive chemicals. A Tollens type approach is adopted to produce silver nanoparticles-bacterial cellulose (AgNPs-BC) composites by the reduction of [Ag(NH3)2]+ complex embedded in the cellulose matrix. The samples were dried by two different methods: freeze-drying or vacuum-drying. The dried AgNPs-BC films were evaluated for antimicrobial properties against a test organism, in this example, Pseudomonas aeruginosa, a Gram-negative biosafety containment level 2 (BSL 2) bacterium, using an agar diffusion test. For additional flexibility and customization, options for dividing the chemistry/biology content of this laboratory into smaller units with an emphasis on characterization techniques of nanomaterials for chemistry majors are also discussed.
Collapse
|
8
|
Rocha ARFDS, Venturim BC, Ellwanger ERA, Pagnan CS, Silveira WBD, Martin JGP. Bacterial cellulose: Strategies for its production in the context of bioeconomy. J Basic Microbiol 2023; 63:257-275. [PMID: 36336640 DOI: 10.1002/jobm.202200280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/14/2022] [Accepted: 10/22/2022] [Indexed: 11/09/2022]
Abstract
Bacterial cellulose has advantages over plant-derived cellulose, which make its use for industrial applications easier and more profitable. Its intrinsic properties have been stimulating the global biopolymer market, with strong growth expectations in the coming years. Several bacterial species are capable of producing bacterial cellulose under different culture conditions; in this context, strategies aimed at metabolic engineering and several possibilities of carbon sources have provided opportunities for the bacterial cellulose's biotechnological exploration. In this article, an overview of biosynthesis pathways in different carbon sources for the main producing microorganisms, metabolic flux under different growth conditions, and their influence on the structural and functional characteristics of bacterial cellulose is provided. In addition, the main industrial applications and ways to reduce costs and optimize its production using alternative sources are discussed, contributing to new insights on the exploitation of this biomaterial in the context of the bioeconomy.
Collapse
Affiliation(s)
- André R F da Silva Rocha
- Microbiology of Fermented Products Laboratory (FERMICRO), Department of Microbiology, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Bárbara Côgo Venturim
- Microbiology of Fermented Products Laboratory (FERMICRO), Department of Microbiology, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Elena R A Ellwanger
- Graduate Program in Design (PPGD), Universidade do Estado de Minas Gerais (UEMG), Belo Horizonte, Brazil
| | - Caroline S Pagnan
- Graduate Program in Design (PPGD), Universidade do Estado de Minas Gerais (UEMG), Belo Horizonte, Brazil
| | - Wendel B da Silveira
- Physiology of Microorganisms Laboratory (LabFis), Department of Microbiology, Universidade Federal de Viçosa, Viçosa, Brazil
| | - José Guilherme P Martin
- Microbiology of Fermented Products Laboratory (FERMICRO), Department of Microbiology, Universidade Federal de Viçosa, Viçosa, Brazil
| |
Collapse
|
9
|
Raut MP, Asare E, Syed Mohamed SMD, Amadi EN, Roy I. Bacterial Cellulose-Based Blends and Composites: Versatile Biomaterials for Tissue Engineering Applications. Int J Mol Sci 2023; 24:986. [PMID: 36674505 PMCID: PMC9865793 DOI: 10.3390/ijms24020986] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 01/06/2023] Open
Abstract
Cellulose of bacterial origin, known as bacterial cellulose (BC), is one of the most versatile biomaterials that has a huge potential in tissue engineering due to its favourable mechanical properties, high hydrophilicity, crystallinity, and purity. Additional properties such as porous nano-fibrillar 3D structure and a high degree of polymerisation of BC mimic the properties of the native extracellular matrix (ECM), making it an excellent material for the fabrication of composite scaffolds suitable for cell growth and tissue development. Recently, the fabrication of BC-based scaffolds, including composites and blends with nanomaterials, and other biocompatible polymers has received particular attention owing to their desirable properties for tissue engineering. These have proven to be promising advanced materials in hard and soft tissue engineering. This review presents the latest state-of-the-art modified/functionalised BC-based composites and blends as advanced materials in tissue engineering. Their applicability as an ideal biomaterial in targeted tissue repair including bone, cartilage, vascular, skin, nerve, and cardiac tissue has been discussed. Additionally, this review briefly summarises the latest updates on the production strategies and characterisation of BC and its composites and blends. Finally, the challenges in the future development and the direction of future research are also discussed.
Collapse
Affiliation(s)
| | | | | | | | - Ipsita Roy
- Department of Materials Science and Engineering, Faculty of Engineering, University of Sheffield, Sheffield S3 7HQ, UK
| |
Collapse
|
10
|
Bacterial cellulose production from wastewater and the influence of its porosity on the fluorescence intensity of prepared carbon dots. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
González-García Y, Meza-Contreras JC, Gutiérrez-Ortega JA, Manríquez-González R. In Vivo Modification of Microporous Structure in Bacterial Cellulose by Exposing Komagataeibacter xylinus Culture to Physical and Chemical Stimuli. Polymers (Basel) 2022; 14:polym14204388. [PMID: 36297965 PMCID: PMC9611358 DOI: 10.3390/polym14204388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/30/2022] Open
Abstract
Bacterial cellulose (BC) samples were obtained in a static culture of K. xylinus under the effect of a low-intensity magnetic field, UV light, NaCl, and chloramphenicol. The effect of such stimuli on the amount of BC produced and its production rate, specific area, pore volume, and pore diameter were evaluated. The polysaccharide production was enhanced 2.28-fold by exposing K. xylinus culture to UV light (366 nm) and 1.7-fold by adding chloramphenicol (0.25 mM) to the medium in comparison to BC control. All the stimuli triggered a decrease in the rate of BC biosynthesis. BC membranes were found to be mesoporous materials with an average pore diameter from 21.37 to 25.73 nm. BC produced under a magnetic field showed the lowest values of specific area and pore volume (2.55 m2 g−1 and 0.024 cm3 g−1), while the BC synthesized in the presence of NaCl showed the highest (15.72 m2 g−1 and 0.11 cm3 g−1). FTIR spectra of the BC samples also demonstrated changes related to structural order. The rehydration property in these BC samples is not mainly mediated by the crystallinity level or porosity. In summary, these results support that BC production, surface, and structural properties could be modified by manipulating the physical and chemical stimuli investigated.
Collapse
Affiliation(s)
- Yolanda González-García
- Departamento de Madera, Celulosa y Papel, CUCEI, Universidad de Guadalajara, Km 15.5, Carretera Guadalajara-Nogales, Las Agujas, Zapopan 45020, Jalisco, Mexico
| | - Juan C. Meza-Contreras
- Departamento de Madera, Celulosa y Papel, CUCEI, Universidad de Guadalajara, Km 15.5, Carretera Guadalajara-Nogales, Las Agujas, Zapopan 45020, Jalisco, Mexico
| | - José A. Gutiérrez-Ortega
- Departamento de Química, CUCEI, Universidad de Guadalajara, Blvd. Marcelino García Barragán # 1421, Esq. Calzada Olímpica, Guadalajara 44430, Jalisco, Mexico
| | - Ricardo Manríquez-González
- Departamento de Madera, Celulosa y Papel, CUCEI, Universidad de Guadalajara, Km 15.5, Carretera Guadalajara-Nogales, Las Agujas, Zapopan 45020, Jalisco, Mexico
- Correspondence:
| |
Collapse
|
12
|
Bharti VK, Pathak AD, Sharma CS, Khandelwal M. Flexible and free-standing bacterial cellulose derived cathode host and separator for lithium-sulfur batteries. Carbohydr Polym 2022; 293:119731. [DOI: 10.1016/j.carbpol.2022.119731] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/18/2022] [Accepted: 06/09/2022] [Indexed: 11/26/2022]
|
13
|
Ajdary R, Abidnejad R, Lehtonen J, Kuula J, Raussi-Lehto E, Kankuri E, Tardy B, Rojas OJ. Bacterial nanocellulose enables auxetic supporting implants. Carbohydr Polym 2022; 284:119198. [DOI: 10.1016/j.carbpol.2022.119198] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 01/08/2023]
|
14
|
Akintunde MO, Adebayo-Tayo BC, Ishola MM, Zamani A, Horváth IS. Bacterial Cellulose Production from agricultural Residues by two Komagataeibacter sp. Strains. Bioengineered 2022; 13:10010-10025. [PMID: 35416127 PMCID: PMC9161868 DOI: 10.1080/21655979.2022.2062970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Agricultural residues are constantly increasing with increased farming processes, and improper disposal is detrimental to the environment. Majority of these waste residues are rich in lignocellulose, which makes them suitable substrate for bacterial fermentation in the production of value-added products. In this study, bacterial cellulose (BC), a purer and better form of cellulose, was produced by two Komagataeibacter sp. isolated from rotten banana and kombucha drink using corncob (CC) and sugarcane bagasse (SCB) enzymatic hydrolyzate, under different fermentation conditions, that is, static, continuous, and intermittent agitation. The physicochemical and mechanical properties of the BC films were then investigated by Fourier Transformed Infrared Spectroscopy (FTIR), Thermogravimetry analysis, Field Emission Scanning Electron Microscopy (FE-SEM), and Dynamic mechanical analysis. Agitation gave a higher BC yield, with Komagataeibacter sp. CCUG73629 producing BC from CC with a dry weight of 1.6 g/L and 1.4 g/L under continuous and intermittent agitation, respectively, compared with that of 0.9 g/L in HS medium. While BC yield of dry weight up to 1.2 g/L was obtained from SCB by Komagataeibacter sp. CCUG73630 under continuous agitation compared to that of 0.3 g/L in HS medium. FTIR analysis showed BC bands associated with cellulose I, with high thermal stability. The FE-SEM analysis showed that BC fibers were highly ordered and densely packed. Although the BC produced by both strains showed similar physicochemical and morphological properties, the BC produced by the Komagataeibacter sp. CCUG73630 in CC under intermittent agitation had the best modulus of elasticity, 10.8 GPa and tensile strength, 70.9 MPa.
Collapse
Affiliation(s)
- Moyinoluwa O Akintunde
- Department of Microbiology, University of Ibadan, Ibadan, Nigeria.,Swedish Centre for Resource Recovery, University of Borås, Borås, Sweden
| | | | | | - Akram Zamani
- Swedish Centre for Resource Recovery, University of Borås, Borås, Sweden
| | | |
Collapse
|
15
|
Characterization of Bioactive Colored Materials Produced from Bacterial Cellulose and Bacterial Pigments. MATERIALS 2022; 15:ma15062069. [PMID: 35329521 PMCID: PMC8949564 DOI: 10.3390/ma15062069] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 01/12/2023]
Abstract
A Bacterial Cellulose (BC) film was developed and characterized as a potential functional bioactive material. BC films, obtained from a microbial consortium of bacteria and yeast species, were functionalized with the bacterial pigment prodigiosin, produced by Serratia plymuthica, and flexirubin-type pigment, from Chryseobacterium shigense, which exhibit a wide range of biological properties. BC was successfully functionalized at 15% over the weight of the fiber at 40 °C during 60 min, and a color strength of 1.00 ± 0.01 was obtained for BC_prodigiosin and 0.38 ± 0.02 for BC_flexirubin-type pigment. Moreover, the BC films showed moderate hydrophilic character following alkaline treatment, which was maintained after both pigments were incorporated. The porosity and mechanical performance of the functionalized BC samples also remained unaffected. Furthermore, the BC samples functionalized with prodigiosin presented antibacterial activity and were able to inhibit the growth of pathogenic bacteria Staphylococcus aureus and Pseudomonas aeruginosa, with inhibition rates of 97.89 ± 0.60% and 85.12 ± 0.17%, respectively, while BC samples functionalized with flexirubin-type pigment exhibited the highest antioxidant activity, at 38.96 ± 0.49%. This research provides an eco-friendly approach to grant BC film-based material with color and advantageous bioactive properties, which can find application in several fields, especially for medical purposes.
Collapse
|
16
|
Almeida do Nascimento H, Didier Pedrosa Amorim J, José Galdino da Silva Júnior C, D'Lamare Maia de Medeiros A, Fernanda de Santana Costa A, Carla Napoleão D, Maria Vinhas G, Asfora Sarubbo L. Influence of gamma irradiation on the properties of bacterial cellulose produced with concord grape and red cabbage extracts. CURRENT RESEARCH IN BIOTECHNOLOGY 2022. [DOI: 10.1016/j.crbiot.2022.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
17
|
Amorim LFA, Mouro C, Riool M, Gouveia IC. Antimicrobial Food Packaging Based on Prodigiosin-Incorporated Double-Layered Bacterial Cellulose and Chitosan Composites. Polymers (Basel) 2022; 14:polym14020315. [PMID: 35054720 PMCID: PMC8781631 DOI: 10.3390/polym14020315] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 02/01/2023] Open
Abstract
Nowadays, food packaging systems have shifted from a passive to an active role in which the incorporation of antimicrobial compounds into biopolymers can promote a sustainable way to reduce food spoilage and its environmental impact. Accordingly, composite materials based on oxidized-bacterial cellulose (BC) and poly(vinyl alcohol)-chitosan (PVA-CH) nanofibers were produced by needleless electrospinning and functionalized with the bacterial pigment prodigiosin (PG). Two strategies were explored, in the first approach PG was incorporated in the electrospun PVA-CH layer, and TEMPO-oxidized BC was the substrate for nanofibers deposition (BC/PVA-CH_PG composite). In the second approach, TEMPO-oxidized BC was functionalized with PG, and afterward, the PVA-CH layer was electrospun (BC_PG/PVA-CH composite). The double-layer composites obtained were characterized and the nanofibrous layers displayed smooth fibers with average diameters of 139.63 ± 65.52 nm and 140.17 ± 57.04 nm, with and without pigment incorporation, respectively. FTIR-ATR analysis confirmed BC oxidation and revealed increased intensity at specific wavelengths, after pigment incorporation. Moreover, the moderate hydrophilic behavior, as well as the high porosity exhibited by each layer, remained mostly unaffected after PG incorporation. The composites’ mechanical performance and the water vapor transmission rate (WVTR) evaluation indicated the suitability of the materials for certain food packaging solutions, especially for fresh products. Additionally, the red color provided by the bacterial pigment PG on the external surface of a food packaging material is also a desirable effect, to attract the consumers’ attention, creating a multifunctional material. Furthermore, the antimicrobial activity was evaluated and, PVA-CH_PG, and BC_PG layers exhibited the highest antimicrobial activity against Staphylococcus aureus and Pseudomonas aeruginosa. Thus, the fabricated composites can be considered for application in active food packaging, owing to PG antimicrobial potential, to prevent foodborne pathogens (with PG incorporated into the inner layer of the food packaging material, BC/PVA-CH_PG composite), but also to prevent external contamination, by tackling the exterior of food packaging materials (with PG added to the outer layer, BC_PG/PVA-CH composite).
Collapse
Affiliation(s)
- Lúcia F. A. Amorim
- FibEnTech Research Unit, Faculty of Engineering, University of Beira Interior, 6200-001 Covilhã, Portugal; (L.F.A.A.); (C.M.)
| | - Cláudia Mouro
- FibEnTech Research Unit, Faculty of Engineering, University of Beira Interior, 6200-001 Covilhã, Portugal; (L.F.A.A.); (C.M.)
| | - Martijn Riool
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, Amsterdam Institute for Infection and Immunity, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Isabel C. Gouveia
- FibEnTech Research Unit, Faculty of Engineering, University of Beira Interior, 6200-001 Covilhã, Portugal; (L.F.A.A.); (C.M.)
- Correspondence: ; Tel.: +351-27-531-9825
| |
Collapse
|
18
|
Cielecka I, Ryngajłło M, Maniukiewicz W, Bielecki S. Highly Stretchable Bacterial Cellulose Produced by Komagataeibacter hansenii SI1. Polymers (Basel) 2021; 13:4455. [PMID: 34961006 PMCID: PMC8707637 DOI: 10.3390/polym13244455] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/12/2021] [Accepted: 12/16/2021] [Indexed: 12/31/2022] Open
Abstract
A new strain of bacteria producing cellulose was isolated from Kombucha and identified as Komagataeibacter hansenii, named SI1. In static conditions, the strain synthesises bacterial nanocellulose with an improved ability to stretch. In this study, utilisation of various carbon and nitrogen sources and the impact of initial pH was assessed in terms of bacterial nanocellulose yield and properties. K. hansenii SI1 produces cellulose efficiently in glycerol medium at pH 5.0-6.0 with a yield of 3.20-3.60 g/L. Glucose medium led to the synthesis of membrane characterised by a strain of 77%, which is a higher value than in the case of another Komagataeibacter species. Supplementation of medium with vitamin C results in an enhanced porosity and improves the ability of bacterial nanocellulose to stretch (up to 123%). The properties of modified membranes were studied by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction and mechanical tests. The results show that bacterial nanocellulose produced in SH medium and vitamin C-supplemented medium has unique properties (porosity, tensile strength and strain) without changing the chemical composition of cellulose. The method of production BNC with altered properties was the issue of Polish patent application no. P.431265.
Collapse
Affiliation(s)
- Izabela Cielecka
- Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, 90-573 Łódź, Poland; (M.R.); (S.B.)
| | - Małgorzata Ryngajłło
- Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, 90-573 Łódź, Poland; (M.R.); (S.B.)
| | - Waldemar Maniukiewicz
- Institute of General and Ecological Chemistry, Lodz University of Technology, 90-924 Łódź, Poland;
| | - Stanisław Bielecki
- Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, 90-573 Łódź, Poland; (M.R.); (S.B.)
| |
Collapse
|
19
|
In situ formation and post-formation treatment of bacterial cellulose/κ-carrageenan composite pellicles. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
20
|
Diaz-Ramirez J, Urbina L, Eceiza A, Retegi A, Gabilondo N. Superabsorbent bacterial cellulose spheres biosynthesized from winery by-products as natural carriers for fertilizers. Int J Biol Macromol 2021; 191:1212-1220. [PMID: 34624377 DOI: 10.1016/j.ijbiomac.2021.09.203] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 11/30/2022]
Abstract
Soil contamination, sustainable management of water resources and controlled release of agrochemicals are the main challenges of modern agriculture. In this work, the synthesis of sphere-like bacterial cellulose (BC) using agitated culture conditions and Komagateibacter medellinensis bacterial strain ID13488 was optimized and characterized from grape pomace (GP). First, a comparative study was carried out between agitated and static cultures using different nitrogen sources and applying alternative GP treatments. Agitation of the cultures resulted in higher BC production yield compared to static culture conditions. Additionally, Water holding capacity (WHC) assays evidenced the superabsorbent nature of the BC biopolymer, being positively influenced by the spherical shape as it was observed an increase of 60% in contrast to the results obtained for the BC membranes under static culture conditions. Moreover, it was found that sphere-like BCs were capable of retaining urea up to 375% of their dry weight, rapidly releasing the fertilizer in the presence of water. According to our findings, sphere-like BCs represent suitable systems with great potential for actual agricultural hazards and grape pomace valorisation.
Collapse
Affiliation(s)
- Julen Diaz-Ramirez
- 'Materials+Technologies' Group, Engineering School of Gipuzkoa, Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Pza. Europa 1, 20018, Donostia, San Sebastián, Spain.
| | - Leire Urbina
- 'Materials+Technologies' Group, Engineering School of Gipuzkoa, Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Pza. Europa 1, 20018, Donostia, San Sebastián, Spain.
| | - Arantxa Eceiza
- 'Materials+Technologies' Group, Engineering School of Gipuzkoa, Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Pza. Europa 1, 20018, Donostia, San Sebastián, Spain.
| | - Aloña Retegi
- 'Materials+Technologies' Group, Engineering School of Gipuzkoa, Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Pza. Europa 1, 20018, Donostia, San Sebastián, Spain.
| | - Nagore Gabilondo
- 'Materials+Technologies' Group, Engineering School of Gipuzkoa, Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Pza. Europa 1, 20018, Donostia, San Sebastián, Spain.
| |
Collapse
|
21
|
Vadaye Kheiry E, Fazly Bazzaz BS, Kerachian MA. Implantation of stem cells on synthetic or biological scaffolds: an overview of bone regeneration. Biotechnol Genet Eng Rev 2021; 37:238-268. [PMID: 34789069 DOI: 10.1080/02648725.2021.2003590] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Humans are exposed to a wide range of bone tissue injuries. In severe cases, bone damages could be only treated with transplantation of autologous or allogeneic grafting.In recent years, tissue engineering has become a promising strategy for repairing damaged organs and tissues, providing a great opportunity to cure several diseases. Bone tissue engineering consists of three components: scaffold, cells, and growth factors. Current bone tissue engineering strategies combine the use of stem cells with biologically active materials and gene therapy to mimic the natural microenvironment of bone. The combination of the scaffold with growth factors and extracellular matrix protein molecules can promote cell attachment, proliferation, and induce osteogenesis, which could provide signals for cell migration to begin the healing process during repair and bone formation.This article reviews the principles of bone regeneration and the most current developments of bone tissue engineering related to bone growth factors, the biologically active materials, such as bacterial cellulose, and stem cells.
Collapse
Affiliation(s)
- Elahe Vadaye Kheiry
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Bibi Sedigheh Fazly Bazzaz
- Biotechnology Research Center, Pharmaceutical Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Amin Kerachian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
22
|
Corzo Salinas DR, Sordelli A, Martínez LA, Villoldo G, Bernal C, Pérez MS, Cerrutti P, Foresti ML. Production of bacterial cellulose tubes for biomedical applications: Analysis of the effect of fermentation time on selected properties. Int J Biol Macromol 2021; 189:1-10. [PMID: 34364942 DOI: 10.1016/j.ijbiomac.2021.08.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/01/2021] [Accepted: 08/02/2021] [Indexed: 01/11/2023]
Abstract
Biosynthesis of bacterial cellulose (BC) in cylindrical oxygen permeable molds allows the production of hollow tubular structures of increasing interest for biomedical applications (artificial blood vessels, ureters, urethra, trachea, esophagus, etc.). In the current contribution a simple set-up is used to obtain BC tubes of predefined dimensions; and the effects of fermentation time on the water holding capacity, nanofibrils network architecture, specific surface area, chemical purity, thermal stability, mechanical properties, and cell adhesion, proliferation and migration of BC tubes are systematically analysed for the first time. The results reported highlight the role of culture time on key properties of the BC tubes produced, with significant differences arising from the denser and more compact fibril arrangements generated at longer fermentation intervals.
Collapse
Affiliation(s)
- D R Corzo Salinas
- Grupo de Biotecnología y Materiales Biobasados, Instituto de Tecnología en Polímeros y Nanotecnología (ITPN-UBA-CONICET), Facultad de Ingeniería, Universidad de Buenos Aires, Las Heras 2214 (CP 1127AAR), Buenos Aires, Argentina; Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad de Buenos Aires, Argentina (UBA), Av. Intendente Güiraldes 2620 (CP 1428BGA), Pabellón de Industrias, Ciudad Universitaria, Buenos Aires, Argentina
| | - A Sordelli
- Instituto de Medicina Traslacional e Ingeniería Biomédica (IMTIB), Hospital Italiano de Buenos Aires (HIBA), CONICET, Instituto Universitario HIBA, Potosí 4240 (CP 1199), Buenos Aires, Argentina
| | - L A Martínez
- Centro IREN, Universidad Tecnológica Nacional, Buenos Aires, Argentina
| | - G Villoldo
- Instituto de Medicina Traslacional e Ingeniería Biomédica (IMTIB), Hospital Italiano de Buenos Aires (HIBA), CONICET, Instituto Universitario HIBA, Potosí 4240 (CP 1199), Buenos Aires, Argentina
| | - C Bernal
- Grupo de Ingeniería en Polímeros y Materiales Compuestos, Instituto de Tecnología en Polímeros y Nanotecnología (ITPN-UBA-CONICET), Facultad de Ingeniería, Universidad de Buenos Aires, Las Heras 2214 (CP 1127AAR), Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - M S Pérez
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Instituto de Ingeniería Biomédica, Universidad de Buenos Aires, Buenos Aires, Argentina; Department of Electrical and Computer Engineering, Florida International University, Miami, FL 33174, USA.
| | - P Cerrutti
- Grupo de Biotecnología y Materiales Biobasados, Instituto de Tecnología en Polímeros y Nanotecnología (ITPN-UBA-CONICET), Facultad de Ingeniería, Universidad de Buenos Aires, Las Heras 2214 (CP 1127AAR), Buenos Aires, Argentina; Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad de Buenos Aires, Argentina (UBA), Av. Intendente Güiraldes 2620 (CP 1428BGA), Pabellón de Industrias, Ciudad Universitaria, Buenos Aires, Argentina
| | - M L Foresti
- Grupo de Biotecnología y Materiales Biobasados, Instituto de Tecnología en Polímeros y Nanotecnología (ITPN-UBA-CONICET), Facultad de Ingeniería, Universidad de Buenos Aires, Las Heras 2214 (CP 1127AAR), Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| |
Collapse
|
23
|
Poddar MK, Dikshit PK. Recent development in bacterial cellulose production and synthesis of cellulose based conductive polymer nanocomposites. NANO SELECT 2021. [DOI: 10.1002/nano.202100044] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Maneesh Kumar Poddar
- Department of Chemical Engineering National Institute of Technology Karnataka Surathkal Karnataka India
| | - Pritam Kumar Dikshit
- Department of Life Sciences School of Basic Sciences and Research Sharda University Greater Noida Uttar Pradesh India
| |
Collapse
|
24
|
Fatima A, Yasir S, Khan MS, Manan S, Ullah MW, Ul-Islam M. Plant extract-loaded bacterial cellulose composite membrane for potential biomedical applications. JOURNAL OF BIORESOURCES AND BIOPRODUCTS 2021. [DOI: 10.1016/j.jobab.2020.11.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
25
|
Lehtonen J, Chen X, Beaumont M, Hassinen J, Orelma H, Dumée LF, Tardy BL, Rojas OJ. Impact of incubation conditions and post-treatment on the properties of bacterial cellulose membranes for pressure-driven filtration. Carbohydr Polym 2021; 251:117073. [PMID: 33142618 DOI: 10.1016/j.carbpol.2020.117073] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/13/2020] [Accepted: 09/05/2020] [Indexed: 12/17/2022]
Abstract
Bacterial cellulose (BC) has shown potential as a separation material. Herein, the performance of BC in pressure-driven separation is investigated as a function of incubation conditions and post-culture treatment. The pure water flux of never-dried BC (NDBC), was found to be 9 to 16 times higher than that for dried BC (DBC), in a pressure range of 0.25 to 2.5 bar. The difference in pressure response of NDBC and DBC was observed both in cross-flow filtration and capillary flow porometry experiments. DBC and NDBC were permeable to polymers with a hydrodynamic radius of ∼60 nm while protein retention was possible by introducing anionic surface charges on BC. The results of this work are expected to expand the development of BC-based filtration membranes, for instance towards the processing of biological fluids.
Collapse
Affiliation(s)
- Janika Lehtonen
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P. O. Box 16300, FI-00076 Aalto, Espoo, Finland
| | - Xiao Chen
- Deakin University, Geelong, Institute for Frontier Materials, Waurn Ponds, Victoria 3216, Australia
| | - Marco Beaumont
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P. O. Box 16300, FI-00076 Aalto, Espoo, Finland
| | - Jukka Hassinen
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P. O. Box 16300, FI-00076 Aalto, Espoo, Finland
| | - Hannes Orelma
- VTT - Technical Research Centre of Finland, Tietotie 4E, P.O. Box 1000, FI-02044 Espoo, Finland
| | - Ludovic F Dumée
- Deakin University, Geelong, Institute for Frontier Materials, Waurn Ponds, Victoria 3216, Australia; Khalifa University, Department of Chemical Engineering, Abu Dhabi, United Arab Emirates; Center for Membrane and Advanced Water Technology, Khalifa University, Abu Dhabi, United Arab Emirates.
| | - Blaise L Tardy
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P. O. Box 16300, FI-00076 Aalto, Espoo, Finland.
| | - Orlando J Rojas
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P. O. Box 16300, FI-00076 Aalto, Espoo, Finland; Departments of Chemical & Biological Engineering, Chemistry, and Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
| |
Collapse
|
26
|
Ashrafi Z, Lucia L, Krause W. Underwater Superoleophobic Matrix-Formatted Liquid-Infused Porous Biomembranes for Extremely Efficient Deconstitution of Nanoemulsions. ACS APPLIED MATERIALS & INTERFACES 2020; 12:50996-51006. [PMID: 33119268 DOI: 10.1021/acsami.0c13718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Wettability is one of the most critical interfacial properties of any surface. Surfaces with special wettability such as superwetting or superantiwetting are being intensively explored for their wide-ranging applicability by a biomimetic exploration of unusual wetting phenomena in nature. This study provides a green water-infused superoleophobic composite membrane by boosting bacteria nanocellulose growth on a reinforcement fibrous substrate. It was shown that this versatile antifouling membrane is capable of removing water from surfactant-stabilized oil-in-water micro/nanoemulsions and helps to isolate the oil fraction with very high filtration efficiency. The renewable membrane based on bacteria nanocellulose matrices can vastly improve current technologies by cultivating a naturally occurring soft materials approach with lubricious conformal interfaces to effectively and simply cover suitable surfaces.
Collapse
Affiliation(s)
- Zahra Ashrafi
- Fiber and Polymer Science, NC State University, Campus Box 7616, Raleigh, North Carolina 27695, United States
| | - Lucian Lucia
- Fiber and Polymer Science, NC State University, Campus Box 7616, Raleigh, North Carolina 27695, United States
- Department of Forest Biomaterial, NC State University, Campus Box 8005, Raleigh, North Carolina 27695, United States
- Department of Chemistry, NC State University, Campus Box 8204, Raleigh, North Carolina 27695, United States
- State Key Laboratory of Bio-Based Materials & Green Papermaking, Qilu University of Technology/Shandong Academy of Sciences, Jinan 250353, PR China
| | - Wendy Krause
- Fiber and Polymer Science, NC State University, Campus Box 7616, Raleigh, North Carolina 27695, United States
| |
Collapse
|
27
|
Troncoso OP, Torres FG. Bacterial Cellulose-Graphene Based Nanocomposites. Int J Mol Sci 2020; 21:E6532. [PMID: 32906692 PMCID: PMC7556017 DOI: 10.3390/ijms21186532] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/02/2020] [Accepted: 09/02/2020] [Indexed: 12/20/2022] Open
Abstract
Bacterial cellulose (BC) and graphene are materials that have attracted the attention of researchers due to their outstanding properties. BC is a nanostructured 3D network of pure and highly crystalline cellulose nanofibres that can act as a host matrix for the incorporation of other nano-sized materials. Graphene features high mechanical properties, thermal and electric conductivity and specific surface area. In this paper we review the most recent studies regarding the development of novel BC-graphene nanocomposites that take advantage of the exceptional properties of BC and graphene. The most important applications of these novel BC-graphene nanocomposites include the development of novel electric conductive materials and energy storage devices, the preparation of aerogels and membranes with very high specific area as sorbent materials for the removal of oil and metal ions from water and a variety of biomedical applications, such as tissue engineering and drug delivery. The main properties of these BC-graphene nanocomposites associated with these applications, such as electric conductivity, biocompatibility and specific surface area, are systematically presented together with the processing routes used to fabricate such nanocomposites.
Collapse
Affiliation(s)
| | - Fernando G. Torres
- Department of Mechanical Engineering, Pontificia Universidad Católica del Perú, Lima 15088, Peru;
| |
Collapse
|
28
|
Stumpf TR, Tang L, Kirkwood K, Yang X, Zhang J, Cao X. Production and evaluation of biosynthesized cellulose tubes as promising nerve guides for spinal cord injury treatment. J Biomed Mater Res A 2020; 108:1380-1389. [DOI: 10.1002/jbm.a.36909] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 02/24/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Taisa R. Stumpf
- Department of Chemical and Biological EngineeringUniversity of Ottawa Ottawa Ontario Canada
| | - Linda Tang
- Department of Chemical and Biological EngineeringUniversity of Ottawa Ottawa Ontario Canada
| | - Kathlyn Kirkwood
- Department of Chemical and Biological EngineeringUniversity of Ottawa Ottawa Ontario Canada
| | - Xiuying Yang
- Hainan Institute of Science and Technology Haikou China
| | | | - Xudong Cao
- Department of Chemical and Biological EngineeringUniversity of Ottawa Ottawa Ontario Canada
- Ottawa‐Carleton Institute of Biomedical Engineering Ottawa Ontario Canada
| |
Collapse
|
29
|
Bacterial Cellulose-Modified Polyhydroxyalkanoates Scaffolds Promotes Bone Formation in Critical Size Calvarial Defects in Mice. MATERIALS 2020; 13:ma13061433. [PMID: 32245214 PMCID: PMC7142421 DOI: 10.3390/ma13061433] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/11/2020] [Accepted: 03/16/2020] [Indexed: 11/17/2022]
Abstract
Bone regeneration is a claim challenge in addressing bone defects with large tissue deficits, that involves bone grafts to support the activity. In vitro biocompatibility of the bacterial cellulose-modified polyhydroxyalkanoates (PHB/BC) scaffolds and its osteogenic potential in critical-size mouse calvaria defects had been investigated. Bone promotion and mineralization were analyzed by biochemistry, histology/histomorphometry, X-ray analysis and immunofluorescence for highlighting osteogenesis markers. In summary, our results showed that PHB/BC scaffolds are able to support 3T3-L1 preadipocytes proliferation and had a positive effect on in vivo osteoblast differentiation, consequently inducing new bone formation after 20 weeks post-implantation. Thus, the newly developed PHB/BC scaffolds could turn out to be suitable biomaterials for the bone tissue engineering purpose.
Collapse
|
30
|
Eslahi N, Mahmoodi A, Mahmoudi N, Zandi N, Simchi A. Processing and Properties of Nanofibrous Bacterial Cellulose-Containing Polymer Composites: A Review of Recent Advances for Biomedical Applications. POLYM REV 2019. [DOI: 10.1080/15583724.2019.1663210] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Niloofar Eslahi
- Department of Textile Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Amin Mahmoodi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | - Nafiseh Mahmoudi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | - Nooshin Zandi
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, Iran
| | - Abdolreza Simchi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
31
|
A review on advances in methods for modification of paper supports for use in point-of-care testing. Mikrochim Acta 2019; 186:521. [DOI: 10.1007/s00604-019-3626-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/17/2019] [Indexed: 10/26/2022]
|
32
|
Liu D, Yao K, Li J, Huang Y, Brennan CS, Chen S, Wu H, Zeng X, Brennan M, Li L. The effect of ultraviolet modification of
Acetobacter xylinum
(CGMCC No. 7431) and the use of coconut milk on the yield and quality of bacterial cellulose. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14225] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Dong‐mei Liu
- School of Food Science and Engineering South China University of Technology 381 Wushan Road Guangzhou Guangdong 510640 China
| | - Kun Yao
- School of Food Science and Engineering South China University of Technology 381 Wushan Road Guangzhou Guangdong 510640 China
| | - Jia‐hui Li
- School of Food Science and Engineering South China University of Technology 381 Wushan Road Guangzhou Guangdong 510640 China
| | - Yan‐yan Huang
- School of Food Science and Engineering South China University of Technology 381 Wushan Road Guangzhou Guangdong 510640 China
| | - Charles S. Brennan
- School of Food Science and Engineering South China University of Technology 381 Wushan Road Guangzhou Guangdong 510640 China
- Department of Wine, Food and Molecular Biosciences, Centre for Food Research and Innovation Lincoln University Lincoln 85084 New Zealand
| | - Si‐min Chen
- School of Food Science and Engineering South China University of Technology 381 Wushan Road Guangzhou Guangdong 510640 China
| | - Hui Wu
- School of Food Science and Engineering South China University of Technology 381 Wushan Road Guangzhou Guangdong 510640 China
| | - Xin‐An Zeng
- School of Food Science and Engineering South China University of Technology 381 Wushan Road Guangzhou Guangdong 510640 China
| | - Margaret Brennan
- Department of Wine, Food and Molecular Biosciences, Centre for Food Research and Innovation Lincoln University Lincoln 85084 New Zealand
| | - Li Li
- School of Food Science and Engineering South China University of Technology 381 Wushan Road Guangzhou Guangdong 510640 China
| |
Collapse
|
33
|
Illa MP, Khandelwal M, Sharma CS. Modulated Dehydration for Enhanced Anodic Performance of Bacterial Cellulose derived Carbon Nanofibers. ChemistrySelect 2019. [DOI: 10.1002/slct.201901359] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mani Pujitha Illa
- Department of Materials Science and Metallurgical EngineeringIndian Institute of Technology, Hyderabad, Kandi- 502285 Telangana India
- Creative & Advanced Research Based On Nanomaterial (CARBON) LaboratoryDepartment of Chemical EngineeringIndian Institute of Technology, Hyderabad, Kandi- 502285 Telangana India
| | - Mudrika Khandelwal
- Department of Materials Science and Metallurgical EngineeringIndian Institute of Technology, Hyderabad, Kandi- 502285 Telangana India
| | - Chandra S. Sharma
- Creative & Advanced Research Based On Nanomaterial (CARBON) LaboratoryDepartment of Chemical EngineeringIndian Institute of Technology, Hyderabad, Kandi- 502285 Telangana India
| |
Collapse
|
34
|
Suryanto H, Muhajir M, Sutrisno TA, Mudjiono, Zakia N, Yanuhar U. The Mechanical Strength and Morphology of Bacterial Cellulose Films: The Effect of NaOH Concentration. ACTA ACUST UNITED AC 2019. [DOI: 10.1088/1757-899x/515/1/012053] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
35
|
Immobilization pattern of morphologically different microorganisms on bacterial cellulose membranes. World J Microbiol Biotechnol 2019; 35:11. [PMID: 30604023 DOI: 10.1007/s11274-018-2584-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 12/18/2018] [Indexed: 10/27/2022]
Abstract
The aim of this study was to assess the immobilization pattern of microorganisms characterized by varying cell shapes and sizes (rod-shaped bacteria Lactobacillus delbruecki, spherical-shaped yeast Saccharomyces cerevisiae and hyphae forms of Yarrowia lipolytica) on bacterial cellulose of various material properties. The 'adsorption-incubation' method was used for the purposes of immobilization. The immobilization pattern included adsorption efficiency, ability of the immobilized cells to multiply within the carrier expressed as incubation efficiency and the degree of release of the immobilized cells from the carrier. The efficiency of adsorption and incubation was affected by the morphology of the immobilized cells and increased together with cellulose surface area. For smaller bacterial cells a higher level of loading was obtained on the same surface as compared to larger yeast cells. During incubation, the number of immobilized bacterial and yeast cells increased significantly in comparison to the number of cells adsorbed on the carrier during the adsorption step. Despite the morphological differences between the S. cerevisiae and Y. lipolytica cells, there were no statistically significant differences in the efficiency of adsorption and incubation. It was also revealed that the release ratio values obtained for L. delbruecki and S. cerevisiae increased along with cellulose surface area. Interestingly, Y. lipolytica cells in the pseudohyphae and hyphae forms penetrated deeply into the three-dimensional network of BC nanofibrils which prevented subsequent cell release. It was confirmed that carrier selection must be individually matched to the type of immobilized cells based especially on its porosity-related parameters.
Collapse
|
36
|
Liu F, McMaster M, Mekala S, Singer K, Gross RA. Grown Ultrathin Bacterial Cellulose Mats for Optical Applications. Biomacromolecules 2018; 19:4576-4584. [DOI: 10.1021/acs.biomac.8b01269] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fei Liu
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 1623 15th Street, Troy, New York 12180, United States
| | - Michael McMaster
- Department of Physics, Case Western Reserve University, 2076 Adelbert Road, Cleveland, Ohio 44106, United States
| | - Shekar Mekala
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 1623 15th Street, Troy, New York 12180, United States
| | - Kenneth Singer
- Department of Physics, Case Western Reserve University, 2076 Adelbert Road, Cleveland, Ohio 44106, United States
| | - Richard A. Gross
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 1623 15th Street, Troy, New York 12180, United States
| |
Collapse
|
37
|
Kaminagakura KLN, Sue Sato S, Sugino P, Kataki de Oliveira Veloso L, Dos Santos DC, Padovani CR, Basmaji P, Olyveira G, Schellini SA. Nanoskin® to treat full thickness skin wounds. J Biomed Mater Res B Appl Biomater 2018; 107:724-732. [PMID: 30267636 DOI: 10.1002/jbm.b.34166] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 03/10/2018] [Accepted: 04/29/2018] [Indexed: 12/13/2022]
Abstract
This experimental study evaluated 40 guinea pigs that received Nanoskin®. A full thickness skin rectangle measuring 2x4 cm was removed from the median dorsal region and the wound was covered by a 2X2 cm fragment of uncoated Nanoskin® graft (uncoated group) or Nanoskin® coated with gelatin (coated group) and sutured in the caudal region and a 2x2 cm fragment of autologous skin sutured in the cranial aspect of the surgical wound served a control. The animals were examined daily by ectoscopy and euthanized at 7, 30, 90 and 180 days postoperatively. Immediately after euthanasia, the operated area was shaved, documented with photos and removed, and prepared for morphological, morphometric and ultrastructural exam. It was found that the full thickness skin wound healed in a centripetal pattern. The healing process was similar between groups, with a more pronounced inflammatory reaction initially that gradually decreased over time. The conclusion is that the uncoated Nanoskin® or Nanoskin® coated with gelatin is a good material to treat full thickness skin wound. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res B Part B: Appl Biomater, 2018. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 724-732, 2019.
Collapse
Affiliation(s)
| | - Silvana Sue Sato
- Faculdade de Medicina, Universidade Estadual Paulista, São Paulo, Brazil
| | - Patricia Sugino
- Faculdade de Medicina, Universidade Estadual Paulista, São Paulo, Brazil
| | | | | | | | - Pierre Basmaji
- Faculdade de Medicina, Universidade Estadual Paulista, São Paulo, Brazil
| | - Gabriel Olyveira
- Faculdade de Farmacia, Universidade Estadual Paulista, São Paulo, Brazil
| | | |
Collapse
|
38
|
Low-fibrillated bacterial cellulose nanofibers as a sustainable additive to enhance recycled paper quality. Int J Biol Macromol 2018; 114:1077-1083. [DOI: 10.1016/j.ijbiomac.2018.03.170] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/26/2018] [Accepted: 03/27/2018] [Indexed: 11/19/2022]
|
39
|
Surface modification and evaluation of bacterial cellulose for drug delivery. Int J Biol Macromol 2018; 113:526-533. [DOI: 10.1016/j.ijbiomac.2018.02.135] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 02/19/2018] [Accepted: 02/21/2018] [Indexed: 01/22/2023]
|
40
|
Liu M, Li S, Xie Y, Jia S, Hou Y, Zou Y, Zhong C. Enhanced bacterial cellulose production by Gluconacetobacter xylinus via expression of Vitreoscilla hemoglobin and oxygen tension regulation. Appl Microbiol Biotechnol 2017; 102:1155-1165. [PMID: 29199354 DOI: 10.1007/s00253-017-8680-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 11/23/2017] [Indexed: 10/18/2022]
Abstract
Oxygen plays a key role during bacterial cellulose (BC) biosynthesis by Gluconacetobacter xylinus. In this study, the Vitreoscilla hemoglobin (VHb)-encoding gene vgb, which has been widely applied to improve cell survival during hypoxia, was heterologously expressed in G. xylinus via the pBla-VHb-122 plasmid. G. xylinus and G. xylinus-vgb + were statically cultured under hypoxic (10 and 15% oxygen tension in the gaseous phase), atmospheric (21%), and oxygen-enriched conditions (40 and 80%) to investigate the effect of oxygen on cell growth and BC production. Irrespective of vgb expression, we found that cell density increased with oxygen tension (10-80%) during the exponential growth phase but plateaued to the same value in the stationary phase. In contrast, BC production was found to significantly increase at lower oxygen tensions. In addition, we found that BC production at oxygen tensions of 10 and 15% was 26.5 and 58.6% higher, respectively, in G. xylinus-vgb + than that in G. xylinus. The maximum BC yield and glucose conversion rate, of 4.3 g/L and 184.7 mg/g, respectively, were observed in G. xylinus-vgb + at an oxygen tension of 15%. Finally, BC characterization suggested that hypoxic conditions enhance BC's mass density, Young's modulus, and thermostability, with G. xylinus-vgb + synthesizing softer BC than G. xylinus under hypoxia as a result of a decreased Young's modulus. These results will facilitate the use of static culture for the production of BC.
Collapse
Affiliation(s)
- Miao Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Siqi Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Yongzhen Xie
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Shiru Jia
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Ying Hou
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Yang Zou
- Tianjin Jialihe Livestock Group Co., Ltd, Jin Wei Road, Beichen District, Tianjin, 300402, People's Republic of China
| | - Cheng Zhong
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.
| |
Collapse
|
41
|
Kawee N, Lam NT, Sukyai P. Homogenous isolation of individualized bacterial nanofibrillated cellulose by high pressure homogenization. Carbohydr Polym 2017; 179:394-401. [PMID: 29111066 DOI: 10.1016/j.carbpol.2017.09.101] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/19/2017] [Accepted: 09/29/2017] [Indexed: 12/27/2022]
Abstract
Varying levels of high pressure homogenization (HPH) were applied to disintegrate bacterial nanofibrillated cellulose (BNFC) from bacterial cellulose (BC). HPH was considered as a simple, non-toxic and highly efficient physical method for nanofibrillated cellulose extraction. The blended BC passed through chambers at high pressures of 68, 138 and 207MPa for 30 cycles. The particle size confirmed disintegration of the BC network fibers to bundles of BNFC and the atomic force microscopy images showed the decreased diameter of individual BNFC in the range 36-67nm. Fourier transform infrared spectroscopy measurement indicated there were no change in the chemical functional groups of the BNFC compared with BC. The decreased crystallinity index and crystallite size of BNFC with increased pressure confirmed the effect of HPH on the BNFC. Nevertheless, BNFC at 207MPa had the lowest thermal stability due to having the highest surface area, which resulted in the minimum nanofiber diameter.
Collapse
Affiliation(s)
- Napakarn Kawee
- Biotechnology of Biopolymers and Bioactive Compounds Special Research Unit, Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand.
| | - Nga Tien Lam
- Biotechnology of Biopolymers and Bioactive Compounds Special Research Unit, Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand.
| | - Prakit Sukyai
- Biotechnology of Biopolymers and Bioactive Compounds Special Research Unit, Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand.
| |
Collapse
|
42
|
Wu HL, Bremner DH, Wang HJ, Wu JZ, Li HY, Wu JR, Niu SW, Zhu LM. Fabrication and investigation of a biocompatible microfilament with high mechanical performance based on regenerated bacterial cellulose and bacterial cellulose. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017. [DOI: 10.1016/j.msec.2017.05.073] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Production and Status of Bacterial Cellulose in Biomedical Engineering. NANOMATERIALS 2017; 7:nano7090257. [PMID: 32962322 PMCID: PMC5618368 DOI: 10.3390/nano7090257] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/30/2017] [Accepted: 09/01/2017] [Indexed: 01/13/2023]
Abstract
Bacterial cellulose (BC) is a highly pure and crystalline material generated by aerobic bacteria, which has received significant interest due to its unique physiochemical characteristics in comparison with plant cellulose. BC, alone or in combination with different components (e.g., biopolymers and nanoparticles), can be used for a wide range of applications, such as medical products, electrical instruments, and food ingredients. In recent years, biomedical devices have gained important attention due to the increase in medical engineering products for wound care, regeneration of organs, diagnosis of diseases, and drug transportation. Bacterial cellulose has potential applications across several medical sectors and permits the development of innovative materials. This paper reviews the progress of related research, including overall information about bacterial cellulose, production by microorganisms, mechanisms as well as BC cultivation and its nanocomposites. The latest use of BC in the biomedical field is thoroughly discussed with its applications in both a pure and composite form. This paper concludes the further investigations of BC in the future that are required to make it marketable in vital biomaterials.
Collapse
|
44
|
Lee SH, An SJ, Lim YM, Huh JB. The Efficacy of Electron Beam Irradiated Bacterial Cellulose Membranes as Compared with Collagen Membranes on Guided Bone Regeneration in Peri-Implant Bone Defects. MATERIALS 2017; 10:ma10091018. [PMID: 28862689 PMCID: PMC5615673 DOI: 10.3390/ma10091018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/16/2017] [Accepted: 08/22/2017] [Indexed: 12/22/2022]
Abstract
Bacterial cellulose (BC) is a natural polysaccharide produced by some bacteria, and consists of a linear polymer linked by β-(1,4) glycosidic bonds. BC has been developed as a material for tissue regeneration purposes. This study was conducted to evaluate the efficacy of resorbable electron beam irradiated BC membranes (EI-BCMs) for guided bone regeneration (GBR). The electron beam irradiation (EI) was introduced to control the biodegradability of BC for dental applications. EI-BCMs had higher porosity than collagen membranes (CMs), and had similar wet tensile strengths to CMs. NIH3T3 cell adhesion and proliferation on EI-BCMs were not significantly different from those on CMs (p > 0.05). Micro-computed tomography (μCT) and histometric analysis in peri-implant dehiscence defects of beagle dogs showed that EI-BCMs were non-significantly different from CMs in terms of new bone area (NBA; %), remaining bone substitute volume (RBA; %) and bone-to-implant contact (BIC; %) (p > 0.05). These results suggest resorbable EI-BCMs can be used as an alternative biomaterial for bone tissue regeneration.
Collapse
Affiliation(s)
- So-Hyoun Lee
- Department of Prosthodontics, Dental Research Institute, Institute of Translational Dental Sciences, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 50612, Korea.
| | - Sung-Jun An
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup-si, Jeollabuk-do 56212, Korea.
| | - Youn-Mook Lim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup-si, Jeollabuk-do 56212, Korea.
| | - Jung-Bo Huh
- Department of Prosthodontics, Dental Research Institute, Institute of Translational Dental Sciences, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 50612, Korea.
| |
Collapse
|
45
|
Qi GX, Luo MT, Huang C, Guo HJ, Chen XF, Xiong L, Wang B, Lin XQ, Peng F, Chen XD. Comparison of bacterial cellulose production by Gluconacetobacter xylinus
on bagasse acid and enzymatic hydrolysates. J Appl Polym Sci 2017. [DOI: 10.1002/app.45066] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Gao-Xiang Qi
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences; Guangzhou 510640 People's Republic of China
- University of Chinese Academy of Sciences; Beijing 100049 People's Republic of China
| | - Mu-Tan Luo
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences; Guangzhou 510640 People's Republic of China
- University of Chinese Academy of Sciences; Beijing 100049 People's Republic of China
| | - Chao Huang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences; Guangzhou 510640 People's Republic of China
- CAS Key Laboratory of Renewable Energy; Guangzhou 510640 People's Republic of China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development; Guangzhou 510640 People's Republic of China
| | - Hai-Jun Guo
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences; Guangzhou 510640 People's Republic of China
- CAS Key Laboratory of Renewable Energy; Guangzhou 510640 People's Republic of China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development; Guangzhou 510640 People's Republic of China
| | - Xue-Fang Chen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences; Guangzhou 510640 People's Republic of China
- CAS Key Laboratory of Renewable Energy; Guangzhou 510640 People's Republic of China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development; Guangzhou 510640 People's Republic of China
| | - Lian Xiong
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences; Guangzhou 510640 People's Republic of China
- CAS Key Laboratory of Renewable Energy; Guangzhou 510640 People's Republic of China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development; Guangzhou 510640 People's Republic of China
| | - Bo Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences; Guangzhou 510640 People's Republic of China
- University of Chinese Academy of Sciences; Beijing 100049 People's Republic of China
| | - Xiao-Qing Lin
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences; Guangzhou 510640 People's Republic of China
- CAS Key Laboratory of Renewable Energy; Guangzhou 510640 People's Republic of China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development; Guangzhou 510640 People's Republic of China
| | - Fen Peng
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences; Guangzhou 510640 People's Republic of China
- CAS Key Laboratory of Renewable Energy; Guangzhou 510640 People's Republic of China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development; Guangzhou 510640 People's Republic of China
| | - Xin-De Chen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences; Guangzhou 510640 People's Republic of China
- CAS Key Laboratory of Renewable Energy; Guangzhou 510640 People's Republic of China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development; Guangzhou 510640 People's Republic of China
| |
Collapse
|
46
|
Ebrahimi E, Babaeipour V, Meftahi A, Alibakhshi S. Effects of Bio-Production Process Parameters on Bacterial Cellulose Mechanical Properties. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2017. [DOI: 10.1252/jcej.15we301] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ehsan Ebrahimi
- Biotechnology Group, Faculty of Chemical Engineering, University of Isfahan
| | - Valiollah Babaeipour
- Department of Bioscience and Biotechnology, Malek Ashtar University of Technology
| | - Amin Meftahi
- Department of Textile Engineering, South Tehran Branch, Islamic Azad University
| | | |
Collapse
|
47
|
Fijałkowski K, Żywicka A, Drozd R, Kordas M, Rakoczy R. Effect of Gluconacetobacter xylinus cultivation conditions on the selected properties of bacterial cellulose. POLISH JOURNAL OF CHEMICAL TECHNOLOGY 2016. [DOI: 10.1515/pjct-2016-0080] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The aim of the study was to analyze the changes in the parameters of bacterial cultures and bacterial cellulose (BC) synthesized by four reference strains of Gluconacetobacter xylinus during 31-day cultivation in stationary conditions. The study showed that the most visible changes in the analyzed parameters of BC, regardless of the bacterial strain used for their synthesis, were observed in the first 10–14 days of the experiment. It was also revealed, that among parameters showing dependence associated with the particular bacterial strain were the rate and period of BC synthesis, the growth rate of bacteria anchored to the cellulose fibrils, the capacity to absorb water and the water release rate. The results presented in this work may be useful in the selection of optimum culturing conditions and period from the point of view of good efficiency of the cellulose synthesis process.
Collapse
Affiliation(s)
- Karol Fijałkowski
- West Pomeranian University of Technology, Szczecin, Department of Immunology, Microbiology and Physiological Chemistry, al. Piastów 45, 70-311 Szczecin, Poland
| | - Anna Żywicka
- West Pomeranian University of Technology, Szczecin, Department of Immunology, Microbiology and Physiological Chemistry, al. Piastów 45, 70-311 Szczecin, Poland
| | - Radosław Drozd
- West Pomeranian University of Technology, Szczecin, Department of Immunology, Microbiology and Physiological Chemistry, al. Piastów 45, 70-311 Szczecin, Poland
| | - Marian Kordas
- West Pomeranian University of Technology, Szczecin, Institute of Chemical Engineering and Environmental Protection Processes, Faculty of Chemical Technology and Engineering, al. Piastów 42, 70-311 Szczecin, Poland
| | - Rafał Rakoczy
- West Pomeranian University of Technology, Szczecin, Institute of Chemical Engineering and Environmental Protection Processes, Faculty of Chemical Technology and Engineering, al. Piastów 42, 70-311 Szczecin, Poland
| |
Collapse
|
48
|
Stumpf TR, Yang X, Zhang J, Cao X. In situ and ex situ modifications of bacterial cellulose for applications in tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 82:372-383. [PMID: 29025671 DOI: 10.1016/j.msec.2016.11.121] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 10/04/2016] [Accepted: 11/27/2016] [Indexed: 12/20/2022]
Abstract
Bacterial cellulose (BC) is secreted by a few strains of bacteria and consists of a cellulose nanofiber network with unique characteristics. Because of its excellent mechanical properties, outstanding biocompatibilities, and abilities to form porous structures, BC has been studied for a variety of applications in different fields, including the use as a biomaterial for scaffolds in tissue engineering. To extend its applications in tissue engineering, native BC is normally modified to enhance its properties. Generally, BC modifications can be made by either in situ modification during cell culture or ex situ modification of existing BC microfibers. In this review we will first provide a brief introduction of BC and its attributes; this will set the stage for in-depth and up-to-date discussions on modified BC. Finally, the review will focus on in situ and ex situ modifications of BC and its applications in tissue engineering, particularly in bone regeneration and wound dressing.
Collapse
Affiliation(s)
- Taisa Regina Stumpf
- Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Xiuying Yang
- Hainan Institute of Science and Technology, 571126 Haikou, China
| | - Jingchang Zhang
- Hainan Institute of Science and Technology, 571126 Haikou, China.
| | - Xudong Cao
- Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada.
| |
Collapse
|
49
|
|
50
|
Wet and Dry Forms of Bacterial Cellulose Synthetized by Different Strains of Gluconacetobacter xylinus as Carriers for Yeast Immobilization. Appl Biochem Biotechnol 2016; 180:805-816. [PMID: 27188971 DOI: 10.1007/s12010-016-2134-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 05/10/2016] [Indexed: 10/21/2022]
Abstract
The present study aimed to explore and describe the properties of bacterial cellulose (BC) membranes obtained from three different strains of Gluconacetobacter xylinus for 72, 120, and 168 h, used as a carrier support for the immobilization of Saccharomyces cerevisiae. The experiments also included the analysis of glucose consumption and alcohol production during the fermentation process displayed by yeasts immobilized on the BC surface. The results of the present study demonstrate that the number of immobilized yeast cells is dependent on the type of cellulose-synthesizing strain, cellulose form, and duration of its synthesis. The BC in the form of wet membranes obtained after 3 days of synthesis displayed the most favorable properties as a carrier for yeast immobilization. The immobilization of yeast cells on BC, regardless of its form, increased the amount of the produced alcohol as compared to free cells. The yeast cells immobilized in BC were able to multiply on its surface during the fermentation process.
Collapse
|