1
|
Chen M, Jin T, Nian B, Cheng W. Solvent Tolerance Improvement of Lipases Enhanced Their Applications: State of the Art. Molecules 2024; 29:2444. [PMID: 38893320 PMCID: PMC11173743 DOI: 10.3390/molecules29112444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/08/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
Lipases, crucial catalysts in biochemical synthesis, find extensive applications across industries such as food, medicine, and cosmetics. The efficiency of lipase-catalyzed reactions is significantly influenced by the choice of solvents. Polar organic solvents often result in a decrease, or even loss, of lipase activity. Conversely, nonpolar organic solvents induce excessive rigidity in lipases, thereby affecting their activity. While the advent of new solvents like ionic liquids and deep eutectic solvents has somewhat improved the activity and stability of lipases, it fails to address the fundamental issue of lipases' poor solvent tolerance. Hence, the rational design of lipases for enhanced solvent tolerance can significantly boost their industrial performance. This review provides a comprehensive summary of the structural characteristics and properties of lipases in various solvent systems and emphasizes various strategies of protein engineering for non-aqueous media to improve lipases' solvent tolerance. This study provides a theoretical foundation for further enhancing the solvent tolerance and industrial properties of lipases.
Collapse
Affiliation(s)
| | | | | | - Wenjun Cheng
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 210009, China; (M.C.); (T.J.); (B.N.)
| |
Collapse
|
2
|
Bharmoria P, Tietze AA, Mondal D, Kang TS, Kumar A, Freire MG. Do Ionic Liquids Exhibit the Required Characteristics to Dissolve, Extract, Stabilize, and Purify Proteins? Past-Present-Future Assessment. Chem Rev 2024; 124:3037-3084. [PMID: 38437627 PMCID: PMC10979405 DOI: 10.1021/acs.chemrev.3c00551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 03/06/2024]
Abstract
Proteins are highly labile molecules, thus requiring the presence of appropriate solvents and excipients in their liquid milieu to keep their stability and biological activity. In this field, ionic liquids (ILs) have gained momentum in the past years, with a relevant number of works reporting their successful use to dissolve, stabilize, extract, and purify proteins. Different approaches in protein-IL systems have been reported, namely, proteins dissolved in (i) neat ILs, (ii) ILs as co-solvents, (iii) ILs as adjuvants, (iv) ILs as surfactants, (v) ILs as phase-forming components of aqueous biphasic systems, and (vi) IL-polymer-protein/peptide conjugates. Herein, we critically analyze the works published to date and provide a comprehensive understanding of the IL-protein interactions affecting the stability, conformational alteration, unfolding, misfolding, and refolding of proteins while providing directions for future studies in view of imminent applications. Overall, it has been found that the stability or purification of proteins by ILs is bispecific and depends on the structure of both the IL and the protein. The most promising IL-protein systems are identified, which is valuable when foreseeing market applications of ILs, e.g., in "protein packaging" and "detergent applications". Future directions and other possibilities of IL-protein systems in light-harvesting and biotechnology/biomedical applications are discussed.
Collapse
Affiliation(s)
- Pankaj Bharmoria
- CICECO
- Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal
- Department
of Smart Molecular, Inorganic and Hybrid Materials, Institute of Materials Science of Barcelona (ICMAB-CSIC), 08193 Bellaterra, Barcelona, Spain
- Department
of Chemistry and Molecular Biology, Wallenberg Centre for Molecular
and Translational Medicine, University of
Gothenburg, SE-412 96 Göteborg, Sweden
| | - Alesia A. Tietze
- Department
of Chemistry and Molecular Biology, Wallenberg Centre for Molecular
and Translational Medicine, University of
Gothenburg, SE-412 96 Göteborg, Sweden
| | - Dibyendu Mondal
- CICECO
- Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal
- Institute
of Plant Genetics (IPG), Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland
- Centre
for Nano and Material Sciences, JAIN (Deemed-to-be
University), Jain Global
Campus, Bangalore 562112, India
| | - Tejwant Singh Kang
- Department
of Chemistry, UGC Center for Advance Studies-II,
Guru Nanak Dev University (GNDU), Amritsar 143005, Punjab, India
| | - Arvind Kumar
- Salt
and Marine Chemicals Division, CSIR-Central
Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar 364002, Gujarat, India
| | - Mara G Freire
- CICECO
- Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
3
|
Imam H, Hill K, Reid A, Mix S, Marr PC, Marr AC. Supramolecular Ionic Liquid Gels for Enzyme Entrapment. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:6829-6837. [PMID: 37180026 PMCID: PMC10170508 DOI: 10.1021/acssuschemeng.3c00517] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/21/2023] [Indexed: 05/15/2023]
Abstract
Reported herein is an entrapment method for enzyme immobilization that does not require the formation of new covalent bonds. Ionic liquid supramolecular gels are formed containing enzymes that can be shaped into gel beads and act as recyclable immobilized biocatalysts. The gel was formed from two components, a hydrophobic phosphonium ionic liquid and a low molecular weight gelator derived from the amino acid phenylalanine. Gel-entrapped lipase from Aneurinibacillus thermoaerophilus was recycled for 10 runs over 3 days without loss of activity and retained activity for at least 150 days. The procedure does not form covalent bonds upon gel formation, which is supramolecular, and no bonds are formed between the enzyme and the solid support.
Collapse
Affiliation(s)
- Hasan
T. Imam
- School
of Chemistry and Chemical Engineering, Queen’s
University Belfast, UK, David Keir Building, Stranmillis Road, Belfast, Northern Ireland, United Kingdom BT9 5AG
| | - Kyle Hill
- School
of Chemistry and Chemical Engineering, Queen’s
University Belfast, UK, David Keir Building, Stranmillis Road, Belfast, Northern Ireland, United Kingdom BT9 5AG
| | - Andrew Reid
- School
of Chemistry and Chemical Engineering, Queen’s
University Belfast, UK, David Keir Building, Stranmillis Road, Belfast, Northern Ireland, United Kingdom BT9 5AG
| | - Stefan Mix
- Department
of Biocatalysis, Almac Bioscience, Almac
Group, Almac House, 20 Seagoe Industrial Estate, Craigavon, Belfast, Northern Ireland, United Kingdom BT63 5QD
| | - Patricia C. Marr
- School
of Chemistry and Chemical Engineering, Queen’s
University Belfast, UK, David Keir Building, Stranmillis Road, Belfast, Northern Ireland, United Kingdom BT9 5AG
- E-mail:
| | - Andrew C. Marr
- School
of Chemistry and Chemical Engineering, Queen’s
University Belfast, UK, David Keir Building, Stranmillis Road, Belfast, Northern Ireland, United Kingdom BT9 5AG
- E-mail:
| |
Collapse
|
4
|
Solhtalab M, Moller SR, Gu AZ, Jaisi D, Aristilde L. Selectivity in Enzymatic Phosphorus Recycling from Biopolymers: Isotope Effect, Reactivity Kinetics, and Molecular Docking with Fungal and Plant Phosphatases. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16441-16452. [PMID: 36283689 PMCID: PMC9670850 DOI: 10.1021/acs.est.2c04948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/05/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Among ubiquitous phosphorus (P) reserves in environmental matrices are ribonucleic acid (RNA) and polyphosphate (polyP), which are, respectively, organic and inorganic P-containing biopolymers. Relevant to P recycling from these biopolymers, much remains unknown about the kinetics and mechanisms of different acid phosphatases (APs) secreted by plants and soil microorganisms. Here we investigated RNA and polyP dephosphorylation by two common APs, a plant purple AP (PAP) from sweet potato and a fungal phytase from Aspergillus niger. Trends of δ18O values in released orthophosphate during each enzyme-catalyzed reaction in 18O-water implied a different extent of reactivity. Subsequent enzyme kinetics experiments revealed that A. niger phytase had 10-fold higher maximum rate for polyP dephosphorylation than the sweet potato PAP, whereas the sweet potato PAP dephosphorylated RNA at a 6-fold faster rate than A. niger phytase. Both enzymes had up to 3 orders of magnitude lower reactivity for RNA than for polyP. We determined a combined phosphodiesterase-monoesterase mechanism for RNA and terminal phosphatase mechanism for polyP using high-resolution mass spectrometry and 31P nuclear magnetic resonance, respectively. Molecular modeling with eight plant and fungal AP structures predicted substrate binding interactions consistent with the relative reactivity kinetics. Our findings implied a hierarchy in enzymatic P recycling from P-polymers by phosphatases from different biological origins, thereby influencing the relatively longer residence time of RNA versus polyP in environmental matrices. This research further sheds light on engineering strategies to enhance enzymatic recycling of biopolymer-derived P, in addition to advancing environmental predictions of this P recycling by plants and microorganisms.
Collapse
Affiliation(s)
- Mina Solhtalab
- Department
of Biological and Environmental Engineering, College of Agriculture
and Life Sciences, Cornell University, Ithaca, New York 14853, United States
- Department
of Civil and Environmental Engineering, McCormick School of Engineering
and Applied Science, Northwestern University, Evanston, Illinois 60208, United States
| | - Spencer R. Moller
- Department
of Plant and Soil Sciences, University of
Delaware, Newark, Delaware 19716, United States
| | - April Z. Gu
- School
of Civil and Environmental Engineering, College of Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Deb Jaisi
- Department
of Plant and Soil Sciences, University of
Delaware, Newark, Delaware 19716, United States
| | - Ludmilla Aristilde
- Department
of Biological and Environmental Engineering, College of Agriculture
and Life Sciences, Cornell University, Ithaca, New York 14853, United States
- Department
of Civil and Environmental Engineering, McCormick School of Engineering
and Applied Science, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
5
|
Peng L, Wang Z, Zhu H, Zeng T, Zhou W, Yao S, Song H. Synthesis, physico-chemical properties of novel tropine-amino acid based ionic liquids and their effects on the lipase activity. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116938] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
6
|
Magina S, Barros-Timmons A, Ventura SPM, Evtuguin DV. Evaluating the hazardous impact of ionic liquids - Challenges and opportunities. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125215. [PMID: 33951860 DOI: 10.1016/j.jhazmat.2021.125215] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
Ionic liquids (ILs), being related to the design of new environmentally friendly solvents, are widely considered for applications within the "green chemistry" concept. Due to their unique properties and wide diversity, ILs allow tailoring new separation procedures and producing new materials for advanced applications. However, despite the promising technical performance, environmental concerns highlighted in recent studies focused on the toxicity and biodegradability of ILs and their metabolites have revealed that ILs safety labels are not as benign as previously claimed. This review refers to the fundamentals about the properties and applications of ILs also in the context of their potential environmental effect. Toxicological issues and harmful effects related to the use of ILs are discussed, including the evaluation of their biodegradability and ecological impact on diverse organisms and ecosystems, also with respect to bacteria, fungi, and cell cultures. In addition, this review covers the tools used to assess the toxicity of ILs, including the predictive computational models and the results of studies involving cell membrane models and molecular simulations. Summing up the knowledge available so far, there are still no reliable criteria for unequivocal attribution of toxicity and environmental impact credentials for ILs, which is a challenging research task.
Collapse
Affiliation(s)
- Sandra Magina
- CICECO-Institute of Materials and Chemistry Department, University of Aveiro, Campus de Santiago, Aveiro P-3810-193, Portugal
| | - Ana Barros-Timmons
- CICECO-Institute of Materials and Chemistry Department, University of Aveiro, Campus de Santiago, Aveiro P-3810-193, Portugal
| | - Sónia P M Ventura
- CICECO-Institute of Materials and Chemistry Department, University of Aveiro, Campus de Santiago, Aveiro P-3810-193, Portugal
| | - Dmitry V Evtuguin
- CICECO-Institute of Materials and Chemistry Department, University of Aveiro, Campus de Santiago, Aveiro P-3810-193, Portugal.
| |
Collapse
|
7
|
Deng Q, Tran NN, Razi Asrami M, Schober L, Gröger H, Hessel V. Ionic Liquid/Water Continuous-Flow System with Compartmentalized Spaces for Automatic Product Purification of Biotransformation with Enzyme Recycling. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02785] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Qiulin Deng
- School of Chemical Engineering and Advanced Materials, University of Adelaide, Adelaide 5005, Australia
- School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621000, China
| | - Nam Nghiep Tran
- School of Chemical Engineering and Advanced Materials, University of Adelaide, Adelaide 5005, Australia
- School of Chemical Engineering, Can Tho University, Can Tho 910000, Vietnam
| | - Mahdieh Razi Asrami
- School of Chemical Engineering and Advanced Materials, University of Adelaide, Adelaide 5005, Australia
| | - Lukas Schober
- Faculty of Chemistry, Bielefeld University, Bielefeld 33615, Germany
| | - Harald Gröger
- Faculty of Chemistry, Bielefeld University, Bielefeld 33615, Germany
| | - Volker Hessel
- School of Chemical Engineering and Advanced Materials, University of Adelaide, Adelaide 5005, Australia
| |
Collapse
|
8
|
Attri P, Choi S, Kim M, Shiratani M, Cho AE, Lee W. Influence of alkyl chain substitution of ammonium ionic liquids on the activity and stability of tobacco etch virus protease. Int J Biol Macromol 2020; 155:439-446. [DOI: 10.1016/j.ijbiomac.2020.03.175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 02/06/2023]
|
9
|
Nascimento PAM, Picheli FP, Lopes AM, Pereira JFB, Santos-Ebinuma VC. Effects of cholinium-based ionic liquids on Aspergillus niger lipase: Stabilizers or inhibitors. Biotechnol Prog 2019; 35:e2838. [PMID: 31087815 DOI: 10.1002/btpr.2838] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/16/2019] [Accepted: 05/08/2019] [Indexed: 12/26/2022]
Abstract
Lipases are well-known biocatalysts used in several industrial processes/applications. Thus, as with other enzymes, changes in their surrounding environment and/or their thermodynamic parameters can induce structural changes that can increase, decrease, or even inhibit their catalytic activity. The use of ionic compounds as solvents or additives is a common approach for adjusting reaction conditions and, consequently, for controlling the biocatalytic activity of enzymes. Herein, to elucidate the effects of ionic compounds on the structure of lipase, the stability and enzymatic activity of lipase from Aspergillus niger in aqueous solutions (at 0.05, 0.10, 0.50, and 1.00 M) of six cholinium-based ionic liquids (cholinium chloride [Ch]Cl; cholinium acetate ([Ch][Ac]); cholinium propanoate ([Ch][Prop]); cholinium butanoate ([Ch][But]); cholinium pentanoate ([Ch][Pent]); and cholinium hexanoate ([Ch][Hex])) were evaluated over 24 hr. The enzymatic activity of lipase was maintained or enhanced in the lower concentrations of all the [Ch]+ -ILs (below 0.1 M). [Ch][Ac] maintained the biocatalytic behavior of lipase, independent of the IL concentration and incubation time. However, above 0.1 M, [Ch][Pent] and [Ch][Hex] caused complete inhibition of the catalytic activity of the enzyme, demonstrating that the increase in the anionic alkyl chain length strongly affected the conformation of the lipase. The hydrophobicity and concentration of the [Ch]+ -ILs play an important role in the enzyme activity, and these parameters can be controlled by adjusting the anionic alkyl chain length. The inhibitory effects of [Ch][Pent] and [Ch][Hex] may be of great interest to the pharmaceutical industry to induce pharmacological inhibition of gastric and pancreatic lipases.
Collapse
Affiliation(s)
- Paloma A M Nascimento
- Department of Bioprocesses and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Flávio P Picheli
- Department of Bioprocesses and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - André M Lopes
- Department of Bioprocesses and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Jorge F B Pereira
- Department of Bioprocesses and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Valéria C Santos-Ebinuma
- Department of Bioprocesses and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| |
Collapse
|
10
|
Insights into the effect of imidazolium-based ionic liquids on chemical structure and hydrolytic activity of microbial lipase. Bioprocess Biosyst Eng 2019; 42:1235-1246. [DOI: 10.1007/s00449-019-02121-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/03/2019] [Indexed: 01/04/2023]
|
11
|
Ionic Liquids: Efficient Media for the Lipase-Catalyzed Michael Addition. Molecules 2018; 23:molecules23092154. [PMID: 30150588 PMCID: PMC6225191 DOI: 10.3390/molecules23092154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 08/18/2018] [Accepted: 08/25/2018] [Indexed: 12/03/2022] Open
Abstract
Recently, ionic liquids (ILs) have been regarded as ideal media for non-aqueous bio-catalysis. In this work, the synthesis of warfarin by the lipase-catalyzed Michael addition in IL media and the parameters that affected the warfarin yield were investigated. Experimental results demonstrated that the chemical structures of the ILs were a major factor for influencing the warfarin yield. The ILs containing the NTf2– anion were suitable reaction media due to the high chemical stability of this anion. The incorporation of the hydroxyl group on the IL cation significantly improved the lipase activity due to the H2O-mimicking property of this group. The lipase activity decreased by increasing the alkyl chain length on the IL cation due to the non-polar domain formation of the IL cation at the active site entrance of lipase. The ILs and lipase could be reused no less than five times without reduction in the warfarin yield.
Collapse
|
12
|
Sun S, Hou X, Zhou W. Effect of ionic liquids on enzymatic preparation of lipophilic feruloylated structured lipids using distearin as feruloylated acceptor and kinetic analysis. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.03.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
13
|
Rajapriya G, Morya VK, Mai NL, Koo YM. Aspergillus niger whole-cell catalyzed synthesis of caffeic acid phenethyl ester in ionic liquids. Enzyme Microb Technol 2018; 111:67-73. [DOI: 10.1016/j.enzmictec.2017.10.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/30/2017] [Accepted: 10/14/2017] [Indexed: 01/17/2023]
|
14
|
Elgharbawy AA, Riyadi FA, Alam MZ, Moniruzzaman M. Ionic liquids as a potential solvent for lipase-catalysed reactions: A review. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2017.12.050] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Fan Y, Wang X, Li J, Zhang L, Yang L, Gao P, Zhou Z. Kinetic study of the inhibition of ionic liquids on the trypsin activity. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.01.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
16
|
Toledo Hijo AAC, Maximo GJ, Cunha RL, Fonseca FHS, Cardoso LP, Pereira JFB, Costa MC, Batista EAC, Meirelles AJA. Phase equilibrium and physical properties of biobased ionic liquid mixtures. Phys Chem Chem Phys 2018; 20:6469-6479. [DOI: 10.1039/c7cp06841g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Protic ionic liquid crystals (PILCs) obtained from natural sources are promising compounds due to their peculiar properties and sustainable appeal.
Collapse
Affiliation(s)
| | | | | | | | - Lisandro P. Cardoso
- Institute of Physics Gleb Wataghin (IFGW)
- University of Campinas
- Campinas
- Brazil
| | - Jorge F. B. Pereira
- School of Pharmaceutical Sciences
- Universidade Estadual Paulista
- Araraquara
- Brazil
| | - Mariana C. Costa
- School of Chemical Engineering
- University of Campinas
- Campinas
- Brazil
| | | | | |
Collapse
|
17
|
Zhao J, Frauenkron-Machedjou VJ, Fulton A, Zhu L, Davari MD, Jaeger KE, Schwaneberg U, Bocola M. Unraveling the effects of amino acid substitutions enhancing lipase resistance to an ionic liquid: a molecular dynamics study. Phys Chem Chem Phys 2018; 20:9600-9609. [DOI: 10.1039/c7cp08470f] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The key properties affecting lipase resistance towards an ionic liquid are uncovered through a molecular dynamics study.
Collapse
Affiliation(s)
- Jing Zhao
- Lehrstuhl für Biotechnologie
- RWTH Aachen University
- 52074 Aachen
- Germany
- Tianjin Institute of Industrial Biotechnology
| | | | - Alexander Fulton
- Institute of Molecular Enzyme Technology
- Heinrich-Heine-University Düsseldorf
- Forschungszentrum Jülich
- 52426 Jülich
- Germany
| | - Leilei Zhu
- Lehrstuhl für Biotechnologie
- RWTH Aachen University
- 52074 Aachen
- Germany
- Tianjin Institute of Industrial Biotechnology
| | - Mehdi D. Davari
- Lehrstuhl für Biotechnologie
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology
- Heinrich-Heine-University Düsseldorf
- Forschungszentrum Jülich
- 52426 Jülich
- Germany
| | - Ulrich Schwaneberg
- Lehrstuhl für Biotechnologie
- RWTH Aachen University
- 52074 Aachen
- Germany
- DWI-Leibniz Institute for Interactive Materials
| | - Marco Bocola
- Lehrstuhl für Biotechnologie
- RWTH Aachen University
- 52074 Aachen
- Germany
| |
Collapse
|
18
|
Enhanced recovery of lipase derived from Burkholderia cepacia from fermentation broth using recyclable ionic liquid/polymer-based aqueous two-phase systems. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2017.01.047] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Kumar A, Bisht M, Venkatesu P. Biocompatibility of ionic liquids towards protein stability: A comprehensive overview on the current understanding and their implications. Int J Biol Macromol 2017; 96:611-651. [DOI: 10.1016/j.ijbiomac.2016.12.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/02/2016] [Accepted: 12/04/2016] [Indexed: 10/20/2022]
|
20
|
Lee SY, Khoiroh I, Ooi CW, Ling TC, Show PL. Recent Advances in Protein Extraction Using Ionic Liquid-based Aqueous Two-phase Systems. SEPARATION AND PURIFICATION REVIEWS 2017. [DOI: 10.1080/15422119.2017.1279628] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Sze Ying Lee
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia Campus, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Ianatul Khoiroh
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia Campus, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Chien Wei Ooi
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Tau Chuan Ling
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia Campus, Semenyih, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
21
|
Das S, Karmakar T, Balasubramanian S. Molecular Mechanism behind Solvent Concentration-Dependent Optimal Activity of Thermomyces lanuginosus Lipase in a Biocompatible Ionic Liquid: Interfacial Activation through Arginine Switch. J Phys Chem B 2016; 120:11720-11732. [DOI: 10.1021/acs.jpcb.6b08534] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sudip Das
- Chemistry and Physics of
Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Tarak Karmakar
- Chemistry and Physics of
Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Sundaram Balasubramanian
- Chemistry and Physics of
Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| |
Collapse
|
22
|
Sivapragasam M, Moniruzzaman M, Goto M. Recent advances in exploiting ionic liquids for biomolecules: Solubility, stability and applications. Biotechnol J 2016; 11:1000-13. [PMID: 27312484 DOI: 10.1002/biot.201500603] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 03/30/2016] [Accepted: 05/17/2016] [Indexed: 12/21/2022]
Abstract
The technological utility of biomolecules (e.g. proteins, enzymes and DNA) can be significantly enhanced by combining them with ionic liquids (ILs) - potentially attractive "green" and "designer" solvents - rather than using in conventional organic solvents or water. In recent years, ILs have been used as solvents, cosolvents, and reagents for biocatalysis, biotransformation, protein preservation and stabilization, DNA solubilization and stabilization, and other biomolecule-based applications. Using ILs can dramatically enhance the structural and chemical stability of proteins, DNA, and enzymes. This article reviews the recent technological developments of ILs in protein-, enzyme-, and DNA-based applications. We discuss the different routes to increase biomolecule stability and activity in ILs, and the design of biomolecule-friendly ILs that can dissolve biomolecules with minimum alteration to their structure. This information will be helpful to design IL-based processes in biotechnology and the biological sciences that can serve as novel and selective processes for enzymatic reactions, protein and DNA stability, and other biomolecule-based applications.
Collapse
Affiliation(s)
- Magaret Sivapragasam
- Centre of Research in Ionic Liquids (CORIL), Chemical Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Malaysia
| | - Muhammad Moniruzzaman
- Centre of Research in Ionic Liquids (CORIL), Chemical Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Malaysia
| | - Masahiro Goto
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka, Japan.
- Center for Future Chemistry, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
23
|
Fan Y, Dong X, Zhong Y, Li J, Miao J, Hua S, Li Y, Cheng B, Chen W. Effects of ionic liquids on the hydrolysis of casein by lumbrokinase. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2015.12.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
24
|
Fan Y, Dong X, Li X, Zhong Y, Kong J, Hua S, Miao J, Li Y. Spectroscopic studies on the inhibitory effects of ionic liquids on lipase activity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 159:128-133. [PMID: 26836454 DOI: 10.1016/j.saa.2016.01.047] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 01/15/2016] [Accepted: 01/23/2016] [Indexed: 06/05/2023]
Abstract
The effects of ionic liquids (ILs) on the lipase activity were studied by UV-Vis spectroscopy and the IL-lipase interaction mechanism at the molecular level was investigated by fluorescence technique. Experimental results indicated that the lipase activity was inhibited by ILs and the degree of inhibition highly depended on the chemical structures of ILs. The inhibitory ability of the Cl(-)- and Br(-)-based ILs increased with increasing the alkyl chain length in the IL cation. Thermodynamic parameters, enthalpy change (ΔH) and entropy change (ΔS) were obtained by analyzing the fluorescence behavior of lipase with the addition of ILs. Both ΔH and ΔS were positive suggesting hydrophobicity was the major driven force for the Cl(-)- and Br(-)-based ILs. For the BF4(-)-, CF3SO3(-)-, ClO4(-)- and N(CN)2(-)-based ILs, hydrogen bonding was the main driven force. For a more comprehensive understanding of the effects of ILs on lipase activity, the roles of hydrophobicity and hydrogen bonding must be considered simultaneously. A regression-based equation was developed to describe the relationship of the inhibitory ability of ILs and their hydrophobicity and hydrogen bonding ability.
Collapse
Affiliation(s)
- Yunchang Fan
- College of Physics and Chemistry, Henan Polytechnic University, Jiaozuo 454003, China
| | - Xing Dong
- College of Physics and Chemistry, Henan Polytechnic University, Jiaozuo 454003, China
| | - Xiaojing Li
- College of Physics and Chemistry, Henan Polytechnic University, Jiaozuo 454003, China
| | - Yingying Zhong
- Technology Center of Ningbo Entry-Exit Inspection and Quarantine Bureau, Ningbo 315012, China
| | - Jichuan Kong
- College of Physics and Chemistry, Henan Polytechnic University, Jiaozuo 454003, China
| | - Shaofeng Hua
- College of Physics and Chemistry, Henan Polytechnic University, Jiaozuo 454003, China
| | - Juan Miao
- College of Physics and Chemistry, Henan Polytechnic University, Jiaozuo 454003, China.
| | - Yan Li
- College of Physics and Chemistry, Henan Polytechnic University, Jiaozuo 454003, China
| |
Collapse
|
25
|
Zhao H. Protein Stabilization and Enzyme Activation in Ionic Liquids: Specific Ion Effects. JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY (OXFORD, OXFORDSHIRE : 1986) 2016; 91:25-50. [PMID: 26949281 PMCID: PMC4777319 DOI: 10.1002/jctb.4837] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 10/12/2015] [Indexed: 05/08/2023]
Abstract
There are still debates on whether the hydration of ions perturbs the water structure, and what is the degree of such disturbance; therefore, the origin of Hofmeister effect on protein stabilization continues being questioned. For this reason, it is suggested to use the 'specific ion effect' instead of other misleading terms such as Hofmeister effect, Hofmeister series, lyotropic effect, and lyotropic series. In this review, we firstly discuss the controversial aspect of inorganic ion effects on water structures, and several possible contributors to the specific ion effect of protein stability. Due to recent overwhelming attraction of ionic liquids (ILs) as benign solvents in many enzymatic reactions, we further evaluate the structural properties and molecular-level interactions in neat ILs and their aqueous solutions. Next, we systematically compare the specific ion effects of ILs on enzyme stability and activity, and conclude that (a) the specificity of many enzymatic systems in diluted aqueous IL solutions is roughly in line with the traditional Hofmeister series albeit some exceptions; (b) however, the specificity follows a different track in concentrated or neat ILs because other factors (such as hydrogen-bond basicity, nucelophilicity, and hydrophobicity, etc) are playing leading roles. In addition, we demonstrate some examples of biocatalytic reactions in IL systems that are guided by the empirical specificity rule.
Collapse
Affiliation(s)
- Hua Zhao
- Department of Chemistry and Forensic Science, Savannah State University, Savannah, GA 31404, USA
| |
Collapse
|
26
|
|
27
|
Tuning of hydrophilic ionic liquids concentration: A way to prevent enzyme instability. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Santos LDF, Coutinho JAP, Ventura SPM. From water-in-oil to oil-in-water emulsions to optimize the production of fatty acids using ionic liquids in micellar systems. Biotechnol Prog 2015; 31:1473-80. [DOI: 10.1002/btpr.2156] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 07/27/2015] [Indexed: 12/29/2022]
Affiliation(s)
- Luísa D. F. Santos
- Dept. of Chemistry; CICECO, Aveiro Inst. of Materials, University of Aveiro; 3810-193 Aveiro Portugal
| | - João A. P. Coutinho
- Dept. of Chemistry; CICECO, Aveiro Inst. of Materials, University of Aveiro; 3810-193 Aveiro Portugal
| | - Sónia P. M. Ventura
- Dept. of Chemistry; CICECO, Aveiro Inst. of Materials, University of Aveiro; 3810-193 Aveiro Portugal
| |
Collapse
|
29
|
Asoodeh A, Emtenani S, Emtenani S. Expression and biochemical characterization of a thermophilic organic solvent-tolerant lipase from Bacillus sp. DR90. Protein J 2015; 33:410-21. [PMID: 25070564 DOI: 10.1007/s10930-014-9574-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The objective of the present study was the isolation, molecular cloning and biochemical characterization of a thermophilic organic solvent-resistant lipase from Bacillus sp. DR90. The lipase gene was expressed in Escherichia coli BL21(DE3) using pET-28a(+) vector. The purification of recombinant lipase was conducted by nickel affinity chromatography and its biochemical properties were determined. The lipase sequence with an ORF of 639 bp contains the conserved pentapeptide Ala-His-Ser-Met-Gly. His-tagged recombinant lipase had a specific activity of 1,126 U/mg with a molecular mass of 26.8 kDa. The cloned lipase was optimally active at pH 8.0 and 75 °C representing high stability in broad ranges of temperature and pH. High performance liquid chromatography was used to determine the major compounds released during the lipase-catalyzed reaction of p-nitrophenyl derivatives as well as the substrate specificity. The purified lipase showed high compatibility towards various organic solvents, surfactants and commercial solid/liquid detergents; therefore the recombinant DR90 lipase could be considered as a probable candidate for future applications, predominantly in detergent processing industries.
Collapse
Affiliation(s)
- Ahmad Asoodeh
- Department of Chemistry, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran,
| | | | | |
Collapse
|
30
|
Piotrowska U, Sobczak M. Enzymatic polymerization of cyclic monomers in ionic liquids as a prospective synthesis method for polyesters used in drug delivery systems. Molecules 2014; 20:1-23. [PMID: 25546617 PMCID: PMC6272625 DOI: 10.3390/molecules20010001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 12/16/2014] [Indexed: 11/19/2022] Open
Abstract
Biodegradable or bioresorbable polymers are commonly used in various pharmaceutical fields (e.g., as drug delivery systems, therapeutic systems or macromolecular drug conjugates). Polyesters are an important class of polymers widely utilized in pharmacy due to their biodegradability and biocompatibility features. In recent years, there has been increased interest in enzyme-catalyzed ring-opening polymerization (e-ROP) of cyclic esters as an alternative method of preparation of biodegradable or bioresorbable polymers. Ionic liquids (ILs) have been presented as green solvents in enzymatic ring-opening polymerization. The activity, stability, selectivity of enzymes in ILs and the ability to catalyze polyester synthesis under these conditions are discussed. Overall, the review demonstrates that e-ROP of lactones or lactides could be an effective method for the synthesis of useful biomedical polymers.
Collapse
Affiliation(s)
- Urszula Piotrowska
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, Warsaw 02-097, Poland.
| | - Marcin Sobczak
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, Warsaw 02-097, Poland.
| |
Collapse
|
31
|
Kumar A, Venkatesu P. Does the stability of proteins in ionic liquids obey the Hofmeister series? Int J Biol Macromol 2013; 63:244-53. [PMID: 24211268 DOI: 10.1016/j.ijbiomac.2013.10.031] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 10/23/2013] [Accepted: 10/24/2013] [Indexed: 11/27/2022]
Abstract
Understanding the behavior of Hofmeister anions of ionic liquids (ILs) on protein stability helps to shed light on how the anions interact with proteins in aqueous solution and is a long standing object for chemistry and biochemistry. Ions effects play a major role in understanding the physicochemical and biological phenomenon that undertakes the protein folding/unfolding and refolding process. Despite the generality of these effects, our understanding of ions at the molecular-level is still limited. This review offers a tour through past successful investigations and presents a challenge in current research in the field to reassess the possibilities of ions and to apply new strategies. This review highlights on the stability behavior of the proteins and also comparisons of our past research work in the Hofmeister series of ILs. Furthermore, we specifically focus on the critical discussion on the recent findings with existing results and their implications, along with our understanding of the Hofmeister series of anions of ILs on biomolecular stability. A detailed examination of the difference between selective proteins can provide a better understanding of the molecular mechanism of protein folding/unfolding in the presence of the Hofmeister series of ions of ILs.
Collapse
Affiliation(s)
- Awanish Kumar
- Department of Chemistry, University of Delhi, Delhi 110 007, India
| | | |
Collapse
|
32
|
Molecular cloning of a thermo-alkaliphilic lipase from Bacillus subtilis DR8806: Expression and biochemical characterization. Process Biochem 2013. [DOI: 10.1016/j.procbio.2013.08.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Machado MF, Queirós RP, Santos MD, Fidalgo LG, Delgadillo I, Saraiva JA. Effect of ionic liquids alkyl chain length on horseradish peroxidase thermal inactivation kinetics and activity recovery after inactivation. World J Microbiol Biotechnol 2013; 30:487-94. [DOI: 10.1007/s11274-013-1466-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Accepted: 08/16/2013] [Indexed: 10/26/2022]
|
34
|
Fan Y, Zhang S, Wang Q, Li J, Fan H, Shan D. Interaction of an amino-functionalized ionic liquid with enzymes: a fluorescence spectroscopy study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 105:297-303. [PMID: 23318773 DOI: 10.1016/j.saa.2012.12.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Revised: 11/26/2012] [Accepted: 12/12/2012] [Indexed: 06/01/2023]
Abstract
The interaction of an amino-functionalized ionic liquid, 1-(2-aminoethyl)-3-butylimidazolium bromide ([NH(2)C(2)C(4)im]Br) with two enzymes, pepsin and papain was investigated using fluorescence spectroscopic technique. It is found that [NH(2)C(2)C(4)im]Br has strong ability to quench the intrinsic fluorescence of pepsin and papain. Quenching mechanisms are considered as static quenching for papain and dynamic quenching for pepsin, respectively. The binding constants and the number of binding sites (n) of [NH(2)C(2)C(4)im]Br to papain were calculated at different temperatures. The thermodynamic parameters such as free energy change (ΔG), enthalpy change (ΔH) and entropy change (ΔS), were calculated by thermodynamic equations. The values of ΔG, ΔH and ΔS suggest that interaction of [NH(2)C(2)C(4)im]Br with the two enzymes is spontaneous. Hydrogen bonding and van der Waals interactions play important roles in the binding process of [NH(2)C(2)C(4)im]Br to papain. However, hydrophobic interaction is the main driving force for the interaction of [NH(2)C(2)C(4)im]Br with pepsin. The results of three-dimensional fluorescence spectra show that [NH(2)C(2)C(4)im]Br has no obvious effects on the polypeptide structures of the two enzymes. Additionally, the [NH(2)C(2)C(4)im]Br-containing system can slightly increase the activities of the two enzymes.
Collapse
Affiliation(s)
- Yunchang Fan
- College of Physics and Chemistry, Henan Polytechnic University, Jiaozuo 454003, China.
| | | | | | | | | | | |
Collapse
|
35
|
|
36
|
Chemical Pretreatment Methods for the Production of Cellulosic Ethanol: Technologies and Innovations. INTERNATIONAL JOURNAL OF CHEMICAL ENGINEERING 2013. [DOI: 10.1155/2013/719607] [Citation(s) in RCA: 198] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pretreatment of lignocellulose has received considerable research globally due to its influence on the technical, economic and environmental sustainability of cellulosic ethanol production. Some of the most promising pretreatment methods require the application of chemicals such as acids, alkali, salts, oxidants, and solvents. Thus, advances in research have enabled the development and integration of chemical-based pretreatment into proprietary ethanol production technologies in several pilot and demonstration plants globally, with potential to scale-up to commercial levels. This paper reviews known and emerging chemical pretreatment methods, highlighting recent findings and process innovations developed to offset inherent challenges via a range of interventions, notably, the combination of chemical pretreatment with other methods to improve carbohydrate preservation, reduce formation of degradation products, achieve high sugar yields at mild reaction conditions, reduce solvent loads and enzyme dose, reduce waste generation, and improve recovery of biomass components in pure forms. The use of chemicals such as ionic liquids, NMMO, and sulphite are promising once challenges in solvent recovery are overcome. For developing countries, alkali-based methods are relatively easy to deploy in decentralized, low-tech systems owing to advantages such as the requirement of simple reactors and the ease of operation.
Collapse
|
37
|
Izquierdo DF, Bernal JM, Burguete MI, García-Verdugo E, Lozano P, Luis SV. An efficient microwave-assisted enzymatic resolution of alcohols using a lipase immobilised on supported ionic liquid-like phases (SILLPs). RSC Adv 2013. [DOI: 10.1039/c3ra42467g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|