1
|
Ghimire-Kafle S, Weaver ME, Kimbrel MP, Bollmann A. Competition between ammonia-oxidizing archaea and complete ammonia oxidizers from freshwater environments. Appl Environ Microbiol 2024; 90:e0169823. [PMID: 38349190 PMCID: PMC10952389 DOI: 10.1128/aem.01698-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/11/2024] [Indexed: 03/21/2024] Open
Abstract
Aerobic ammonia oxidizers (AOs) are prokaryotic microorganisms that contribute to the global nitrogen cycle by performing the first step of nitrification, the oxidation of ammonium to nitrite and nitrate. While aerobic AOs are found ubiquitously, their distribution is controlled by key environmental conditions such as substrate (ammonium) availability. Ammonia-oxidizing archaea (AOA) and complete ammonia oxidizers (comammox) are generally found in oligotrophic environments with low ammonium availability. However, whether AOA and comammox share these habitats or outcompete each other is not well understood. We assessed the competition for ammonium between an AOA and comammox enriched from the freshwater Lake Burr Oak. The AOA enrichment culture (AOA-BO1) contained Nitrosarchaeum sp. BO1 as the ammonia oxidizer and Nitrospira sp. BO1 as the nitrite oxidizer. The comammox enrichment BO4 (cmx-BO4) contained the comammox strain Nitrospira sp. BO4. The competition experiments were performed either in continuous cultivation with ammonium as a growth-limiting substrate or in batch cultivation with initial ammonium concentrations of 50 and 500 µM. Regardless of the ammonium concentration, Nitrospira sp. BO4 outcompeted Nitrosarchaeum sp. BO1 under all tested conditions. The dominance of Nitrospira sp. BO4 could be explained by the ability of comammox to generate more energy through the complete oxidation of ammonia to nitrate and their more efficient carbon fixation pathway-the reductive tricarboxylic acid cycle. Our results are supported by the higher abundance of comammox compared to AOA in the sediment of Lake Burr Oak. IMPORTANCE Nitrification is a key process in the global nitrogen cycle. Aerobic ammonia oxidizers play a central role in the nitrogen cycle by performing the first step of nitrification. Ammonia-oxidizing archaea (AOA) and complete ammonia oxidizers (comammox) are the dominant nitrifiers in environments with low ammonium availability. While AOA have been studied for almost 20 years, comammox were only discovered 8 years ago. Until now, there has been a gap in our understanding of whether AOA and comammox can co-exist or if one strain would be dominant under ammonium-limiting conditions. Here, we present the first study characterizing the competition between freshwater AOA and comammox under varying substrate concentrations. Our results will help in elucidating the niches of two key nitrifiers in freshwater lakes.
Collapse
Affiliation(s)
| | - Matt E. Weaver
- Department of Microbiology, Miami University, Oxford, Ohio, USA
| | | | | |
Collapse
|
2
|
Ren M, Wang J. Phylogenetic divergence and adaptation of Nitrososphaeria across lake depths and freshwater ecosystems. THE ISME JOURNAL 2022; 16:1491-1501. [PMID: 35091647 PMCID: PMC9123079 DOI: 10.1038/s41396-022-01199-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 01/05/2022] [Accepted: 01/17/2022] [Indexed: 04/29/2023]
Abstract
Thaumarchaeota (now the class Nitrososphaeria in the phylum Thermoproteota in GTDB taxonomy) are abundant across marine and soil habitats; however, their genomic diversity and evolutionary history in freshwater environments remain elusive. Here, we reconstructed 17 high-quality metagenome-assembled genomes of Nitrososphaeria from a deep lake and two great rivers, and compared all available genomes between freshwater and marine habitats regarding their phylogenetic positions, relative abundance, and genomic content. We found that freshwater Nitrososphaeria were dominated by the family Nitrosopumilaceae and could be grouped into three distinct clades closely related to the genera Nitrosopumilus, Nitrosoarchaeum, and Nitrosotenuis. The Nitrosopumilus-like clade was exclusively from deep lakes, while the Nitrosoarchaeum-like clade was dominated by species from deep lakes and rivers, and the Nitrosotenuis-like clade was mainly from rivers, deep lakes, and estuaries. Interestingly, there was vertical niche separation between two clades in deep lakes, showing that the Nitrosopumilus-like species dominated shallow layers, whereas the relative abundance of the Nitrosoarchaeum-like clade increased toward deep waters. Phylogenetic clustering patterns in the Nitrosopumilaceae supported at least one freshwater-to-marine and two marine-to-freshwater transitions, the former of which refined the potential terrestrial-to-marine evolutionary path as previously proposed. The occurrence of the two marine-to-freshwater transitions were accompanied by horizontal transfer of the genes involved in nutrition regulation, osmoregulation, and cell motility during their colonization to freshwater habitats. Specifically, the Nitrosopumilus-like clade showed losses of genes encoding flagella assembly and ion transport, whereas the Nitrosoarchaeum-like clade had losses of intact genes involved in urea uptake and utilization and gains of genes encoding osmolarity-mediated mechanosensitive channels. Collectively, our results reveal for the first time the high genomic diversity of the class Nitrososphaeria across freshwater ecosystems and provide novel insights into their adaptive mechanisms and evolutionary histories.
Collapse
Affiliation(s)
- Minglei Ren
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Jianjun Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
3
|
Cai F, Luo P, Yang J, Irfan M, Zhang S, An N, Dai J, Han X. Effect of Long-Term Fertilization on Ammonia-Oxidizing Microorganisms and Nitrification in Brown Soil of Northeast China. Front Microbiol 2021; 11:622454. [PMID: 33613469 PMCID: PMC7890093 DOI: 10.3389/fmicb.2020.622454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/22/2020] [Indexed: 11/13/2022] Open
Abstract
The objective of this study was to find out changes in ammonia oxidation microorganisms with respect to fertilizer as investigated by real-time polymerase chain reaction and high-throughput sequencing. The treatments included control (CK); chemical fertilizer nitrogen low (N) and high (N2); nitrogen and phosphorus (NP); nitrogen phosphorus and potassium (NPK) and organic manure fertilizer (M); MN; MN2; MNPK. The results showed that long-term fertilization influenced soil fertility and affected the abundance and community of ammonia-oxidizing microorganisms by changing the physical and chemical properties of the soil. The abundance and community structure of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) was influenced by soil organic carbon, total nitrogen, total soil phosphorus, available phosphorus, available potassium, and soil nitrate. Soil environmental factors affected the nitrification potential by affecting the structure of ammonia-oxidizing microorganisms; specific and rare AOA and AOB rather than the whole AOA or AOB community played dominant role in nitrification.
Collapse
Affiliation(s)
- Fangfang Cai
- College of Land and Environment, Shenyang Agricultural University, Shenyang, China.,National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Tai'an, China.,Northeast Scientific Observation Station of Corn Nutrition and Fertilization of Ministry of Agriculture, Shenyang, China
| | - Peiyu Luo
- College of Land and Environment, Shenyang Agricultural University, Shenyang, China.,National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Tai'an, China.,Northeast Scientific Observation Station of Corn Nutrition and Fertilization of Ministry of Agriculture, Shenyang, China
| | - Jinfeng Yang
- College of Land and Environment, Shenyang Agricultural University, Shenyang, China.,National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Tai'an, China.,Northeast Scientific Observation Station of Corn Nutrition and Fertilization of Ministry of Agriculture, Shenyang, China
| | - Muhammad Irfan
- Department of Biotechnology, University of Sargodha, Sargodha, Pakistan
| | - Shiyu Zhang
- College of Land and Environment, Shenyang Agricultural University, Shenyang, China.,National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Tai'an, China.,Northeast Scientific Observation Station of Corn Nutrition and Fertilization of Ministry of Agriculture, Shenyang, China
| | - Ning An
- College of Land and Environment, Shenyang Agricultural University, Shenyang, China.,National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Tai'an, China.,Northeast Scientific Observation Station of Corn Nutrition and Fertilization of Ministry of Agriculture, Shenyang, China
| | - Jian Dai
- College of Land and Environment, Shenyang Agricultural University, Shenyang, China.,National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Tai'an, China.,Northeast Scientific Observation Station of Corn Nutrition and Fertilization of Ministry of Agriculture, Shenyang, China
| | - Xiaori Han
- College of Land and Environment, Shenyang Agricultural University, Shenyang, China.,National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Tai'an, China.,Northeast Scientific Observation Station of Corn Nutrition and Fertilization of Ministry of Agriculture, Shenyang, China
| |
Collapse
|
4
|
Zou D, Liu H, Li M. Community, Distribution, and Ecological Roles of Estuarine Archaea. Front Microbiol 2020; 11:2060. [PMID: 32983044 PMCID: PMC7484942 DOI: 10.3389/fmicb.2020.02060] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/05/2020] [Indexed: 12/04/2022] Open
Abstract
Archaea are diverse and ubiquitous prokaryotes present in both extreme and moderate environments. Estuaries, serving as links between the land and ocean, harbor numerous microbes that are relatively highly active because of massive terrigenous input of nutrients. Archaea account for a considerable portion of the estuarine microbial community. They are diverse and play key roles in the estuarine biogeochemical cycles. Ammonia-oxidizing archaea (AOA) are an abundant aquatic archaeal group in estuaries, greatly contributing estuarine ammonia oxidation. Bathyarchaeota are abundant in sediments, and they may involve in sedimentary organic matter degradation, acetogenesis, and, potentially, methane metabolism, based on genomics. Other archaeal groups are also commonly detected in estuaries worldwide. They include Euryarchaeota, and members of the DPANN and Asgard archaea. Based on biodiversity surveys of the 16S rRNA gene and some functional genes, the distribution and abundance of estuarine archaea are driven by physicochemical factors, such as salinity and oxygen concentration. Currently, increasing amount of genomic information for estuarine archaea is becoming available because of the advances in sequencing technologies, especially for AOA and Bathyarchaeota, leading to a better understanding of their functions and environmental adaptations. Here, we summarized the current knowledge on the community composition and major archaeal groups in estuaries, focusing on AOA and Bathyarchaeota. We also highlighted the unique genomic features and potential adaptation strategies of estuarine archaea, pointing out major unknowns in the field and scope for future research.
Collapse
Affiliation(s)
- Dayu Zou
- SZU-HKUST Joint Ph.D. Program in Marine Environmental Science, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Hongbin Liu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
- Hong Kong Branch of Southern Marine Science & Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Meng Li
- SZU-HKUST Joint Ph.D. Program in Marine Environmental Science, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| |
Collapse
|
5
|
Yan A, Liu C, Liu Y, Xu F. Effect of ion exchange on the rate of aerobic microbial oxidation of ammonium in hyporheic zone sediments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:8880-8887. [PMID: 29330820 DOI: 10.1007/s11356-018-1217-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 01/03/2018] [Indexed: 06/07/2023]
Abstract
Microbially mediated ammonium oxidation is a major process affecting nitrogen transformation and cycling in natural environments. This study investigated whether ion exchange process can affect microbially mediated aerobic oxidation of ammonium in a hyporheic zone (HZ) sediments from the Columbia River at US Department of Energy's Hanford site, Washington State. Experiments were conducted using synthetic groundwater and river water to investigate their effect on ammonium oxidation. Results indicated that ammonium sorption through ion exchange reactions decreased the rate of ammonium oxidation, apparently resulting from the influence of the ion exchange on dissolved ammonium concentration, thus decreasing the bioavailability of ammonium for microbial oxidation. However, with the decrease in dissolved ammonium concentration, the sorbed ammonium released back to aqueous phase, and became bioavailable so that all the ammonium in the suspensions were oxidized. Our results implied a dynamic change in ammonium oxidation rates in an environment such as at HZ where river water and groundwater with different chemical compositions exchange frequently that can affect ammonium sorption and desorption through ion exchange reactions.
Collapse
Affiliation(s)
- Ailan Yan
- Institute of Hydraulic and Environmental Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou, 310018, China
| | - Chongxuan Liu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Yuanyuan Liu
- Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Fen Xu
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|
6
|
Liu Y, Liu C, Nelson WC, Shi L, Xu F, Liu Y, Yan A, Zhong L, Thompson C, Fredrickson JK, Zachara JM. Effect of Water Chemistry and Hydrodynamics on Nitrogen Transformation Activity and Microbial Community Functional Potential in Hyporheic Zone Sediment Columns. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:4877-4886. [PMID: 28391700 DOI: 10.1021/acs.est.6b05018] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Hyporheic zones (HZ) are active biogeochemical regions where groundwater and surface water mix. N transformations in HZ sediments were investigated in columns with a focus on understanding how the dynamic changes in groundwater and surface water mixing affect microbial community and its biogeochemical function with respect to N transformations. The results indicated that denitrification, DNRA, and nitrification rates and products changed quickly in response to changes in water and sediment chemistry, fluid residence time, and groundwater-surface water exchange. These changes were accompanied by the zonation of denitrification functional genes along a 30 cm advective flow path after a total of 6 days' elution of synthetic groundwater with fluid residence time >9.8 h. The shift of microbial functional potential toward denitrification was correlated with rapid NO3- reduction collectively affected by NO3- concentration and fluid residence time, and was resistant to short-term groundwater-surface water exchange on a daily basis. The results implied that variations in microbial functional potential and associated biogeochemical reactions in the HZ may occur at space scales where steep concentration gradients present along the flow path and the variations would respond to dynamic HZ water exchange over different time periods common to natural and managed riverine systems.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Pacific Northwest National Laboratory , Richland, Washington 99354, United States
- School of Earth Sciences and Engineering, Nanjing University , Nanjing, Jiangsu 210023, China
| | - Chongxuan Liu
- Pacific Northwest National Laboratory , Richland, Washington 99354, United States
- School of Environmental Science and Engineering, Southern University of Science and Technology , Shenzhen, Guangzhou 518055, China
| | - William C Nelson
- Pacific Northwest National Laboratory , Richland, Washington 99354, United States
| | - Liang Shi
- Pacific Northwest National Laboratory , Richland, Washington 99354, United States
- School of Environmental Studies, China University of Geosciences , Wuhan, Hubei 430074, China
| | - Fen Xu
- Pacific Northwest National Laboratory , Richland, Washington 99354, United States
- School of Environmental Studies, China University of Geosciences , Wuhan, Hubei 430074, China
| | - Yunde Liu
- Pacific Northwest National Laboratory , Richland, Washington 99354, United States
- School of Environmental Studies, China University of Geosciences , Wuhan, Hubei 430074, China
| | - Ailan Yan
- Pacific Northwest National Laboratory , Richland, Washington 99354, United States
- Institute of Hydraulic and Environmental Engineering, Zhejiang University of Water Resources and Electric Power , Hangzhou, Zhejiang 310018, China
| | - Lirong Zhong
- Pacific Northwest National Laboratory , Richland, Washington 99354, United States
| | - Christopher Thompson
- Pacific Northwest National Laboratory , Richland, Washington 99354, United States
| | - James K Fredrickson
- Pacific Northwest National Laboratory , Richland, Washington 99354, United States
| | - John M Zachara
- Pacific Northwest National Laboratory , Richland, Washington 99354, United States
| |
Collapse
|
7
|
Diversity, abundance and activity of ammonia-oxidizing microorganisms in fine particulate matter. Sci Rep 2016; 6:38785. [PMID: 27941955 PMCID: PMC5150234 DOI: 10.1038/srep38785] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 11/14/2016] [Indexed: 02/07/2023] Open
Abstract
Increasing ammonia emissions could exacerbate air pollution caused by fine particulate matter (PM2.5). Therefore, it is of great importance to investigate ammonia oxidation in PM2.5. This study investigated the diversity, abundance and activity of ammonia oxidizing archaea (AOA), ammonia oxidizing bacteria (AOB) and complete ammonia oxidizers (Comammox) in PM2.5 collected in Beijing-Tianjin-Hebei megalopolis, China. Nitrosopumilus subcluster 5.2 was the most dominant AOA. Nitrosospira multiformis and Nitrosomonas aestuarii were the most dominant AOB. Comammox were present in the atmosphere, as revealed by the occurrence of Candidatus Nitrospira inopinata in PM2.5. The average cell numbers of AOA, AOB and Ca. N. inopinata were 2.82 × 104, 4.65 × 103 and 1.15 × 103 cell m-3 air, respectively. The average maximum nitrification rate of PM2.5 was 0.14 μg (NH4+-N) [m3 air·h]-1. AOA might account for most of the ammonia oxidation, followed by Comammox, while AOB were responsible for a small part of ammonia oxidation. Statistical analyses showed that Nitrososphaera subcluster 4.1 was positively correlated with organic carbon concentration, and Nitrosomonas eutropha showed positive correlation with ammonia concentration. Overall, this study expanded our knowledge concerning AOA, AOB and Comammox in PM2.5 and pointed towards an important role of AOA and Comammox in ammonia oxidation in PM2.5.
Collapse
|
8
|
Lu S, Liu X, Ma Z, Liu Q, Wu Z, Zeng X, Shi X, Gu Z. Vertical Segregation and Phylogenetic Characterization of Ammonia-Oxidizing Bacteria and Archaea in the Sediment of a Freshwater Aquaculture Pond. Front Microbiol 2016; 6:1539. [PMID: 26834709 PMCID: PMC4718984 DOI: 10.3389/fmicb.2015.01539] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 12/21/2015] [Indexed: 11/19/2022] Open
Abstract
Pond aquaculture is the major freshwater aquaculture method in China. Ammonia-oxidizing communities inhabiting pond sediments play an important role in controlling culture water quality. However, the distribution and activities of ammonia-oxidizing microbial communities along sediment profiles are poorly understood in this specific environment. Vertical variations in the abundance, transcription, potential ammonia oxidizing rate, and community composition of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) in sediment samples (0–50 cm depth) collected from a freshwater aquaculture pond were investigated. The concentrations of the AOA amoA gene were higher than those of the AOB by an order of magnitude, which suggested that AOA, as opposed to AOB, were the numerically predominant ammonia-oxidizing organisms in the surface sediment. This could be attributed to the fact that AOA are more resistant to low levels of dissolved oxygen. However, the concentrations of the AOB amoA mRNA were higher than those of the AOA by 2.5- to 39.9-fold in surface sediments (0–10 cm depth), which suggests that the oxidation of ammonia was mainly performed by AOB in the surface sediments, and by AOA in the deeper sediments, where only AOA could be detected. Clone libraries of AOA and AOB amoA sequences indicated that the diversity of AOA and AOB decreased with increasing depth. The AOB community consisted of two groups: the Nitrosospira and Nitrosomonas clusters, and Nitrosomonas were predominant in the freshwater pond sediment. All AOA amoA gene sequences in the 0–2 cm deep sediment were grouped into the Nitrososphaera cluster, while other AOA sequences in deeper sediments (10–15 and 20–25 cm depths) were grouped into the Nitrosopumilus cluster.
Collapse
Affiliation(s)
- Shimin Lu
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fishery SciencesShanghai, China; College of Fisheries and Life, Shanghai Ocean UniversityShanghai, China
| | - Xingguo Liu
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fishery Sciences Shanghai, China
| | - Zhuojun Ma
- Chinese Academy of Fishery Sciences Beijing, China
| | - Qigen Liu
- College of Fisheries and Life, Shanghai Ocean University Shanghai, China
| | - Zongfan Wu
- Tongren Municipal Agricultural Commission (Government, Public) Tongren, China
| | - Xianlei Zeng
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fishery SciencesShanghai, China; College of Fisheries and Life, Shanghai Ocean UniversityShanghai, China
| | - Xu Shi
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fishery Sciences Shanghai, China
| | - Zhaojun Gu
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fishery Sciences Shanghai, China
| |
Collapse
|
9
|
Damashek J, Smith JM, Mosier AC, Francis CA. Benthic ammonia oxidizers differ in community structure and biogeochemical potential across a riverine delta. Front Microbiol 2015; 5:743. [PMID: 25620958 PMCID: PMC4287051 DOI: 10.3389/fmicb.2014.00743] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 12/08/2014] [Indexed: 11/17/2022] Open
Abstract
Nitrogen pollution in coastal zones is a widespread issue, particularly in ecosystems with urban or agricultural watersheds. California's Sacramento-San Joaquin Delta, at the landward reaches of San Francisco Bay, is highly impacted by both agricultural runoff and sewage effluent, leading to chronically high nutrient loadings. In particular, the extensive discharge of ammonium into the Sacramento River has altered this ecosystem by vastly increasing ammonium concentrations and thus changing the stoichiometry of inorganic nitrogen stocks, with potential effects throughout the food web. This debate surrounding ammonium inputs highlights the importance of understanding the rates of, and controls on, nitrogen (N) cycling processes across the delta. To date, however, there has been little research examining N biogeochemistry or N-cycling microbial communities in this system. We report the first data on benthic ammonia-oxidizing microbial communities and potential nitrification rates for the Sacramento-San Joaquin Delta, focusing on the functional gene amoA (which codes for the α-subunit of ammonia monooxygenase). There were stark regional differences in ammonia-oxidizing communities, with ammonia-oxidizing bacteria (AOB) outnumbering ammonia-oxidizing archaea (AOA) only in the ammonium-rich Sacramento River. High potential nitrification rates in the Sacramento River suggested these communities may be capable of oxidizing significant amounts of ammonium, compared to the San Joaquin River and the upper reaches of San Francisco Bay. Gene diversity also showed regional patterns, as well as phylogenetically unique ammonia oxidizers in the Sacramento River. The benthic ammonia oxidizers in this nutrient-rich aquatic ecosystem may be important players in its overall nutrient cycling, and their community structure and biogeochemical function appear related to nutrient loadings. Unraveling the microbial ecology and biogeochemistry of N cycling pathways, including benthic nitrification, is a critical step toward understanding how such ecosystems respond to the changing environmental conditions wrought by human development and climate change.
Collapse
Affiliation(s)
- Julian Damashek
- Department of Environmental Earth System Science, Stanford University Stanford, CA, USA
| | - Jason M Smith
- Department of Environmental Earth System Science, Stanford University Stanford, CA, USA
| | - Annika C Mosier
- Department of Environmental Earth System Science, Stanford University Stanford, CA, USA
| | - Christopher A Francis
- Department of Environmental Earth System Science, Stanford University Stanford, CA, USA
| |
Collapse
|