1
|
Wang B, Chen Y, Wu JC, Li Q. Unraveling dynamics and interactions of core microorganisms in the biodegradation of keratin-based feather wastes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122939. [PMID: 39426169 DOI: 10.1016/j.jenvman.2024.122939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/09/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024]
Abstract
Waste feathers, abundant byproducts of the poultry industry, pose significant environmental challenges. Although microbial degradation has been investigated, the core microorganisms and their interactions remain underexplored. This study examined microbial community dynamics during feather degradation, using diverse feather sources and under varying temperatures. Significant divergences were observed in bacterial communities, with Firmicutes, Actinobacteria, and Acidobacteriota (56.65%, 18.13%, and 11.14%) as dominant phyla. A core microbial consortium of 51 taxa was identified, with 8 core genera from the Bacilli class, significantly enriched during degradation. Higher temperature (50 °C) accelerated degradation. Dynamics patterns showed the enrichment of and depletion of some strains. Functional prediction highlighted the mechanisms for keratin biodegradation. This study identified core microorganisms and enzymes during keratin degradation, providing evidence to microbial treatment of keratin-based waste to reduce agricultural pollution.
Collapse
Affiliation(s)
- Boxi Wang
- Guangdong Engineering Laboratory of Biomass Value-added Utilization, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, 510316, China
| | - Yuan Chen
- Guangdong Engineering Laboratory of Biomass Value-added Utilization, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, 510316, China
| | - Jin Chuan Wu
- Guangdong Engineering Laboratory of Biomass Value-added Utilization, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, 510316, China
| | - Qingxin Li
- Guangdong Engineering Laboratory of Biomass Value-added Utilization, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, 510316, China.
| |
Collapse
|
2
|
Aktayeva S, Khassenov B. High keratinase and other types of hydrolase activity of the new strain of Bacillus paralicheniformis. PLoS One 2024; 19:e0312679. [PMID: 39453952 PMCID: PMC11508186 DOI: 10.1371/journal.pone.0312679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/11/2024] [Indexed: 10/27/2024] Open
Abstract
Keratinases, a subclass of proteases, are used to degrade keratin thereby forming peptones and free amino acids. Bacillus paralicheniformis strain T7 was isolated from soil and exhibited high keratinase, protease, collagenase, amylase, xylanase, lipase, and phosphatase activities. Keratinases of the strain showed maximum activity at 70°C and pH 9.0 as well as high thermal stability. A mass-spectrometric analysis identified seven peptidases with molecular masses of 26.8-154.8 kDa in the secretory proteome. These peptidases are members of S8 and S41 serine peptidase families and of M14, M42, and M55 metallopeptidase families. Additionally, α-amylase (55.2 kDa), alkaline phosphatase (59.8 kDa), and esterase (26.8 kDa) were detected. The strong keratinolytic properties of the strain were confirmed by degradation of chicken and goose feathers, which got completely hydrolyzed within 4 days. Submerged fermentation by strain B. paralicheniformis T7 was carried out in a pilot bioreactor, where the highest keratinase production was noted after 19 h of cultivation. After the fermentation, in the culture fluid, the keratinase activity toward keratin azure was 63.6 ± 5.8 U/mL. The protease activity against azocasein was 715.7 ± 40.2 U/mL. The possibility of obtaining enzyme preparations in liquid and powder form was demonstrated, and their comparative characteristics are given. In the concentrate, the keratinase, protease, α-amylase, phosphatase, and esterase/lipase activities were 2,656.7 ± 170.4, 29,886.7 ± 642.9, 176.1 ± 16.3, 23.9 ± 1.8, and 510.9 ± 12.2 U/mL, respectively. In the lyophilizate, these activities were 57,733.3 ± 8,911.4, 567,066.7 ± 4,822.2, 2,823.0 ± 266.8, 364.2 ± 74.8, and 17,618.0 ± 610.3 U/g, respectively. In the preparation obtained by air flow drying at 55°C, these activities were 53,466.7 ± 757.2, 585,333.3 ± 4,277.1, 2,395.8 ± 893.7, 416.7 ± 52.4, and 15,328.1 ± 528.6 U/g, respectively. The results show high potential of B. paralicheniformis strain T7 as a producer of keratinases and other enzymes for applications in agricultural raw materials and technologies for processing of keratin-containing animal waste.
Collapse
Affiliation(s)
- Saniya Aktayeva
- Laboratory for Genetics and Biochemistry of Microorganisms, National Center for Biotechnology, Astana, Kazakhstan
- Faculty of Natural Sciences, L.N. Gumilyev Eurasian National University, Astana, Kazakhstan
| | - Bekbolat Khassenov
- Laboratory for Genetics and Biochemistry of Microorganisms, National Center for Biotechnology, Astana, Kazakhstan
| |
Collapse
|
3
|
Aktayeva S, Khassenov B. New Bacillus paralicheniformis strain with high proteolytic and keratinolytic activity. Sci Rep 2024; 14:22621. [PMID: 39349615 PMCID: PMC11444040 DOI: 10.1038/s41598-024-73468-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024] Open
Abstract
Bacillus paralicheniformis T7, which exhibits high proteolytic and keratinolytic activities, was isolated from soil in Kazakhstan. Its secreted proteases were thermostable and alkaline, demonstrating maximum activity at 70 °C and pH 9.0. The proteases and keratinases of this strain were sensitive to Ni2+, Co2+, Mn2+, and Cd2+, with Cu2+, Co2+ and Cd2+ negatively affecting keratinolytic activity, and Fe3+ ions have a strong inhibitory effect on proteolytic and keratinolytic activity. Seven proteases were identified in the enzymatic extract of B. paralicheniformis T7: four from the serine peptidase family and three from the metallopeptidase family. The proteases hydrolyzed 1 mg of casein, hemoglobin, gelatin, ovalbumin, bovine serum albumin, or keratin within 15 s to 30 min. The high keratinolytic activity of this strain was confirmed through the degradation of chicken feathers, horns, hooves, wool, and cattle hide. Chicken feathers were hydrolyzed in 4 days, and the degrees of hydrolysis for cattle hide, wool, hoof, and horn after 7 days of cultivation were 97.2, 34.5, 29.6, and 3.6%, respectively. During submerged fermentation with feather medium in a laboratory bioreactor, the strain secreted enzymes with 249.20 ± 7.88 U/mL protease activity after 24 h. Thus, B. paralicheniformis T7 can be used to produce proteolytic and keratinolytic enzymes for application in processing proteinaceous raw materials and keratinous animal waste.
Collapse
Affiliation(s)
- Saniya Aktayeva
- National Center for Biotechnology, 13/5 Korgalzhyn Road, 010000, Astana, Kazakhstan
- Faculty of Natural Sciences, L.N. Gumilyev Eurasian National University, 2 Kanysh Satpayev Street, 010008, Astana, Kazakhstan
| | - Bekbolat Khassenov
- National Center for Biotechnology, 13/5 Korgalzhyn Road, 010000, Astana, Kazakhstan.
| |
Collapse
|
4
|
Pan Y, Qi Z, Hu J, Zheng X, Wang X. Bio-molecular analyses enable new insights into the taphonomy of feathers. PNAS NEXUS 2024; 3:pgae341. [PMID: 39228813 PMCID: PMC11368126 DOI: 10.1093/pnasnexus/pgae341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/29/2024] [Indexed: 09/05/2024]
Abstract
Exceptionally preserved feathers from the Mesozoic era have provided valuable insights into the early evolution of feathers and enabled color reconstruction of extinct dinosaurs, including early birds. Mounting chemical evidence for the two key components of feathers-keratins and melanins-in fossil feathers has demonstrated that exceptional preservation can be traced down to the molecular level. However, the chemical changes that keratin and eumelanin undergo during fossilization are still not fully understood, introducing uncertainty in the identification of these two molecules in fossil feathers. To address this issue, we need to examine their taphonomic process. In this study, we analyzed the structural and chemical composition of fossil feathers from the Jehol Biota and compared them with the structural and chemical changes observed in modern feathers during the process of biodegradation and thermal degradation, as well as the structural and chemical characteristics of a Cenozoic fossil feather. Our results suggest that the taphonomic process of feathers from the Cretaceous Jehol Biota is mainly controlled by the process of thermal degradation. The Cretaceous fossil feathers studied exhibited minimal keratin preservation but retained strong melanin signals, attributed to melanin's higher thermal stability. Low-maturity carbonaceous fossils can indeed preserve biosignals, especially signals from molecules with high resistance to thermal degradation. These findings provide clues about the preservation potential of keratin and melanin, and serve as a reference for searching for those two biomolecules in different geological periods and environments.
Collapse
Affiliation(s)
- Yanhong Pan
- State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Centre for Research and Education on Biological Evolution and Environment, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing 210023, China
| | - Zeming Qi
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230027, China
| | - Jianfang Hu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Xiaoting Zheng
- Institute of Geology and Paleontology, Linyi University, Linyi City, Shandong 276005, China
- Shandong Tianyu Museum of Nature, Pingyi, Shandong 273300, China
| | - Xiaoli Wang
- Institute of Geology and Paleontology, Linyi University, Linyi City, Shandong 276005, China
- Shandong Tianyu Museum of Nature, Pingyi, Shandong 273300, China
| |
Collapse
|
5
|
Wieczorek D, Gendaszewska D, Miśkiewicz K, Słubik A, Ławińska K. Biotransformation of protein-rich waste by Yarrowia lipolytica IPS21 to high-value products-amino acid supernatants. Microbiol Spectr 2023; 11:e0274923. [PMID: 37707427 PMCID: PMC10581069 DOI: 10.1128/spectrum.02749-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 07/31/2023] [Indexed: 09/15/2023] Open
Abstract
The yeast strain Yarrowia lipolytica IPS 21 was tested for its ability to degrade potentially toxic chrome-tanned leather shavings (CTLS) in a liquid environment. Biological and chemical parameters were monitored during a 48-h period of biotransformation of the protein-rich waste. CTLS was added at a concentration of 0.1-4% (wt/wt) to a modified YPG medium (15 g L-1 yeast extract and 5 g L-1 NaCl). Biodegradation and bioconversion were performed in a one-step process. It was found that the higher degradation rate depended on the activity of the proteases and the pH of the medium, but not on the initial inoculum ratio and the activity of the dehydrogenase. The highest efficiency of the process was obtained for 4% (wt/wt) CTLS on day 2 (degradation rate 58-67%, biomass production 2.11-2.20 g L-1, protease activity 312 U mg-1 protein, and pH 9.20). Our results showed that total chromium was probably not transported across the cytoplasmic membrane of Y. lipolytica IPS21 and that chromium (III) was not oxidized to chromium (VI). The phytotoxicity of selected amino acid supernatants [2.5% (vol/vol)] was tested after the bioconversion process. It was found that the supernatants had a stimulating effect on the plants tested. The root elongation was 29-28% higher than that of the reference samples. This result makes Y. lipolytica IPS21 a potential candidate for safely converting potentially toxic protein-rich wastes into valuable products without enzyme isolation, e.g., amino acid fertilizers. IMPORTANCE Enzyme technologies have the greatest practical relevance to environmental trends. Overcoming the barrier of the high cost of carbon substrates used for biotransformation is the main challenge of these methods. The huge potential of the use of extracellular proteases of Yarrowia species or amino acids in various industries indicates the need for the extension of basic research on waste as a carbon source for this yeast. The experiments demonstrated that it is possible to use Y. lipolytica IPS21 for bioconversion of chrome-tanned leather shavings (CTLS) in a single-step process and to produce high-value amino acid supernatant without having an isolated enzyme. In our study, we show the effect of 2.5% (vol/vol) CTLS supernatant obtained from Y. lipolytica IPS21 on the elongation of the root system of selected plants and provide information on the effect of environmental factors on the efficiency of the bioconversion and the migration of chromium.
Collapse
Affiliation(s)
- Dorota Wieczorek
- Łukasiewicz Research Network - Lodz Institute of Technology, Lodz, Poland
| | | | | | - Anna Słubik
- Łukasiewicz Research Network - Lodz Institute of Technology, Lodz, Poland
| | - Katarzyna Ławińska
- Łukasiewicz Research Network - Lodz Institute of Technology, Lodz, Poland
| |
Collapse
|
6
|
Song P, Zhang X, Wang S, Xu W, Wang F, Fu R, Wei F. Microbial proteases and their applications. Front Microbiol 2023; 14:1236368. [PMID: 37779686 PMCID: PMC10537240 DOI: 10.3389/fmicb.2023.1236368] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023] Open
Abstract
Proteases (proteinases or peptidases) are a class of hydrolases that cleave peptide chains in proteins. Endopeptidases are a type of protease that hydrolyze the internal peptide bonds of proteins, forming shorter peptides; exopeptidases hydrolyze the terminal peptide bonds from the C-terminal or N-terminal, forming free amino acids. Microbial proteases are a popular instrument in many industrial applications. In this review, the classification, detection, identification, and sources of microbial proteases are systematically introduced, as well as their applications in food, detergents, waste treatment, and biotechnology processes in the industry fields. In addition, recent studies on techniques used to express heterologous microbial proteases are summarized to describe the process of studying proteases. Finally, future developmental trends for microbial proteases are discussed.
Collapse
Affiliation(s)
- Peng Song
- College of Life Sciences, Liaocheng University, Liaocheng, China
- Shandong Aobo Biotech Co. Ltd., Liaocheng, China
- Jiangxi Zymerck Biotech Co. Ltd., Nanchang, China
| | - Xue Zhang
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Shuhua Wang
- Shandong Aobo Biotech Co. Ltd., Liaocheng, China
| | - Wei Xu
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Fei Wang
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Rongzhao Fu
- Jiangxi Zymerck Biotech Co. Ltd., Nanchang, China
| | - Feng Wei
- College of Life Sciences, Liaocheng University, Liaocheng, China
| |
Collapse
|
7
|
Sharma I, Gupta P, Kango N. Synthesis and characterization of keratinase laden green synthesized silver nanoparticles for valorization of feather keratin. Sci Rep 2023; 13:11608. [PMID: 37463953 DOI: 10.1038/s41598-023-38721-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/13/2023] [Indexed: 07/20/2023] Open
Abstract
This study focuses on the efficient and cost-effective synthesis of silver nanoparticles (AgNPs) using plant extracts, which have versatile and non-toxic applications. The research objectives include synthesizing AgNPs from readily available plant extracts, optimizing their production and multi scale characterization, along with exploring their use for enzyme immobilization and mitigation of poultry feather waste. Among the plant extracts tested, the flower extract of Hibiscus rosa-sinensis (HF) showed the most potential for AgNP synthesis. The synthesis of HF-mediated AgNPs was optimized using response surface methodology (RSM) for efficient and environment friendly production. Additionally, the keratinase enzyme obtained from Bacillus sp. NCIM 5802 was covalently linked to AgNPs, forming a keratinase nanocomplex (KNC) whose biochemical properties were evaluated. The KNC demonstrated optimal activity at pH 10.0 and 60 °C and it displayed remarkable stability in the presence of various inhibitors, metal ions, surfactants, and detergents. Spectroscopic techniques such as FTIR, UV-visible, and X-ray diffraction (XRD) analysis were employed to investigate the formation of biogenic HF-AgNPs and KNC, confirming the presence of capping and stabilizing agents. The morphological characteristics of the synthesized AgNPs and KNC were determined using transmission electron microscopy (TEM) and particle size analysis. The study highlighted the antimicrobial, dye scavenging, and antioxidant properties of biogenic AgNPs and KNC, demonstrating their potential for various applications. Overall, this research showcases the effectiveness of plant extract-driven green synthesis of AgNPs and the successful development of keratinase-laden nanocomplexes, opening possibilities for their use in immobilizing industrial and commercial enzymes.
Collapse
Affiliation(s)
- Isha Sharma
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Pranshi Gupta
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Naveen Kango
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India.
| |
Collapse
|
8
|
Rahimnahal S, Meimandipour A, Fayazi J, Asghar Karkhane A, Shamsara M, Beigi Nassiri M, Mirzaei H, Hamblin MR, Tarrahimofrad H, Bakherad H, Zamani J, Mohammadi Y. Biochemical and molecular characterization of novel keratinolytic protease from Bacillus licheniformis (KRLr1). Front Microbiol 2023; 14:1132760. [PMID: 37234543 PMCID: PMC10206251 DOI: 10.3389/fmicb.2023.1132760] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/18/2023] [Indexed: 05/28/2023] Open
Abstract
The keratin-degrading bacterium Bacillus licheniformis secretes a keratinase with potential industrial interest. Here, the Keratinase gene was intracellularly expressed in Escherichia coli BL21(DE3) using pET-21b (+) vector. Phylogenetic tree analysis showed that KRLr1 is closely related to Bacillus licheniformis keratinase that belongs to the serine peptidase/subtilisin-like S8 family. Recombinant keratinase appeared on the SDS-PAGE gel with a band of about 38 kDa and was confirmed by western blotting. Expressed KRLr1 was purified by Ni-NTA affinity chromatography with a yield of 85.96% and then refolded. It was found that this enzyme has optimum activity at pH 6 and 37°C. PMSF inhibited the KRLr1 activity and Ca2+ and Mg2+ increased the KRLr1 activity. Using keratin 1% as the substrate, the thermodynamic values were determined as Km 14.54 mM, kcat 912.7 × 10-3 (S-1), and kcat/Km 62.77 (M-1 S-1). Feather digestion by recombinant enzyme using HPLC method, showed that the amino acids cysteine, phenylalanine, tyrosine and lysine had the highest amount compared to other amino acids obtained from digestion. Molecular dynamics (MD) simulation of HADDOCK docking results exhibited that KRLr1 enzyme was able to interact strongly with chicken feather keratine 4 (FK4) compared to chicken feather keratine 12 (FK12). These properties make keratinase KRLr1 a potential candidate for various biotechnological applications.
Collapse
Affiliation(s)
- Somayyeh Rahimnahal
- Department of Animal Science and Food Technology, Agriculture Science and Natural Resources University Khouzestan, Ahwaz, Iran
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology, (NIGEB), Tehran, Iran
| | - Amir Meimandipour
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology, (NIGEB), Tehran, Iran
| | - Jamal Fayazi
- Department of Animal Science and Food Technology, Agriculture Science and Natural Resources University Khouzestan, Ahwaz, Iran
| | - Ali Asghar Karkhane
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology, (NIGEB), Tehran, Iran
| | - Mehdi Shamsara
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology, (NIGEB), Tehran, Iran
| | - Mohammadtaghi Beigi Nassiri
- Department of Animal Science and Food Technology, Agriculture Science and Natural Resources University Khouzestan, Ahwaz, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R. Hamblin
- Faculty of Health Science, Laser Research Centre, University of Johannesburg, Johannesburg, South Africa
| | - Hossein Tarrahimofrad
- Department of Animal Science and Food Technology, Agriculture Science and Natural Resources University Khouzestan, Ahwaz, Iran
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology, (NIGEB), Tehran, Iran
| | - Hamid Bakherad
- Department of Pharmaceutical Biotechnology and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Javad Zamani
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology, (NIGEB), Tehran, Iran
| | | |
Collapse
|
9
|
Akram F, Aqeel A, Shoaib M, Haq IU, Shah FI. Multifarious revolutionary aspects of microbial keratinases: an efficient green technology for future generation with prospective applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:86913-86932. [PMID: 36271998 DOI: 10.1007/s11356-022-23638-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Since the dawn of century, tons of keratin bio-waste is generated by the poultry industry annually, and they end up causing environmental havoc. Keratins are highly flexible fibrous proteins which exist in α- and β- forms and provide mechanical strength and stability to structural appendages. The finding of broad-spectrum protease, keratinase, from thermophilic bacteria and fungi, has provided an eco-friendly solution to hydrolyze the peptide bonds in highly recalcitrant keratinous substances such as nails, feathers, claws, and horns into valuable amino acids. Microorganisms produce these proteolytic enzymes by techniques of solid-state and submerged fermentation. However, solid-state fermentation is considered as a yielding approach for the production of thermostable keratinases. This review prioritized the molecular and biochemical properties of microbial keratinases, and the role of keratinases in bringing prodigious impact for the sustainable progress of the economy. It also emphasizes on the current development in keratinase production with the focus to improve the biochemical properties related to enzyme's catalytic activity and stability, and production of mutant and cloned microbial strains to improve the yield of keratinases. Recently, multitude molecular approaches have been employed to enhance enzyme's productivity, activity, and thermostability which makes them suitable for pharmaceutical industry and for the production of animal feed, organic fertilizers, biogas, clearing of animal hides, and detergent formulation. Hence, it can be surmised that microbial keratinolytic enzymes are the conceivable candidates for numerous commercial and industrial applications.
Collapse
Affiliation(s)
- Fatima Akram
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan.
| | - Amna Aqeel
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Minahil Shoaib
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Ikram Ul Haq
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
- Pakistan Academy of Science, Islamabad, Pakistan
| | - Fatima Iftikhar Shah
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| |
Collapse
|
10
|
Asitok A, Ekpenyong M, Ben U, Antigha R, Ogarekpe N, Rao A, Akpan A, Benson N, Essien J, Antai S. Stochastic modeling and meta-heuristic multivariate optimization of bioprocess conditions for co-valorization of feather and waste frying oil toward prodigiosin production. Prep Biochem Biotechnol 2022:1-14. [PMID: 36269079 DOI: 10.1080/10826068.2022.2134891] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Serratia marcescens strain UCCM 00009 produced a mixture of gelatinase and keratinase to facilitate feather degradation but concomitant production of prodigiosin could make waste feather valorization biotechnologically more attractive. This article describes prodigiosin fermentation through co-valorization of waste feather and waste frying peanut oil by S. marcescens UCCM 00009 for anticancer, antioxidant, and esthetic applications. The stochastic conditions for waste feather degradation (WFD), modeled by multi-objective particle swarm-embedded-neural network optimization (ANN-PSO), revealed a gelatinase/keratinase ratio of 1.71 for optimal prodigiosin production and WFD. Luedeking-Piret kinetics revealed a non-exclusive, non-growth-associated prodigiosin yield of 9.66 g/L from the degradation of 88.55% waste feather within 96 h. The polyethylene glycol (PEG) 6000/Na+ citrate aqueous two-phase system-purified serratiopeptidase demonstrated gelatinolytic and keratinolytic activities that were stable for 240 h at 55 °C and pH 9.0. In vitro evaluations revealed that the prodigiosin inhibited methicillin-resistant Staphylococcus aureus at IC50 of 4.95 µg/mL, the plant-pathogen, Sclerotinia sclerotiorum, at IC50 of 2.58 µg/mL, breast carcinoma at IC50 of 0.60 µg/mL and 2,2-diphenyl-1-picryl-hydrazyl hydrate (DPPH) free-radical at IC50 of 96.63 µg/mL). The pigment also demonstrated commendable textile dyeing potential of fiber and cotton fabrics. The technology promises cost-effective prodigiosin development through sustainable waste feather-waste frying oil co-management.
Collapse
Affiliation(s)
- Atim Asitok
- Department of Microbiology, Faculty of Biological Sciences, University of Calabar, Calabar, Nigeria.,University of Calabar Collection of Microorganisms (UCCM), University of Calabar, Calabar, Nigeria
| | - Maurice Ekpenyong
- Department of Microbiology, Faculty of Biological Sciences, University of Calabar, Calabar, Nigeria.,University of Calabar Collection of Microorganisms (UCCM), University of Calabar, Calabar, Nigeria
| | - Ubong Ben
- Department of Physics, Faculty of Physical Sciences, University of Calabar, Calabar, Nigeria
| | - Richard Antigha
- Department of Physics, Faculty of Physical Sciences, University of Calabar, Calabar, Nigeria
| | - Nkpa Ogarekpe
- Department of Physics, Faculty of Physical Sciences, University of Calabar, Calabar, Nigeria
| | - Anitha Rao
- Department of Microbiology, Faculty of Biological Sciences, University of Calabar, Calabar, Nigeria.,University of Calabar Collection of Microorganisms (UCCM), University of Calabar, Calabar, Nigeria
| | - Anthony Akpan
- Department of Civil Engineering, Faculty of Engineering, Cross River University of Technology, Calabar, Nigeria
| | - Nsikak Benson
- Department of Chemistry, College of Science and Technology, Covenant University, Ota, Nigeria
| | - Joseph Essien
- Department of Microbiology, Faculty of Science, University of Uyo, Uyo, Nigeria
| | - Sylvester Antai
- Department of Microbiology, Faculty of Biological Sciences, University of Calabar, Calabar, Nigeria.,University of Calabar Collection of Microorganisms (UCCM), University of Calabar, Calabar, Nigeria
| |
Collapse
|
11
|
Parametrically optimized feather degradation by Bacillus velezensis NCIM 5802 and delineation of keratin hydrolysis by multi-scale analysis for poultry waste management. Sci Rep 2022; 12:17118. [PMID: 36224206 PMCID: PMC9556542 DOI: 10.1038/s41598-022-21351-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 09/26/2022] [Indexed: 02/05/2023] Open
Abstract
Enormous amounts of keratinaceous waste make a significant and unexploited protein reserve that can be utilized through bioconversion into high-value products using microbial keratinases. This study was intended to assess the keratinase production from a newly isolated B. velezensis NCIM 5802 that can proficiently hydrolyze chicken feathers. Incubation parameters used to produce keratinase enzyme were optimized through the Response Surface Methodology (RSM) with chicken feathers as substrate. Optimization elevated the keratinase production and feather degradation by 4.92-folds (109.7 U/mL) and 2.5 folds (95.8%), respectively. Time-course profile revealed a direct correlation among bacterial growth, feather degradation, keratinase production and amino acid generation. Biochemical properties of the keratinase were evaluated, where it showed optimal activity at 60 °C and pH 10.0. The keratinase was inhibited by EDTA and PMSF, indicating it to be a serine-metalloprotease. Zymography revealed the presence of four distinct keratinases (Mr ~ 100, 62.5, 36.5 and 25 kDa) indicating its multiple forms. NMR and mass spectroscopic studies confirmed the presence of 18 free amino acids in the feather hydrolysates. Changes in feather keratin brought about by the keratinase action were studied by X-ray diffraction (XRD) and spectroscopic (FTIR, Raman) analyses, which showed a decrease in the total crystallinity index (TCI) (1.00-0.63) and confirmed the degradation of its crystalline domain. Scanning electron microscopy (SEM) revealed the sequential structural changes occurring in the feather keratin during degradation. Present study explored the use of keratinolytic potential of the newly isolated B. velezensis NCIM 5802 in chicken feather degradation and also, unraveled the underlying keratin hydrolysis mechanism through various analyses.
Collapse
|
12
|
Ismail SA, Abou Taleb M, Emran MA, Mowafi S, Hashem AM, El-Sayed H. Benign Felt-proofing of Wool Fibers Using a Keratinolytic Thermophilic Alkaline Protease. JOURNAL OF NATURAL FIBERS 2022; 19:3697-3709. [DOI: 10.1080/15440478.2020.1848721] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Affiliation(s)
- Shaymaa A. Ismail
- Department of Chemistry of Natural and Microbial Products, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki, Cairo, Egypt
| | - Marwa Abou Taleb
- Proteinic and Man-made Fibres Department, Textile Industries Research Division, National Research Centre, Dokki, Cairo, Egypt
| | - Mohamed A. Emran
- Department of Chemistry of Natural and Microbial Products, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki, Cairo, Egypt
| | - Salwa Mowafi
- Proteinic and Man-made Fibres Department, Textile Industries Research Division, National Research Centre, Dokki, Cairo, Egypt
| | - Amal M. Hashem
- Department of Chemistry of Natural and Microbial Products, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki, Cairo, Egypt
| | - Hosam El-Sayed
- Proteinic and Man-made Fibres Department, Textile Industries Research Division, National Research Centre, Dokki, Cairo, Egypt
| |
Collapse
|
13
|
Asitok A, Ekpenyong M, Takon I, Antai S, Ogarekpe N, Antigha R, Edet P, Ben U, Akpan A, Antai A, Essien J. Overproduction of a thermo-stable halo-alkaline protease on agro-waste-based optimized medium through alternate combinatorial random mutagenesis of Stenotrophomonas acidaminiphila. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2022; 35:e00746. [PMID: 35707314 PMCID: PMC9189783 DOI: 10.1016/j.btre.2022.e00746] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/16/2022] [Accepted: 06/04/2022] [Indexed: 11/22/2022]
Abstract
Alternate combinatorial random mutagenesis selected a protease high-yielding mutant. Medium optimization led to 25.55-fold raise in specific protease yield in bioreactor. 20% PEG-1500/Na+ 15% citrate recovered 74% activity yield with 52.55 purity. Activity was retained at elevated physicochemical levels but inhibited by PMSF. Keratinolytic and blood-stain removal activities confer industrial potential on protease.
A strain of Stenotrophomonas acidaminiphila, isolated from fermenting bean-processing wastewater, produced alkaline protease in pretreated cassava waste-stream, but with low yield. Strain improvement by alternate combinatorial random mutagenesis and bioprocess optimization using comparative statistical and neural network methods enhanced yield by 17.8-fold in mutant kGy-04-UV-25. Kinetics of production by selected mutant modeled by logistic and modified Gompertz functions revealed higher specific growth rate in mutant than in the parent strain, likewise volumetric and specific productivities. Purification by PEG/Na+ citrate aqueous two-phase system recovered 73.87% yield and 52.55-fold of protease. Its activity was stable at 5–35% NaCl, 45–75°C, and was significantly enhanced by 1–15 mM sodium dodecyl sulfate (SDS). The protease was inhibited by low concentrations of phenyl-methyl-sulfonyl fluoride but was activated by 1–5 mM Mn2+ suggesting a manganese-dependent serine‑protease. The 45.7 kDa thermo-halo-stable alkaline protease demonstrated keratinolytic and blood-stain removal potentials showing prospects in textile and detergent industries, respectively.
Collapse
Affiliation(s)
- Atim Asitok
- Environmental Microbiology and Biotechnology Unit, Department of Microbiology, Faculty of Biological Sciences, University of Calabar, Nigeria
- University of Calabar Collection of Microorganisms (UCCM), Department of Microbiology, University of Calabar, Nigeria
| | - Maurice Ekpenyong
- Environmental Microbiology and Biotechnology Unit, Department of Microbiology, Faculty of Biological Sciences, University of Calabar, Nigeria
- University of Calabar Collection of Microorganisms (UCCM), Department of Microbiology, University of Calabar, Nigeria
- Corresponding author.
| | - Iquo Takon
- Industrial Microbiology and Biotechnology Unit, Department of Microbiology, Faculty of Biological Sciences, University of Calabar, Nigeria
| | - Sylvester Antai
- Environmental Microbiology and Biotechnology Unit, Department of Microbiology, Faculty of Biological Sciences, University of Calabar, Nigeria
- University of Calabar Collection of Microorganisms (UCCM), Department of Microbiology, University of Calabar, Nigeria
| | - Nkpa Ogarekpe
- Environmental Engineering Unit, Department of Civil Engineering, Faculty of Engineering, Cross River University of Technology, Nigeria
| | - Richard Antigha
- Environmental Engineering Unit, Department of Civil Engineering, Faculty of Engineering, Cross River University of Technology, Nigeria
| | - Philomena Edet
- Environmental Microbiology and Biotechnology Unit, Department of Microbiology, Faculty of Biological Sciences, University of Calabar, Nigeria
| | - Ubong Ben
- Department of Physics, Faculty of Physical Sciences, University of Calabar, Nigeria
| | - Anthony Akpan
- Department of Physics, Faculty of Physical Sciences, University of Calabar, Nigeria
| | - Agnes Antai
- Department of Economics, Faculty of Social Sciences, University of Calabar, Nigeria
| | - Joseph Essien
- Environmental Microbiology and Biotechnology Unit, Department of Microbiology, Faculty of Sciences, University of Uyo, Nigeria
| |
Collapse
|
14
|
Enhanced keratinase production by Bacillus subtilis amr using experimental optimization tools to obtain feather protein lysate for industrial applications. 3 Biotech 2022; 12:90. [PMID: 35330961 PMCID: PMC8917247 DOI: 10.1007/s13205-022-03153-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/16/2022] [Indexed: 11/01/2022] Open
Abstract
The poultry industry produces millions of tons of feathers waste that can be transformed into valuable products through bioprocess. The study describes the enhanced keratinase and feather hydrolysate production by Bacillus subtilis AMR. The metabolism of each microorganism is unique, so optimization tools are essential to determine the best fermentation parameters to obtain the best process performance. The evaluation of different propagation media indicated the constitutive production of two keratinases of approximately 80 kDa. The combination of Mn2+, Ca2+, and Mg2+ at 0.5 mM improved the keratinolytic activity and feather degradation 1.5-fold, while Cu2+ inhibited the enzymatic activity completely. Replace yeast extract for sucrose increased the feather hydrolysate production three times. The best feather concentration for hydrolysate production was 1.5% with an inoculum of 108 CFU/mL and incubation at 30 °C. None of the inorganic additional nitrogen sources tested increased hydrolysate production, although (NH4)2SO4 and KNO3 improved enzymatic activity. The optimization process improved keratinolytic activity from 205.4 to 418.7 U/mL, the protein concentration reached 10.1 mg/mL from an initial concentration of 3.9 mg/mL, and the feather degradation improved from 70 to 96%. This study characterized keratinase and feather hydrolysate production conditions offering valuable information for exploring and utilizing AMR keratinolytic strain for feather valorization. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03153-y.
Collapse
|
15
|
Hydrolyzed feather keratin obtained by microbial fermentation encapsulated with maltodextrin – A sustainable approach to increase digestible protein in feed. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Isolation of Bacillus sp. A5.3 Strain with Keratinolytic Activity. BIOLOGY 2022; 11:biology11020244. [PMID: 35205110 PMCID: PMC8869582 DOI: 10.3390/biology11020244] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/26/2022] [Accepted: 02/02/2022] [Indexed: 11/18/2022]
Abstract
Simple Summary In this study, we described keratinolytic properties of a strain of Bacillus (sp. A5.3) isolated from sites of feather waste accumulation. The proteolytic enzymes secreted by Bacillus sp. A5.3 are serine proteases, are alkaline enzymes, have a wide substrate specificity, and have high thermal stability. Bacillus sp. A5.3 effectively hydrolyzes feathers and can be used in feather-processing technologies and as a source of alkaline and thermostable proteases and keratinases. Abstract Environmental safety and economic factors necessitate a search for new ways of processing poultry farm feathers, which are 90% β-keratin and can be used as a cheap source of amino acids and peptones. In this study, feather-decomposing bacteria were isolated from a site of accumulation of rotten feathers and identified as Bacillus. Among them, the Bacillus sp. A5.3 isolate showed the best keratinolytic properties. Scanning electron microscopy indicated that Bacillus sp. A5.3 cells closely adhere to the feather surface while degrading the feather. It was found that Bacillus sp. A5.3 secretes thermostable alkaline proteolytic and keratinolytic enzymes. Zymographic analysis of the enzymatic extract toward bovine serum albumin, casein, gelatin, and β-keratin revealed the presence of proteases and keratinases with molecular weights 20–250 kDa. The proteolytic and keratinolytic enzymes predominantly belong to the serine protease family. Proteome analysis of the secreted proteins by nano-HPLC coupled with Q-TOF mass spectrometry identified 154 proteins, 13 of which are proteases and peptidases. Thus, strain Bacillus sp. A5.3 holds great promise for use in feather-processing technologies and as a source of proteases and keratinases.
Collapse
|
17
|
Devi S, Chauhan A, Bishist R, Sankhyan N, Rana K, Sharma N. Production, partial purification and efficacy of keratinase from Bacillus halotolerans L2EN1 isolated from the poultry farm of Himachal Pradesh as a potential laundry additive. BIOCATAL BIOTRANSFOR 2022. [DOI: 10.1080/10242422.2022.2029851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Sunita Devi
- Department of Basic Sciences, Dr YS Parmar University of Horticulture and Forestry Nauni, Solan, India
| | - Aishwarya Chauhan
- Department of Basic Sciences, Dr YS Parmar University of Horticulture and Forestry Nauni, Solan, India
| | - Rohit Bishist
- Department of Silviculture and Agroforestry, College of Forestry, Dr Y S Parmar University of Horticulture and Forestry, Nauni, Solan, India
| | - Neeraj Sankhyan
- Department of Basic Sciences, Dr YS Parmar University of Horticulture and Forestry Nauni, Solan, India
| | - Kavita Rana
- Department of Basic Sciences, Dr YS Parmar University of Horticulture and Forestry Nauni, Solan, India
| | - Nisha Sharma
- Department of Basic Sciences, Dr YS Parmar University of Horticulture and Forestry Nauni, Solan, India
| |
Collapse
|
18
|
Immobilization and Biochemical Characterization of Keratinase 2S1 onto Magnetic Cross-Linked Enzyme Aggregates and its Application on the Hydrolysis of Keratin Waste. Catal Letters 2021. [DOI: 10.1007/s10562-021-03833-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
Dillon D, Fernández Ajó A, Hunt KE, Buck CL. Investigation of keratinase digestion to improve steroid hormone extraction from diverse keratinous tissues. Gen Comp Endocrinol 2021; 309:113795. [PMID: 33891932 DOI: 10.1016/j.ygcen.2021.113795] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 12/29/2022]
Abstract
Monitoring the physiology of wild populations presents many technical challenges. Blood samples, long the gold standard of wildlife endocrinology studies, cannot always be obtained. The validation and use of non-plasma samples to obtain hormone data have greatly improved access to more integrated information about an organism's physiological state. Keratinous tissues like skin, hair, nails, feathers, or baleen store steroid hormones in physiologically relevant concentrations, are stable across decades, and can be used to retrospectively infer physiological state at prior points in time. Most protocols for steroid extraction employ physical pulverization or cutting of the sample, followed by mixing with a solvent. Such methods do produce repeatable and useful data, but low hormone yield and detectability issues can complicate research on small or rare samples. We investigated the use of keratinase, an enzyme that breaks down keratin, to improve the extraction and yield of corticosterone from vertebrate keratin tissues. Corticosterone content of keratinase-digested extracts were compared to non-keratinase extracts for baleen from three species of whale (blue, Balaenoptera musculus; bowhead, Balaena mysticetus; southern right, SRW; Eubalaena australis), shed skin from two reptiles (tegu lizard, Salvator merianae; narrow-headed garter snake, Thamnophis rufipunctatus), hair from arctic ground squirrel (AGS; Urocitellus parryii), feathers from Purple Martins (PUMA; Progne subis), and spines from the short-beaked echidna (Tachyglossus aculeatus). We tested four starting masses (10, 25, 50, 100 mg) for each sample; digestion was most complete in the 10 and 25 mg samples. A corticosterone enzyme immunoassay (EIA) was validated for all keratinase-digested extracts. In all sample types except shed skin from reptiles, keratinase digestion improved hormone yield, with PUMA feathers and blue whale baleen having the greatest increase in apparent corticosterone content (100% and 66% more hormone, respectively). The reptilian shed skin samples did not benefit from keratinase digestion, actually yielding less hormone than controls. With further optimization and refinement, keratinase digestion could greatly improve yield of steroid hormones from various wildlife epidermal tissue types, allowing more efficient use of samples and ultimately improving understanding of the endocrine physiology of wild populations.
Collapse
Affiliation(s)
- Danielle Dillon
- Department of Biological Sciences, Northern Arizona University, 617 S. Beaver St., Flagstaff, AZ 86011, USA.
| | - Alejandro Fernández Ajó
- Department of Biological Sciences, Northern Arizona University, 617 S. Beaver St., Flagstaff, AZ 86011, USA; Instituto de Conservación de Ballenas, Capital Federal, O'Higgins 4380, Ciudad Autónoma de Buenos Aires 1429, Argentina
| | - Kathleen E Hunt
- Smithsonian-Mason School of Conservation & Department of Biology, George Mason University, 1500 Remount Rd, Front Royal, VA 22630, USA
| | - C Loren Buck
- Department of Biological Sciences, Northern Arizona University, 617 S. Beaver St., Flagstaff, AZ 86011, USA
| |
Collapse
|
20
|
Unveiling the keratinolytic transcriptome of the black carpet beetle (Attagenus unicolor) for sustainable poultry feather recycling. Appl Microbiol Biotechnol 2021; 105:5577-5587. [PMID: 34226961 DOI: 10.1007/s00253-021-11427-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/10/2021] [Accepted: 06/12/2021] [Indexed: 01/14/2023]
Abstract
The black carpet beetle (BCB) is a household pest unique in its ability to digest complex proteins such as keratin that makes up the majority of feather structure. Despite voluminous yield and high protein content ( > 85%), feathers are poorly digested by most known organisms and are thereby rendered an environmental hazard. Furthermore, keratinolytic microbial strains are typically thermophilic and therefore economically and environmentally unsustainable. Given the BCB's ability to digest wool, feathers, and other keratin-rich materials, we assembled a de novo transcriptome of larvae fed on either feathers or standard chow. All proteolytic enzymes were identified via homology to the MEROPS database and subsequently annotated for a complete overview of enzymatic activity and distribution of peptidase clans in the transcriptome. Both differential expression and sequence homology screening were then used to identify potentially keratinolytic candidates from the assembly to be used in future expression experiments. The BCB transcriptome showed a high proportion of serine (22.6%) and cysteine (18.9%) proteases as well as metallopeptidases (25.5%) compared with other insect species. Regarding differential expression, serine and metalloproteases represented a large proportion of upregulated genes in the feather-fed group, constituting 42.9% and 57.1% of upregulated proteases, respectively. Additionally, several candidate transcripts identified through homology screening showed significant sequence overlap to seven existing keratinases, indicating a strong likelihood of keratinolytic function in this organism. KEY POINTS: • A de novo transcriptome of black carpet beetle larvae was assembled. • The transcriptome consisted of 67% of serine, cysteine, and metalloproteases. • Differential transcriptomes of beetles fed feather and chow were compared.
Collapse
|
21
|
Shahimi S, Lamri MF, Abd Mutalib S, Mohd Khalid R, Md Tab M, Khairuddin F. Gene expression of microbial gelatinase activity for porcine gelatine identification. Food Chem 2021; 355:129586. [PMID: 33773458 DOI: 10.1016/j.foodchem.2021.129586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 02/17/2021] [Accepted: 03/07/2021] [Indexed: 11/29/2022]
Abstract
In order to invent a porcine gelatine detection device using microbial resources, bacterial enzymes with a preference towards porcine gelatine and their candidate genes were evaluated. Five (n = 5) bacterial strains isolated from hot spring water and wet clay, Malaysia were screened for their gelatinase activity. The gelatinase enzyme was extracted and purified using ammonium sulphate precipitation prior to performing gelatinase assay on porcine, bovine and fish gelatine medium substrates. The G2 strain or Enterobacter aerogenes (Strain EA1) was selected for whole genome sequenced after showing a consistent trend of preference towards porcine gelatine. The gelatinase candidate gene gelEA1_9 was cloned and expressed. Based on one-way analysis of variance (ANOVA) with POST-HOC Duncan test (α = 0.05), the final product of gelEA1_9 was identified as a novel gelatinase. This gelatinase presented no significant difference in activity towards porcine gelatine. Hence, the present study demonstrated an enzyme-substrate interaction for porcine gelatine identification.
Collapse
Affiliation(s)
- Safiyyah Shahimi
- Universiti Teknologi MARA, Cawangan Negeri Sembilan, Kampus Kuala Pilah, 72000 Kuala Pilah, Malaysia; Department of Food Science, Faculty of Science and Technology, 43600 Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Mohd Fadly Lamri
- Politeknik METrO Kuantan, No A-5 Jalan Tun Ismail 2, Sri Dagangan 11, 25000 Kuantan Pahang, Malaysia
| | - Sahilah Abd Mutalib
- Department of Food Science, Faculty of Science and Technology, 43600 Universiti Kebangsaan Malaysia, Bangi, Malaysia; Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
| | - Rozida Mohd Khalid
- Department of Chemistry, Faculty of Science and Technology, 43600 Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Mahzan Md Tab
- Jabatan Kimia Malaysia, Jalan Sultan, 46661 Petaling Jaya, Selangor, Malaysia
| | - Farahayu Khairuddin
- Malaysia Genome Institute (MGI), Jalan Bangi, 43000 Kajang, Selangor, Malaysia
| |
Collapse
|
22
|
Abstract
Emerging pollutants in nature are linked to various acute and chronic detriments in biotic components and subsequently deteriorate the ecosystem with serious hazards. Conventional methods for removing pollutants are not efficient; instead, they end up with the formation of secondary pollutants. Significant destructive impacts of pollutants are perinatal disorders, mortality, respiratory disorders, allergy, cancer, cardiovascular and mental disorders, and other harmful effects. The pollutant substrate can recognize different microbial enzymes at optimum conditions (temperature/pH/contact time/concentration) to efficiently transform them into other rather unharmful products. The most representative enzymes involved in bioremediation include cytochrome P450s, laccases, hydrolases, dehalogenases, dehydrogenases, proteases, and lipases, which have shown promising potential degradation of polymers, aromatic hydrocarbons, halogenated compounds, dyes, detergents, agrochemical compounds, etc. Such bioremediation is favored by various mechanisms such as oxidation, reduction, elimination, and ring-opening. The significant degradation of pollutants can be upgraded utilizing genetically engineered microorganisms that produce many recombinant enzymes through eco-friendly new technology. So far, few microbial enzymes have been exploited, and vast microbial diversity is still unexplored. This review would also be useful for further research to enhance the efficiency of degradation of xenobiotic pollutants, including agrochemical, microplastic, polyhalogenated compounds, and other hydrocarbons.
Collapse
|
23
|
Sharma I, Kango N. Production and characterization of keratinase by Ochrobactrum intermedium for feather keratin utilization. Int J Biol Macromol 2020; 166:1046-1056. [PMID: 33157140 DOI: 10.1016/j.ijbiomac.2020.10.260] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 10/31/2020] [Indexed: 11/29/2022]
Abstract
A newly isolated bacterium producing 55.5 U/mL keratinase on feather meal minimal medium was identified as Ochrobactrum intermedium. Optimization of process parameters by one-variable-at-a-time (OVAT) approach (substrate concentration 0.5% w/v, inoculum size 5% w/v, pH 7.0, 200 rpm for 96 h at 40 °C) resulted in 2.1-fold increase in keratinase secretion (117 U/mL). Keratinase was optimally active at pH 9.0 and 40 °C and was stable at pH 9.0 and 60 °C for 120 min. Calcium ions enhanced keratinase activity (158%) significantly, while it was strongly inhibited by both PMSF and EDTA, indicating it to be a metallo-serine protease. Keratinase degraded native chicken feathers efficiently resulting in 97.9% weight loss along with release of 745.5 μg/mL soluble proteins and 4196.69 μg/mL amino acids. Feather hydrolysate generated by NKIS 1 exhibited significant anti-oxidant and free-radical scavenging activity (90.46%). The present study revealed that O. intermedium NKIS 1 has potential applications in the biodegradation of chicken feathers and the value-addition of poultry waste.
Collapse
Affiliation(s)
- Isha Sharma
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, M.P. 470003, India
| | - Naveen Kango
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, M.P. 470003, India.
| |
Collapse
|
24
|
Czapela FF, Kubeneck S, Preczeski KP, Dalastra C, Scapini T, Bonatto C, Stefanski FS, Camargo AF, Zanivan J, Mossi AJ, Fongaro G, Treichel H. Reactional ultrasonic systems and microwave irradiation for pretreatment of agro-industrial waste to increase enzymatic activity. BIORESOUR BIOPROCESS 2020. [DOI: 10.1186/s40643-020-00338-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractPretreatment of keratinous residues using an ultrasonic reaction system provides greater enzymatic production in less time. This is a promising technology for measuring enzyme activity and microwave processes. In the present work, an ultrasonic probe reaction system was used to evaluate the potential of swine hair pretreatment. The pretreated material was submerged with non-pretreated residues for 9 days to obtain the enzyme. Enzyme activity was measured in the extracts obtained using the ultrasonic probe, ultrasonic bath, and microwave. We also used the enzymatic concentration technique with NaCl and acetone. Homemade enzymatic extracts were evaluated for their ability to degrade swine hair and chicken feathers by comparing them with the activities commercial enzymes. Macrobeads gave greater energy dissipation in less time, providing greater enzyme activity (50.8 U/mL over 3 days). In terms of waste degradation, non-pretreated swine hair was more promising. The ultrasonic probe reaction system had the potential to evaluate increased enzyme activity (38.4% relative activity) and the enzyme concentration increased activity by 53.5%. The homemade enzymatic extract showed promise for degradation of keratinous residues.
Collapse
|
25
|
Valorization of feather via the microbial production of multi-applicable keratinolytic enzyme. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101674] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
26
|
Hassan MA, Abol-Fotouh D, Omer AM, Tamer TM, Abbas E. Comprehensive insights into microbial keratinases and their implication in various biotechnological and industrial sectors: A review. Int J Biol Macromol 2020; 154:567-583. [PMID: 32194110 DOI: 10.1016/j.ijbiomac.2020.03.116] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/11/2020] [Accepted: 03/13/2020] [Indexed: 12/25/2022]
Abstract
Enormous masses of keratinous wastes are annually accumulated in the environment as byproducts of poultry processing and agricultural wastes. Keratin is a recalcitrant fibrous protein, which represents the major constituent of various keratin-rich wastes, which released into the environment in the form of feathers, hair, wool, bristle, and hooves. Chemical treatment methods of these wastes resulted in developing many hazardous gases and toxins to the public health, in addition to the destruction of several amino acids. Accordingly, microbial keratinases have been drawing much interest as an eco-friendly approach to convert keratinous wastes into valuable products. Numerous keratinolytic microorganisms have been identified, which revealed the competence to hydrolyze keratins into peptides and amino acids. Several types of keratinolytic proteases have been produced that possess diverse biochemical characteristics, conferring them the versatility for implementing in multifarious applications such as detergents, leather and textile industries, animal feeding, and production of bio-fertilizers, in addition to medical and pharmaceutical treatments. This review article emphasizes the significance of keratinases and keratinase based-products via comprehensive insights into the keratin structure, diversity of keratinolytic microorganisms, and mechanisms of keratin hydrolysis. Furthermore, we discuss the biochemical properties of the produced keratinases and their feasible applications in diverse disciplines.
Collapse
Affiliation(s)
- Mohamed A Hassan
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P.O. Box: 21934, Alexandria, Egypt.
| | - Deyaa Abol-Fotouh
- Electronic Materials Researches Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P.O. Box: 21934, Alexandria, Egypt
| | - Ahmed M Omer
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P.O. Box: 21934, Alexandria, Egypt
| | - Tamer M Tamer
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P.O. Box: 21934, Alexandria, Egypt
| | - Eman Abbas
- Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
27
|
Bhari R, Kaur M, Singh RS. Thermostable and halotolerant keratinase fromBacillus aeriusNSMk2 with remarkable dehairing and laundary applications. J Basic Microbiol 2019; 59:555-568. [DOI: 10.1002/jobm.201900001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/01/2019] [Accepted: 02/17/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Ranjeeta Bhari
- Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology; Punjabi University; Patiala Punjab India
| | - Manpreet Kaur
- Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology; Punjabi University; Patiala Punjab India
| | - Ram S. Singh
- Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology; Punjabi University; Patiala Punjab India
| |
Collapse
|
28
|
Alba AC, Strauch TA, Keisler DH, Wells KD, Kesler DC. Using a keratinase to degrade chicken feathers for improved extraction of glucocorticoids. Gen Comp Endocrinol 2019; 270:35-40. [PMID: 30291864 DOI: 10.1016/j.ygcen.2018.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 09/28/2018] [Accepted: 10/01/2018] [Indexed: 11/21/2022]
Abstract
Stress in animals is a concern in conservation breeding programs and livestock production facilities. The biological stress response is mediated by the release of glucocorticoids, which can suppress reproduction, growth, and immunity if recurrently activated. Feathers can be used to extract and monitor concentrations of corticosterone, a primary glucocorticoid in birds. However, current techniques for extracting feather corticosterone present challenges, including difficulty assessing extraction efficiency or hormone recovery, inconsistent extraction across feather lengths or pieces, and several uncertainties regarding the mechanisms of hormone deposition into feathers. To overcome such challenges and to provide tools useful for facilitating conservation breeding and livestock production, we developed and validated an alternative procedure for extracting feather glucocorticoids. We first developed a protocol to enzymatically digest the protein matrix of feathers using a keratinase, such that non-protein analytes could be isolated by organic extraction. We then developed an extraction protocol and evaluated techniques by measuring extraction efficiency and by testing parallelism and hormone recovery (accuracy) using radioimmunoassay. Our results demonstrated high and consistent extraction efficiency, as well as high accuracy and reliable parallelism to a standard curve upon measurement of corticosterone concentrations from extracts. By dissolving feather material into solution prior to extraction, we were able to replicate hormone deposition into the feather matrix and ensure consistent extraction across feathers. This work provides additional support for the validity and practicality of extracting glucocorticoids from feathers. Our extraction protocol is likely to extend to other applications as well, including the isolation of numerous non-protein analytes from various keratinized tissues.
Collapse
Affiliation(s)
- Andrew C Alba
- Fisheries and Wildlife Sciences Department, University of Missouri Columbia, 1105 E Rollins St., Columbia, MO 65211, United States; Disney's Animal Kingdom, 1200 North Savannah Circle East, Bay Lake, FL 32830, United States
| | - Trista A Strauch
- Fisheries and Wildlife Sciences Department, University of Missouri Columbia, 1105 E Rollins St., Columbia, MO 65211, United States; Division of Animal Sciences, University of Missouri, 160 Animal Science Research Center, Columbia, MO 65211, United States
| | - Duane H Keisler
- Division of Animal Sciences, University of Missouri, 160 Animal Science Research Center, Columbia, MO 65211, United States
| | - Kevin D Wells
- Division of Animal Sciences, University of Missouri, 160 Animal Science Research Center, Columbia, MO 65211, United States
| | - Dylan C Kesler
- Fisheries and Wildlife Sciences Department, University of Missouri Columbia, 1105 E Rollins St., Columbia, MO 65211, United States; The Institute for Bird Populations, PO Box 1346, Point Reyes Station, CA 94956, United States.
| |
Collapse
|
29
|
Vineis C, Varesano A, Varchi G, Aluigi A. Extraction and Characterization of Keratin from Different Biomasses. KERATIN AS A PROTEIN BIOPOLYMER 2019. [DOI: 10.1007/978-3-030-02901-2_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
30
|
Abdel-Fattah AM, El-Gamal MS, Ismail SA, Emran MA, Hashem AM. Biodegradation of feather waste by keratinase produced from newly isolated Bacillus licheniformis ALW1. J Genet Eng Biotechnol 2018; 16:311-318. [PMID: 30733740 PMCID: PMC6353909 DOI: 10.1016/j.jgeb.2018.05.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/08/2018] [Accepted: 05/13/2018] [Indexed: 11/30/2022]
Abstract
Keratinase are proteolytic enzymes which have gained much attention to convert keratinous wastes that cause huge environmental pollution problems. Ten microbial isolates were screened for their keratinase production. The most potent isolate produce 25.2 U/ml under static condition and was primarily identified by partial 16s rRNA gene sequence as Bacillus licheniformis ALW1. Optimization studies for the fermentation conditions increased the keratinase biosynthesis to 72.2 U/ml (2.9-fold). The crude extracellular keratinase was optimally active at pH 8.0 and temperature 65 °C with 0.7% soluble keratin as substrate. The produced B. licheniformis ALW1 keratinase exhibited a good stability over pH range from 7 to 9 and over a temperature range 50-60 °C for almost 90 min. The crude enzyme solution was able to degrade native feather up to 63% in redox free system.
Collapse
Affiliation(s)
- Azza M. Abdel-Fattah
- Department of Chemistry of Natural and Microbial Products, Division of Pharmaceutical and Drug Industries Research, National Research Centre, Giza, Egypt
| | - Mamdouh S. El-Gamal
- Department of Botany and Microbiology, Faculty of Science (Boys), Al-Azhar University, Cairo, Egypt
| | - Siham A. Ismail
- Department of Chemistry of Natural and Microbial Products, Division of Pharmaceutical and Drug Industries Research, National Research Centre, Giza, Egypt
| | - Mohamed A. Emran
- Department of Chemistry of Natural and Microbial Products, Division of Pharmaceutical and Drug Industries Research, National Research Centre, Giza, Egypt
| | - Amal M. Hashem
- Department of Chemistry of Natural and Microbial Products, Division of Pharmaceutical and Drug Industries Research, National Research Centre, Giza, Egypt
| |
Collapse
|
31
|
Characterization of Bacillus Species with Keratinase and Cellulase Properties Isolated from Feather Dumping Soil and Cockroach Gut. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s40011-018-1026-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
32
|
Microbial production and industrial applications of keratinases: an overview. Int Microbiol 2018; 21:163-174. [DOI: 10.1007/s10123-018-0022-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 07/05/2018] [Accepted: 07/06/2018] [Indexed: 11/25/2022]
|
33
|
Łaba W, Żarowska B, Chorążyk D, Pudło A, Piegza M, Kancelista A, Kopeć W. New keratinolytic bacteria in valorization of chicken feather waste. AMB Express 2018; 8:9. [PMID: 29368054 PMCID: PMC5783986 DOI: 10.1186/s13568-018-0538-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/15/2018] [Indexed: 01/21/2023] Open
Abstract
There is an increasing demand for cost-effective and ecologically-friendly methods for valorization of poultry feather waste, in which keratinolytic bacteria present a great potential. Feather-degrading bacteria were isolated from living poultry and a single strain, identified as Kocuria rhizophila p3-3, exhibited significant keratinolytic properties. The bacterial strain effectively degraded up to 52% of chicken feathers during 4 days of culture at 25 °C. Zymographic analysis revealed the presence of two dominating proteolytic enzymes in the culture fluid. Culture conditions were optimized in order to maximize the liberation of soluble proteins and free amino acids. A two-step procedure was used, comprising a Plackett-Burman screening design, followed by a Box-Behnken design. Concentration of feather substrate, MgSO4 and KH2PO4 were the most influential parameters for the accumulation of soluble proteins in culture K. rhizophila p3-3, while feathers and MgSO4 also affected the concentration of amino acids. The resultant raw hydrolysate supernatant, prior to and after additional treatments, was rich in phenylalanine, histidine, arginine and aspartic acid. Additionally the hydrolysate exhibited radical-scavenging activity and ferric reducing power.
Collapse
|
34
|
Production of feather protein hydrolyzed by B. subtilis AMR and its application in a blend with cornmeal by extrusion. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.05.077] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
35
|
Barman NC, Zohora FT, Das KC, Mowla MG, Banu NA, Salimullah M, Hashem A. Production, partial optimization and characterization of keratinase enzyme by Arthrobacter sp. NFH5 isolated from soil samples. AMB Express 2017; 7:181. [PMID: 28936604 PMCID: PMC5608654 DOI: 10.1186/s13568-017-0462-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 08/01/2017] [Indexed: 01/11/2023] Open
Abstract
The study was conducted to select the best promising keratinolytic bacterial strain. A good keratinase positive bacterium isolated from the soil samples of Hazaribagh tannery industrial zone, Dhaka was identified as Arthrobacter genus depending on the conventional techniques and confirmed as Arthrobacter sp. by sequencing 16S rRNA gene. The medium components and culture conditions were optimized to enhance keratinase production through shake flask culture. Keratin and feather powder (10 g/l or 1%) were good substrates for the highest keratinase production along with yeast extract (0.2 g/l or 0.02%) as an organic nitrogen source and potassium nitrate (1 g or 0.1%) as an inorganic nitrogen source. Maximum yield of keratinase was found after 24 h of incubation at 37 °C with an initial pH of 7.0 and inoculums volume 5% under 150 rpm when keratin, yeast extract and potassium nitrate were used as nutrient sources. Keratinase production was more than 5.0-fold increased when all optimized parameters were applied simultaneously. The optimum reaction temperature and pH were determined to be 40 °C and 8.0 respectively for crude keratinase activity. Therefore, Arthrobacter sp. NFH5 might be used for large scale production of keratinase for industrial purposes in less time.
Collapse
|
36
|
Abdel-Naby MA, El-Refai HA, Ibrahim MHA. Structural characterization, catalytic, kinetic and thermodynamic properties of Keratinase from Bacillus pumilus FH9. Int J Biol Macromol 2017; 105:973-980. [PMID: 28743569 DOI: 10.1016/j.ijbiomac.2017.07.118] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 07/11/2017] [Accepted: 07/18/2017] [Indexed: 11/18/2022]
Abstract
Bacillus pumilus FH9 keratinase was purified to homogeneity with a 59.9% yield through a series of three steps. The purified enzyme was a monomeric protein with a molecular mass around 50kDa and containing 7.3% carbohydrates. The pure B. pumilus FH9 keratinase was optimally active at pH 9.0 and 60°C. The calculated activation energy for keratin hydrolysis was 24.52kJmol-1 and its temperature quotient (Q10) was 1.19. The calculated values of thermodynamic parameters for keratin hydrolysis were as follows: ΔH*=21.75kJmol-1, ΔG*=65.86kJmol-1 ΔS*=-132.46Jmol-1K-1, (ΔG*E-S)=4.74kJmol-1 and ΔG*E-T=-11.254kJmol-1. The pure keratinase exhibited Km, Vmax, kcat and kcat/Km of 5.55mg/ml keratin, 5882Umgprotein-1 323.54s-1 and 58.28 (s-1/mgml-1). The calculated half-life time at 50, 60, 70 and 80°C was 90.69, 59.1, 16.62 and 9.48min, respectively. Similarly, the thermodynamic parameters for irreversible thermal inactivation at temperature ranging from 50 to 80°C were determined. The pure enzyme was stimulated by Ca2+ and Mg2+. However, Zn2+, EDTA, Co2+ and Hg2+ significantly inhibited the enzyme activity. The purified enzyme was able to hydrolyze different substrates showing its higher proteolytic activity on casein, bovine serum albumin, and collagen, followed by feather, horn and wool.
Collapse
Affiliation(s)
- Mohamed A Abdel-Naby
- Department of Chemistry of Natural and Microbial Products, National Research Center, 12311, Dokki, Cairo, Egypt.
| | - Heba A El-Refai
- Department of Chemistry of Natural and Microbial Products, National Research Center, 12311, Dokki, Cairo, Egypt
| | - Mohammad H A Ibrahim
- Department of Chemistry of Natural and Microbial Products, National Research Center, 12311, Dokki, Cairo, Egypt
| |
Collapse
|
37
|
Partial Characterization of Keratinolytic Activity of Local Novel Bacteria Isolated from Feather Waste. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2017. [DOI: 10.22207/jpam.11.1.22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
38
|
Riquelme C, Enes Dapkevicius MDL, Miller AZ, Charlop-Powers Z, Brady S, Mason C, Cheeptham N. Biotechnological potential of Actinobacteria from Canadian and Azorean volcanic caves. Appl Microbiol Biotechnol 2016; 101:843-857. [DOI: 10.1007/s00253-016-7932-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 09/07/2016] [Accepted: 10/12/2016] [Indexed: 12/26/2022]
|
39
|
Verma A, Singh H, Anwar S, Chattopadhyay A, Tiwari KK, Kaur S, Dhilon GS. Microbial keratinases: industrial enzymes with waste management potential. Crit Rev Biotechnol 2016; 37:476-491. [PMID: 27291252 DOI: 10.1080/07388551.2016.1185388] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Proteases are ubiquitous enzymes that occur in various biological systems ranging from microorganisms to higher organisms. Microbial proteases are largely utilized in various established industrial processes. Despite their numerous industrial applications, they are not efficient in hydrolysis of recalcitrant, protein-rich keratinous wastes which result in environmental pollution and health hazards. This paved the way for the search of keratinolytic microorganisms having the ability to hydrolyze "hard to degrade" keratinous wastes. This new class of proteases is known as "keratinases". Due to their specificity, keratinases have an advantage over normal proteases and have replaced them in many industrial applications, such as nematicidal agents, nitrogenous fertilizer production from keratinous waste, animal feed and biofuel production. Keratinases have also replaced the normal proteases in the leather industry and detergent additive application due to their better performance. They have also been proved efficient in prion protein degradation. Above all, one of the major hurdles of enzyme industrial applications (cost effective production) can be achieved by using keratinous waste biomass, such as chicken feathers and hairs as fermentation substrate. Use of these low cost waste materials serves dual purposes: to reduce the fermentation cost for enzyme production as well as reducing the environmental waste load. The advent of keratinases has given new direction for waste management with industrial applications giving rise to green technology for sustainable development.
Collapse
Affiliation(s)
- Amit Verma
- a CBSH, SD Agricultural University , Gujarat , India
| | - Hukum Singh
- b Climate Change and Forest Influences Division , Forest Research Institute, ICFRE , Dehradun , India
| | - Shahbaz Anwar
- c Department of Microbiology , GBPUAT , Pantnagar , India
| | | | | | - Surinder Kaur
- e Department of Biological Sciences , University of Lethbridge , Lethbridge , AB , Canada.,f Lethbridge Research Centre, Agriculture and Agrifood Canada , Lethbridge , AB , Canada
| | - Gurpreet Singh Dhilon
- g Department of Food, Agricultural, and Nutritional Sciences , University of Alberta , Edmonton , AB , Canada
| |
Collapse
|
40
|
Tang A, Wang B, Liu Y, Li Q, Tong Z, Wei Y. Biodegradation and extracellular enzymatic activities of Pseudomonas aeruginosa strain GF31 on β-cypermethrin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:13049-13057. [PMID: 25921758 DOI: 10.1007/s11356-015-4545-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 04/14/2015] [Indexed: 06/04/2023]
Abstract
Pseudomonas aeruginosa strain GF31, isolated from a contaminated soil, can effectively degrade β-cypermethrin (β-CP), as well as fenpropathrin, fenvalerate, and cyhalothrin. The highest level of degradation (81.2 %) was achieved with the addition of peptone. Surprisingly, the enzyme responsible for degradation was mainly localized to the extracellular areas of the bacteria, in contrast to the other known pyrethroid-degrading enzymes, which are intracellular. Although intact bacterial cells function at about 30 °C for biodegradation, similar to other degrading strains, the crude extracellular extract of strain GF31 remained biologically active at 60 °C. Moreover, the extract fraction showed good storage stability, maintaining >50 % of its initial activity following storage at 25 °C for at least 20 days. Significant differences in the characteristics of the crude GF31 extracellular extract compared with the known pyrethroid-degrading enzymes indicate the presence of a novel pyrethroid-degrading enzyme. Furthermore, the identification of 3-phenoxybenzoic acid and 2,2-dimethylcyclopropanecarboxylate from the degradation products suggests the possibility that β-CP degradation by both the strain and the crude extracellular fraction is achieved through a hydrolysis pathway. Further degradation of these two metabolites may lead to the development of an efficient method for the mineralization of these types of pollutants.
Collapse
Affiliation(s)
- Aixing Tang
- School of Chemistry and Chemical Engineering, Guangxi University, 100 Daxue Road, Nanning, Guangxi, China
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
The extremophile Deinococcus radiodurans wild type R1 produces peptidases (metallo- and serine-) in TGY medium and in the media supplemented with human hair (HMY) and chicken feathers (FMY). Enzymatic screening on agar plates revealed peptidase activity. In TGY medium metallopeptidases were detected corresponding to a molecular mass range of 300-85 kDa (gelatinases); 280-130 (caseinases) and a 300 and a 170 kDa (keratinases); and a gelatinolytic serine peptidase (75 kDa). In HMY medium after 144 h, D. radiodurans produced keratinase (290 U/ml), gelatinase (619 U/ml) and sulfite (26 µg/ml). TGY medium produced higher proteolytic activity: 950 U/ml of gelatinolytic (24 h); 470 U/ml of keratinolytic (24 h) and 110 U/ml of caseinolytic (72 h). In the FMY medium, we found gelatinolytic (317 U/ml), keratinolytic (43 U/ml) and caseinolytic (85 U/ml) activities. The sulfite had a maximum release at 48 h (8.1 µg/ml). Enzymography analysis revealed that the keratinases degraded keratin after 24 h of reaction. The addition of sodium sulfite (1.0 %) improved the keratin degradation. Environmental Scanning Electron microscopy revealed alterations such as damage and holes in the hair fiber cuticle after D. radiodurans growth. This work presents for the first time D. radiodurans as a new keratinolytic microorganism.
Collapse
|
42
|
Chen X, Zhou B, Xu M, Huang Z, Jia G, Zhao H. Prokaryotic expression and characterization of a keratinolytic protease from Aspergillus niger. Biologia (Bratisl) 2015. [DOI: 10.1515/biolog-2015-0031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
43
|
Essam T, ElRakaiby M, Agha A. Remediation of the effect of adding cyanides on an algal/bacterial treatment of a mixture of organic pollutants in a continuous photobioreactor. Biotechnol Lett 2014; 36:1773-81. [DOI: 10.1007/s10529-014-1557-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 05/13/2014] [Indexed: 10/25/2022]
|
44
|
Chaturvedi V, Bhange K, Bhatt R, Verma P. Production of kertinases using chicken feathers as substrate by a novel multifunctional strain of Pseudomonas stutzeri and its dehairing application. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2014. [DOI: 10.1016/j.bcab.2013.08.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
45
|
Eslahi N, Hemmatinejad N, Dadashian F. From Feather Waste to Valuable Nanoparticles. PARTICULATE SCIENCE AND TECHNOLOGY 2014. [DOI: 10.1080/02726351.2013.851135] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
46
|
Anitha T, Palanivelu P. Purification and characterization of an extracellular keratinolytic protease from a new isolate of Aspergillus parasiticus. Protein Expr Purif 2013; 88:214-20. [DOI: 10.1016/j.pep.2013.01.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 12/07/2012] [Accepted: 01/02/2013] [Indexed: 10/27/2022]
|
47
|
Villa ALV, Aragão MRS, Dos Santos EP, Mazotto AM, Zingali RB, de Souza EP, Vermelho AB. Feather keratin hydrolysates obtained from microbial keratinases: effect on hair fiber. BMC Biotechnol 2013; 13:15. [PMID: 23414102 PMCID: PMC3621039 DOI: 10.1186/1472-6750-13-15] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Accepted: 02/11/2013] [Indexed: 11/30/2022] Open
Abstract
Background Hair is composed mainly of keratin protein and a small amount of lipid. Protein hydrolysates, in particular those with low molecular weight distribution have been known to protect hair against chemical and environmental damage. Many types of protein hydrolysates from plants and animals have been used in hair and personal care such as keratin hydrolysates obtained from nails, horns and wool. Most of these hydrolysates are obtained by chemical hydrolysis and hydrothermal methods, but recently hydrolyzed hair keratin, feather keratin peptides, and feather meal peptides have been obtained by enzymatic hydrolysis using Bacillus spp in submerged fermentation. Results Keratin peptides were obtained by enzymatic hydrolysis of keratinases using Bacillus subtilis AMR. The microorganism was grown on a feather medium, pH 8.0 (1% feathers) and supplemented with 0.01% of yeast extract, for 5 days, at 28°C with agitation. The supernatant containing the hydrolysates was colleted by centrifugation and ultra filtered in an AMICON system using nano–membranes (Millipore – YC05). The Proteins and peptides were analyzed using HPTLC and MALDI-TOF-MS. Commercial preparations of keratin hydrolysates were used as a comparative standard. After five days the feather had been degraded (90-95%) by the peptidases and keratinases of the microorganism. MALDI-TOF mass spectrometry showed multiple peaks that correspond to peptides in the range of 800 to 1079 Daltons and the commercial hydrolysate was in the range of 900 to 1400 Da. HPTLC showed lower molecular mass peptides and amino acids in the enzymatic hydrolysate when compared with the commercial hydrolysate . A mild shampoo and a rinse off conditioner were formulated with the enzymatic hydrolysate and applied to hair fibers to evaluate the hydration, with and without heat, using a Corneometer® CM 825. The hydration was more efficient with heat, suggesting a more complete incorporation of hydrolysates into the fibers. Scanning Electron Microscopy showed deposits of organic matter in the junction of the cuticles that probably collaborates to the sealing of the cuticles, increasing the brightness and softness. Conclusions These results show that the enzymatic method to produce keratin peptides for hair care products is an attractive and eco- friendly method with a great potential in the cosmetic industry.
Collapse
Affiliation(s)
- Ana Lúcia Vazquez Villa
- Department of General Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | | | |
Collapse
|
48
|
Costa DCM, Vermelho AB, Almeida CA, Dias EPDS, Cedrola SML, Arrigoni-Blank MDF, Blank AF, Alviano CS, Alviano DS. Inhibitory effect of linalool-rich essential oil from Lippia alba on the peptidase and keratinase activities of dermatophytes. J Enzyme Inhib Med Chem 2013; 29:12-7. [DOI: 10.3109/14756366.2012.743537] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Alane Beatriz Vermelho
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro
Rio de JaneiroBrazil
| | - Catia Amancio Almeida
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro
Rio de JaneiroBrazil
| | | | | | | | - Arie Fitzgerald Blank
- Departamento de Engenharia Agronômica, Universidade Federal de Sergipe
SergipeBrazil
| | - Celuta Sales Alviano
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro
Rio de JaneiroBrazil
| | - Daniela Sales Alviano
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro
Rio de JaneiroBrazil
| |
Collapse
|
49
|
Gupta R, Sharma R, Beg QK. Revisiting microbial keratinases: next generation proteases for sustainable biotechnology. Crit Rev Biotechnol 2012; 33:216-28. [PMID: 22642703 DOI: 10.3109/07388551.2012.685051] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Keratinases are special proteases which attack the highly recalcitrant keratin substrates. They stand apart from the conventional proteases due to their broad substrate specificity towards a variety of insoluble keratin rich substrates like feather, wool, nail, hair. Owing to this ability, keratinases find immense applications in various environmental and biotechnological sectors. The current boost in keratinase research has come up with the discovery of the ability of keratinases to address the challenging issue of prion decontamination. Here we present a comprehensive review on microbial keratinases giving an account of chronological progress of research along with the major milestones. Major focus has been on the key characteristics of keratinases, such as substrate specificity, keratin degradation mechanisms, molecular properties, and their role in prion decontamination along with other pharmaceutical applications. We conclude by critically evaluating the present state of the keratinases discussing their commercial status along with future research directions.
Collapse
Affiliation(s)
- Rani Gupta
- Department of Microbiology, University of Delhi, South Campus, New Delhi, India.
| | | | | |
Collapse
|
50
|
Keratinases and sulfide from Bacillus subtilis SLC to recycle feather waste. World J Microbiol Biotechnol 2011; 28:1259-69. [PMID: 22805846 DOI: 10.1007/s11274-011-0930-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Accepted: 10/24/2011] [Indexed: 10/15/2022]
Abstract
The aim of this study is to investigate the culture conditions of chicken feather degradation and keratinolytic enzyme production by the recently isolated Bacillus subtilis SLC and to evaluate the potential of the SLC strain to recycle feather waste discarded by the poultry industry. The SLC strain was isolated from the agroindustrial waste of a poultry farm in Brazil and was confirmed to belong to Bacillus subtilis by rDNA gene analysis. There was high keratinase production when the medium was at pH 8 (280 U ml(-1)). Activity was higher using the inoculum propagated for 72 h on 1% whole feathers supplemented with 0.1% yeast extract. In the enzymatic extract, the keratinases were active in the pH range from 2.0 to 12.0 with a maximum activity at pH 10.0 and temperature 60°C. For gelatinase the best pH was 5.0 and the best temperature was 37°C. All keratinases are serine peptidases. The crude enzymatic extract degraded keratin, gelatin, casein, and hemoglobin. Scanning electron microscopy showed Bacillus cells adhered onto feather surfaces after 98 h of culture and degraded feather filaments were observed. MALDI-TOF mass spectrometric analysis showed multiple peaks from 522 to 892 m/z indicating feather degradation. The presence of sulfide was detected on extracellular medium probably participating in the breakdown of sulfide bridges of the feather keratin. External addition of sulfide increased feather degradation.
Collapse
|