1
|
Che S, Sun C, Yang L, Zhou M, Xia L, Yan J, Jiang M, Wang J, Wang H, Zhao W, Toth I, Hu B, Guo T, Fan J. T6SS and T4SS Redundantly Secrete Effectors to Govern the Virulence and Bacterial Competition in Pectobacterium PccS1. PHYTOPATHOLOGY 2024; 114:1926-1939. [PMID: 38749069 DOI: 10.1094/phyto-11-23-0455-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Previous studies revealed that the type VI secretion system (T6SS) has an essential role in bacterial competition and virulence in many gram-negative bacteria. However, the role of T6SS in virulence in Pectobacterium atrosepticum remains controversial. We examined a closely related strain, PccS1, and discovered that its T6SS comprises a single-copy cluster of 17 core genes with a higher identity to homologs from P. atrosepticum. Through extensive phenotypic and functional analyses of over 220 derivatives of PccS1, we found that three of the five VgrGs could be classified into group I VgrGs. These VgrGs interacted with corresponding DUF4123 domain proteins, which were secreted outside of the membrane and were dependent on either the T6SS or type IV secretion system (T4SS). This interaction directly governed virulence and competition. Meanwhile, supernatant proteomic analyses with strains defective in the T6SS and/or T4SS confirmed that effectors, such as FhaB, were secreted redundantly to control the virulence and suppress host callose deposition in the course of infection. Notably, this redundant secretion mechanism between the T6SS and T4SS is believed to be the first of its kind in bacteria.
Collapse
Affiliation(s)
- Shu Che
- Laboratory of Bacteriology, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- Cell and Molecular Science, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Chen Sun
- Laboratory of Bacteriology, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Liuke Yang
- Laboratory of Bacteriology, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Min Zhou
- Laboratory of Bacteriology, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Lingyan Xia
- Laboratory of Bacteriology, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jingyuan Yan
- Laboratory of Bacteriology, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Mengyi Jiang
- Laboratory of Bacteriology, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiaju Wang
- Laboratory of Bacteriology, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Huan Wang
- Laboratory of Bacteriology, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- Cell and Molecular Science, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
- Institute of Agricultural Science of Suzhou, Taihu Lake District, Suzhou 215155, China
| | - Wenjun Zhao
- CAIQ Center for Biosafety, Sanya 572024, China
| | - Ian Toth
- Cell and Molecular Science, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Baishi Hu
- Laboratory of Bacteriology, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Tao Guo
- Southern Breeding Administrate Office of Hainan Province, Sanya 572000, China
| | - Jiaqin Fan
- Laboratory of Bacteriology, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
2
|
Mielnichuk N, Joya CM, Monachesi MA, Bertani RP. Exopolysaccharide Production and Precipitation Method as a Tool to Study Virulence Factors. Methods Mol Biol 2024; 2751:71-79. [PMID: 38265710 DOI: 10.1007/978-1-0716-3617-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Acidovorax avenae subsp. avenae (Aaa) is the causal agent of red stripe in sugarcane, a disease characterized by two forms: leaf stripe and top rot. Despite the importance of this disease, little is known about Aaa virulence factors (VFs) and their function in the infection process. Among the different array of VFs exerted by phytopathogenic bacteria, exopolysaccharides (EPSs) often confer a survival advantage by protecting the cell against abiotic and biotic stresses, including host defensive factors. They are also main components of the extracellular matrix involved in cell-cell recognition, surface adhesion, and biofilm formation. EPS composition and properties have been well studied for some plant pathogenic bacteria; nevertheless, there is no knowledge about Aaa-EPS. In this work, we describe a simple and reliable method for EPS production, precipitation, and quantification based on cold precipitation after ethanol addition, which will allow to study EPS characteristics of different Aaa strains and to evaluate the association among EPS (e.g., amount, composition, viscosity) and Aaa pathogenicity.
Collapse
Affiliation(s)
- Natalia Mielnichuk
- Instituto de Ciencia y Tecnología Dr. César Milstein, Fundación Pablo Cassará, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Constanza M Joya
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA), Estación Experimental Agroindustrial Obispo Colombres (EEAOC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Tucumán, Argentina
| | - María A Monachesi
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA), Estación Experimental Agroindustrial Obispo Colombres (EEAOC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Tucumán, Argentina
| | - Romina P Bertani
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA), Estación Experimental Agroindustrial Obispo Colombres (EEAOC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Tucumán, Argentina
| |
Collapse
|
3
|
Sanchez-Mahecha O, Klink S, Heinen R, Rothballer M, Zytynska S. Impaired microbial N-acyl homoserine lactone signalling increases plant resistance to aphids across variable abiotic and biotic environments. PLANT, CELL & ENVIRONMENT 2022; 45:3052-3069. [PMID: 35852014 DOI: 10.1111/pce.14399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Beneficial bacteria interact with plants using signalling molecules, such as N-acyl homoserine-lactones (AHLs). Although there is evidence that these molecules affect plant responses to pathogens, few studies have examined their effect on plant-insect and microbiome interactions, especially under variable soil conditions. We investigated the effect of the AHL-producing rhizobacterium Acidovorax radicis and its AHL-negative mutant (does not produce AHLs) on modulating barley (Hordeum vulgare) plant interactions with cereal aphids (Sitobion avenae) and earthworms (Dendrobaena veneta) across variable nutrient soils. Acidovorax radicis inoculation increased plant growth and suppressed aphids, with stronger effects by the AHL-negative mutant. However, effects varied between barley cultivars and the presence of earthworms altered interaction outcomes. Bacteria-induced plant defences differed between cultivars, and aphid exposure, with pathogenesis-related and WRKY pathways partly explaining the ecological effects in the more resistant cultivars. Additionally, we observed few but specific indirect effects via the wider root microbiome where the AHL-mutant strain influenced rare OTU abundances. We conclude that bacterial AHL-signalling disruption affects plant-microbial interactions by inducing different plant pathways, leading to increased insect resistance, also mediated by the surrounding biotic and abiotic environment. Understanding the mechanisms by which beneficial bacteria can reduce insect pests is a key research area for developing effective insect pest management strategies in sustainable agriculture.
Collapse
Affiliation(s)
- Oriana Sanchez-Mahecha
- Department of Ecology and Ecosystem Management, Technical University of Munich, Terrestrial Ecology Research Group, School of Life Sciences Weihenstephan, Freising, Germany
| | - Sophia Klink
- Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Institute of Network Biology, Neuherberg, Germany
| | - Robin Heinen
- Department of Ecology and Ecosystem Management, Technical University of Munich, Terrestrial Ecology Research Group, School of Life Sciences Weihenstephan, Freising, Germany
| | - Michael Rothballer
- Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Institute of Network Biology, Neuherberg, Germany
| | - Sharon Zytynska
- Department of Ecology and Ecosystem Management, Technical University of Munich, Terrestrial Ecology Research Group, School of Life Sciences Weihenstephan, Freising, Germany
- Department of Evolution, Ecology, and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
4
|
Wang Y, Zhao Y, Xia L, Chen L, Liao Y, Chen B, Liu Y, Gong W, Tian Y, Hu B. yggS Encoding Pyridoxal 5'-Phosphate Binding Protein Is Required for Acidovorax citrulli Virulence. Front Microbiol 2022; 12:783862. [PMID: 35087487 PMCID: PMC8787154 DOI: 10.3389/fmicb.2021.783862] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/06/2021] [Indexed: 11/26/2022] Open
Abstract
Bacterial fruit blotch, caused by seed-borne pathogen Acidovorax citrulli, poses a serious threat to the production of cucurbits globally. Although the disease can cause substantial economic losses, limited information is available about the molecular mechanisms of virulence. This study identified that, a random transposon insertion mutant impaired in the ability to elicit a hypersensitive response on tobacco. The disrupted gene in this mutant was determined to be Aave_0638, which is predicted to encode a YggS family pyridoxal phosphate-dependent enzyme. YggS is a highly conserved protein among multiple organisms, and is responsible for maintaining the homeostasis of pyridoxal 5′-phosphate and amino acids in cells. yggS deletion mutant of A. citrulli strain XjL12 displayed attenuated virulence, delayed hypersensitive response, less tolerance to H2O2 and pyridoxine, increased sensitivity to antibiotic β-chloro-D-alanine, and reduced swimming. In addition, RNA-Seq analysis demonstrated that yggS was involved in regulating the expression of certain pathogenicity-associated genes related to secretion, motility, quorum sensing and oxidative stress response. Importantly, YggS significantly affected type III secretion system and its effectors in vitro. Collectively, our results suggest that YggS is indispensable for A.citrulli virulence and expands the role of YggS in the biological processes.
Collapse
Affiliation(s)
- Yuanjie Wang
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Yuqiang Zhao
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-sen), Nanjing, China
| | - Liming Xia
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Lin Chen
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Yajie Liao
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Baohui Chen
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Yiyang Liu
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Weirong Gong
- Plant Protection and Quarantine Station of Province, Nanjing, China
| | - Yanli Tian
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Baishi Hu
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
5
|
Guan W, Wang T, Huang Q, Zhao M, Tian E, Liu Y, Liu B, Yang Y, Zhao T. Transcriptomic and Functional Analyses Reveal Roles of AclR, a luxR-type Global Regular, in Regulating Motility and Virulence of Acidovorax citrulli. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:952-961. [PMID: 33779205 DOI: 10.1094/mpmi-01-21-0020-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
LuxR-type transcriptional regulators are essential for many physiological processes in bacteria, including pathogenesis. Acidovorax citrulli is a seedborne bacterial pathogen responsible for bacterial fruit blotch, which causes great losses in melon and watermelon worldwide. However, the LuxR-type transcriptional factors in A. citrulli have not been well studied, except for the previously reported LuxR-type regulatory protein, AcrR, involved in regulating virulence and motility. Here, we characterized a second LuxR-type regulator, AclR, in the group II strain Aac-5 of A. citrulli by mutagenesis, virulence and motility assays, and transcriptomic analysis. Deletion of aclR resulted in impaired twitching and swimming motility and flagellar formation and diminished virulence but increased biofilm formation. Transcriptomic analysis revealed that 1,379 genes were differentially expressed in the aclR mutant strain, including 29 genes involved in flagellar assembly and 3 involved in pili formation, suggesting a regulatory role for AclR in multiple important biological functions of A. citrulli. Together, our results not only indicate that AclR plays a global role in transcriptional regulation in A. citrulli influencing motility, biofilm formation, and virulence but also provide perspective regarding the regulatory network of biological functions in A. citrulli.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Wei Guan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tielin Wang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qi Huang
- Floral and Nursery Plants Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Beltsville, MD, U.S.A
| | - Mei Zhao
- Department of Plant Pathology, University of Georgia, Tifton, GA, U.S.A
| | - Eryuan Tian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanfeng Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bo Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuwen Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tingchang Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
6
|
Ling J, Zhou L, Wu G, Zhao Y, Jiang T, Liu F. The AHL Quorum-Sensing System Negatively Regulates Growth and Autolysis in Lysobacter brunescens. Front Microbiol 2019; 10:2748. [PMID: 31849892 PMCID: PMC6902743 DOI: 10.3389/fmicb.2019.02748] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/12/2019] [Indexed: 11/13/2022] Open
Abstract
Lysobacter species are emerging as novel sources of antibiotics, but the regulation of their physiological metabolism is still poorly understood. In this work, we extracted AHL (acyl-homoserine lactone) autoinducers, identified the structures of AHLs and described the AHL quorum-sensing system in Lysobacter brunescens OH23. AHLs were isolated from the supernatant of L. brunescens OH23, and ESI-MS/MS (electrospray ionization mass spectrometry) analysis revealed biosynthesis of three different AHL chemical structures by L. brunescens OH23: N-(3-oxohexanoyl)- homoserine lactone (HSL), 3-OH-C10-HSL and C8-HSL. The growth rate of AHL quorum-sensing knockout mutants was dramatically increased compared to that of wildtype. Sucrose consumptions were also twice as high in AHL quorum-sensing knockout mutants than that in wildtype in early-log phase. Additionally, expression of key genes related to sucrose metabolism α-glucosidase was enhanced in AHL quorum-sensing knockout mutants, which indicated that AHL quorum sensing negatively regulates sucrose uptake and metabolism which further affects the growth rate of L. brunescens. Furthermore, autolysis was strongly induced in AHL quorum-sensing knockout mutants compared to wildtype, suggesting that AHL quorum sensing plays a negative regulatory role in cell autolysis. Moreover, compared to wildtype, XSAC (Xanthomonas-specific antibiotic compound) production was significantly increased in AHL knockout mutants in the early-log and late-log phases, and surface motility capabilities are also enhanced also in AHL knockout mutants; the normalized data of XSAC production and surface motility and expressions of key genes related to these two phenotypes reveal that growth rare and autolysis strongly affects XSAC biosynthesis and surface motility rather than AHL quorum-sensing system. Our results show that the AHL quorum-sensing system negatively regulates cell growth and autolysis, and further maintain nutrition homeostasis and population stability in L. brunescens.
Collapse
Affiliation(s)
- Jun Ling
- Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Lan Zhou
- Academy of Agricultural Sciences of Yanbian, Longjing, China
| | - Guichun Wu
- Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yancun Zhao
- Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Tianping Jiang
- Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Fengquan Liu
- Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
7
|
Kaur A, Capalash N, Sharma P. Communication mechanisms in extremophiles: Exploring their existence and industrial applications. Microbiol Res 2019; 221:15-27. [DOI: 10.1016/j.micres.2019.01.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/02/2019] [Accepted: 01/17/2019] [Indexed: 12/20/2022]
|
8
|
Wang C, Pu T, Lou W, Wang Y, Gao Z, Hu B, Fan J. Hfq, a RNA Chaperone, Contributes to Virulence by Regulating Plant Cell Wall-Degrading Enzyme Production, Type VI Secretion System Expression, Bacterial Competition, and Suppressing Host Defense Response in Pectobacterium carotovorum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:1166-1178. [PMID: 30198820 DOI: 10.1094/mpmi-12-17-0303-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Hfq is a RNA chaperone and participates in a wide range of cellular processes and pathways. In this study, mutation of hfq gene from Pectobacterium carotovorum subsp. carotovorum PccS1 led to significantly reduced virulence and plant cell wall-degrading enzyme (PCWDE) activities. In addition, the mutant exhibited decreased biofilm formation and motility and greatly attenuated carbapenem production as well as secretion of hemolysin coregulated protein (Hcp) as compared with wild-type strain PccS1. Moreover, a higher level of callose deposition was induced in Nicotiana benthamiana leaves when infiltrated with the mutant. A total of 26 small (s)RNA deletion mutants were obtained among a predicted 27 sRNAs, and three mutants exhibited reduced virulence in the host plant. These results suggest that hfq plays a key role in Pectobacterium virulence by positively impacting PCWDE production, secretion of the type VI secretion system, bacterial competition, and suppression of host plant responses.
Collapse
Affiliation(s)
- Chunting Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Tianxin Pu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wangying Lou
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yujie Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zishu Gao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Baishi Hu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiaqin Fan
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
9
|
Jiang H, Jiang M, Yang L, Yao P, Ma L, Wang C, Wang H, Qian G, Hu B, Fan J. The Ribosomal Protein RplY Is Required for Pectobacterium carotovorum Virulence and Is Induced by Zantedeschia elliotiana Extract. PHYTOPATHOLOGY 2017; 107:1322-1330. [PMID: 28853642 DOI: 10.1094/phyto-04-17-0161-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Pectobacterium carotovorum subsp. carotovorum strain PccS1, a bacterial pathogen causing soft rot disease of Zantedeschia elliotiana (colored calla), was investigated for virulence genes induced by the host plant. Using a promoter-trap transposon (mariner), we obtained 500 transposon mutants showing kanamycin resistance dependent on extract of Z. elliotiana. One of these mutants, PM86, exhibited attenuated virulence on both Z. elliotiana and Brassica rapa subsp. pekinensis. The growth of PM86 was also reduced in minimal medium (MM), and the reduction was restored by adding plant extract to the MM. The gene containing the insertion site was identified as rplY. The deletion mutant ΔrplY, exhibited reduced virulence, motility and plant cell wall-degrading enzyme production but not biofilm formation. Analysis of gene expression and reporter fusions revealed that the rplY gene in PccS1 is up-regulated at both the transcriptional and the translational levels in the presence of plant extract. Our results suggest that rplY is induced by Z. elliotiana extract and is crucial for virulence in P. carotovorum subsp. carotovorum.
Collapse
Affiliation(s)
- Huan Jiang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mengyi Jiang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Liuke Yang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Peiyan Yao
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lin Ma
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chunting Wang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Huan Wang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Gouliang Qian
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Baishi Hu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiaqin Fan
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
10
|
Wang T, Guan W, Huang Q, Yang Y, Yan W, Sun B, Zhao T. Quorum-sensing contributes to virulence, twitching motility, seed attachment and biofilm formation in the wild type strain Aac-5 of Acidovorax citrulli. Microb Pathog 2016; 100:133-140. [PMID: 27594669 DOI: 10.1016/j.micpath.2016.08.039] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 06/16/2016] [Accepted: 08/31/2016] [Indexed: 10/21/2022]
Abstract
Acidovorax citrulli is a seed-borne pathogen causing bacterial fruit blotch of cucurbits including melon and watermelon. We investigated the roles of quorum sensing in the wild-type group II strain Aac-5 of A. citrulli by generating aacR and aacI knockout mutants and their complementation strains. We found that twitching motility and virulence were reduced, but biofilm formation and seed attachment were increased significantly in the two mutants as compared to the wild type strain. Deletion of aacR and aacI, however, had no effect on swimming motility and polar flagella formation of Aac-5. Furthermore, deletion of aacR resulted in reduced gene expression of hrpE, hrcN and pilT, while deletion of aacI affected only the expression of hrpE and pilT, not hrcN.
Collapse
Affiliation(s)
- Tielin Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, State Key Laboratory Breeding Base of Dao-di Herbs, Beijng, 100700, China.
| | - Wei Guan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Qi Huang
- Floral and Nursery Plants Research Unit, Agricultural Research Service, U. S. Dept. of Agriculture, Beltsville, Maryland, USA.
| | - Yuwen Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Wanrong Yan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Baixin Sun
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Tingchang Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
11
|
Attenuation and quantitation of virulence gene expression in quorum-quenched Dickeya chrysanthemi. Arch Microbiol 2016; 199:51-61. [PMID: 27496158 DOI: 10.1007/s00203-016-1276-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 07/03/2016] [Accepted: 07/27/2016] [Indexed: 01/24/2023]
Abstract
N-Acyl-homoserine lactones (AHLs)-dependent quorum sensing (QS) system(s) is recruited by the soft rot bacterium Dickeya chrysanthemi for coordinating its social activities such as secretion of plant cell wall-degrading enzymes, while the main signal molecule and quantity dependence of virulence to QS in this bacterium have not been clarified. To do this end, the involvement of AHLs in African violet leaves and potato tuber maceration; swarming motility; pectate lyase and polygalacturonase enzymes production and in planta expression of virulence genes including pelE, pehX and pemA by electroporating two quorum-quenching vectors. The expression of two types of AHL-lactonase expressing vector caused dramatic decrease in swarming motility, production of pectinolytic enzymes and macerating of plant tissues. The maximum ability of quenching of QS in repression of D. chrysanthemi virulence was assessed quantitatively by q-RT-PCR, as expression of pelE, pehX and pemA genes were decreased 90.5-92.18 % in quenched cells. We also showed that virulence and pathogenicity of this bacterium was under the control of DHL-dependent QS system and that the existence of second DHL operating system is probable for this bacterium. Thus, this signal molecule would be the key point for future research to design DHL-specific lactonase enzymes using bioinformatics methods.
Collapse
|
12
|
Luo J, Qiu W, Chen L, Anjum SI, Yu M, Shan C, Ilyas M, Li B, Wang Y, Sun G. Identification of Pathogenicity-Related Genes in Biofilm-Defective Acidovorax citrulli by Transposon Tn5 Mutagenesis. Int J Mol Sci 2015; 16:28050-62. [PMID: 26602922 PMCID: PMC4691024 DOI: 10.3390/ijms161226076] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 11/10/2015] [Accepted: 11/16/2015] [Indexed: 11/16/2022] Open
Abstract
Biofilm formation is important for virulence of a large number of plant pathogenic bacteria. Indeed, some virulence genes have been found to be involved in the formation of biofilm in bacterial fruit blotch pathogen Acidovorax citrulli. However, some virulent strains of A. citrulli were unable to format biofilm, indicating the complexity between biofilm formation and virulence. In this study, virulence-related genes were identified in the biofilm-defective strain A1 of A. citrulli by using Tn5 insertion, pathogenicity test, and high-efficiency thermal asymmetric interlaced PCR (hiTAIL-PCR). Results from this study indicated that 22 out of the obtained 301 mutants significantly decreased the virulence of strain A1 compared to the wild-type. Furthermore, sequence analysis indicated that the obtained 22 mutants were due to the insertion of Tn5 into eight genes, including Aave 4244 (cation diffusion facilitator family transporter), Aave 4286 (hypothetical protein), Aave 4189 (alpha/beta hydrolase fold), Aave 1911 (IMP dehydrogenase/GMP reductase domain), Aave 4383 (bacterial export proteins, family 1), Aave 4256 (Hsp70 protein), Aave 0003 (histidine kinase, DNA gyrase B, and HSP90-like ATPase), and Aave 2428 (pyridoxal-phosphate dependent enzyme). Furthermore, the growth of mutant Aave 2428 was unaffected and even increased by the change in incubation temperature, NaCl concentration and the pH of the LB broth, indicating that this gene may be directly involved in the bacterial virulence. Overall, the determination of the eight pathogenicity-related genes in strain A1 will be helpful to elucidate the pathogenesis of biofilm-defective A. citrulli.
Collapse
Affiliation(s)
- Jinyan Luo
- Department of Plant Quarantine, Shanghai Extension and Service Center of Agriculture Technology, Shanghai 201103, China.
| | - Wen Qiu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Lei Chen
- Department of Plant Quarantine, Shanghai Extension and Service Center of Agriculture Technology, Shanghai 201103, China.
| | - Syed Ishtiaq Anjum
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
- Department of Zoology, Kohat University of Science and Technology, Kohat 26000, Pakistan.
| | - Menghao Yu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Changlin Shan
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
- Department of Plant Quarantine, Zhoushan Entry-Exit Inspections and Quarantine Bureau, Hangzhou 310012, China.
| | - Mehmoona Ilyas
- Department of Biotechnology, University of Sargodha, Sargodha 40100, Pakistan.
| | - Bin Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Yanli Wang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Plant Pest and Disease Control, Key Laboratory of Detection for Pesticide Residues, Ministry of Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Guochang Sun
- State Key Laboratory Breeding Base for Zhejiang Sustainable Plant Pest and Disease Control, Key Laboratory of Detection for Pesticide Residues, Ministry of Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
13
|
Biofilm formation of meat-borne Salmonella enterica and inhibition by the cell-free supernatant from Pseudomonas aeruginosa. Food Control 2013. [DOI: 10.1016/j.foodcont.2013.01.047] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
14
|
Burdman S, Walcott R. Acidovorax citrulli: generating basic and applied knowledge to tackle a global threat to the cucurbit industry. MOLECULAR PLANT PATHOLOGY 2012; 13:805-15. [PMID: 22738439 PMCID: PMC6638624 DOI: 10.1111/j.1364-3703.2012.00810.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
UNLABELLED Acidovorax citrulli is the causal agent of bacterial fruit blotch (BFB) of cucurbit plants. In recent years, the disease has spread to many parts of the world, mainly via the inadvertent distribution of contaminated commercial seeds. Because of the costly lawsuits filed by growers against seed companies and the lack of efficient management methods, BFB represents a serious threat to the cucurbit industry, and primarily to watermelons and melons. Despite the economic importance of the disease, little is known about the basic aspects of A. citrulli pathogenesis. Nevertheless, the release of the genome of one A. citrulli strain, as well as the optimization of molecular manipulation and inoculation methods, has prompted basic studies and allowed advances towards an understanding of A. citrulli pathogenicity. In this article, we summarize the current knowledge about this important pathogen, with emphasis on its epidemiology and the factors involved in its pathogenicity and virulence. TAXONOMY Bacteria; Betaproteobacteria; order Burkholderiales; family C omamonadaceae; genus Acidovorax; species citrulli. MICROBIOLOGICAL PROPERTIES Gram-negative, strictly aerobic, rod-shaped; average dimensions of 0.5 μm × 1.7 μm; motile by means of an ~5.0-μm-long polar flagellum; colonies on King's medium B are round, smooth, transparent and nonpigmented; optimal temperatures for growth around 27-30 °C; induces a hypersensitive response on nonhost tobacco and tomato leaves. HOST RANGE Acidovorax citrulli strains are pathogenic to various species of the Cucurbitaceae family, including watermelon, melon, squash, pumpkin and cucumber. Significant economic losses have been reported in watermelon and melon. DISEASE SYMPTOMS Watermelon and melon seedlings and fruits are highly susceptible to A. citrulli. Typical seedling symptoms include water-soaked lesions on cotyledons that are often adjacent to the veins and later become necrotic, lesions on the hypocotyl, and seedling collapse and death. On watermelon fruits, symptoms begin as small, irregular, water-soaked lesions which later extend through the rind, turn brown and crack. On melon fruits, symptoms are characterized by small, often sunken rind lesions and internal fruit decay. Symptoms on the leaves of mature plants are difficult to diagnose because they are often inconspicuous or similar to those caused by other biotic or abiotic stresses. When they occur, leaf lesions can spread along the midrib and main veins. Lesions appear dark-brown to black on watermelon and light to reddish-brown on melon. USEFUL WEBSITES Bacterial fruit blotch of cucurbits at APSnet, http://www.apsnet.org/edcenter/intropp/lessons/prokaryotes/Pages/BacterialBlotch.aspx; bacterial fruit blotch guide from ASTA, http://www.amseed.com/pdfs/DiseaseGuide-BFB-English.pdf; Acidovorax citrulli AAC00-1 genome at JGI, http://genome.jgi-psf.org/aciav/aciav.info.html.
Collapse
Affiliation(s)
- Saul Burdman
- Department of Plant Pathology and Microbiology and the Minerva Otto Warburg Center for Agricultural Biotechnology, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| | | |
Collapse
|