1
|
Bakunova AK, Matyuta IO, Minyaev ME, Boyko KM, Popov VO, Bezsudnova EY. Incorporation of pyridoxal-5'-phosphate into the apoenzyme: A structural study of D-amino acid transaminase from Haliscomenobacter hydrossis. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2025; 1873:141056. [PMID: 39406293 DOI: 10.1016/j.bbapap.2024.141056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/19/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
Pyridoxal-5'-phosphate (PLP)-dependent transaminases are key enzymes of amino acid metabolism in cells and remarkable biocatalysts of stereoselective amination for process chemistry applications. As cofactor-dependent enzymes, transaminases are prone to cofactor leakage. Here we discuss the holoenzyme-apoenzyme interconversion and the kinetics of PLP incorporation into the apo form of a PLP-dependent transaminase from Haliscomenobacter hydrossis. PLP binding to the apoenzyme was slow in buffer, but was accelerated in the presence of substrates. Two crystal structures of the apoenzyme were obtained: the directly obtained apoenzyme (PDB ID: 7P8O) and the one obtained by soaking crystals of the holoenzyme in a phenylhydrazine solution (PDB ID: 8YRU). The mechanism of PLP association with the apoenzyme was proposed on the basis of structural analysis of these apo forms. Three rearrangement steps, including (I) anchoring of the PLP via the phosphate group, (II) displacement of two loops, and (III) Schiff-bonding between the PLP and the ε-amino group of the catalytic lysine residue, reconstituted the active holo form of the transaminase from H. hydrossis. The results obtained allowed us to determine in the active site a permanent part and elements that are assembled by PLP, these findings may be useful for transaminase engineering for biocatalysis.
Collapse
Affiliation(s)
- Alina K Bakunova
- Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Ilya O Matyuta
- Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Mikhail E Minyaev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Konstantin M Boyko
- Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Vladimir O Popov
- Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow, Russia; Department of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Ekaterina Yu Bezsudnova
- Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
2
|
Duan ZW, Wang YW, Shen DD, Sun XQ, Wang P. Engineered the Active Site of ω-Transaminase for Enhanced Asymmetric Synthesis Towards (S)-1-[4-(Trifluoromethyl)phenyl]ethylamine. Appl Biochem Biotechnol 2024; 196:6409-6423. [PMID: 38381312 DOI: 10.1007/s12010-024-04886-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 02/22/2024]
Abstract
ω-Transaminase (ω-TA) is a promising biocatalyst for the synthesis of chiral amines. In this study, a ω-TA derived from Vitreoscilla stercoraria DSM 513 (VsTA) was heterologous expressed in recombinant E. coli cells and applied to reduce 4'-(trifluoromethyl)acetophenone (TAP) to (S)-1-[4-(trifluoromethyl)phenyl]ethylamine ((S)-TPE), a pharmaceutical intermediate of chiral amine. Aimed to a more efficient synthesis of (S)-TPE, VsTA was further engineered via a semi-rational strategy. Compared to wild-type VsTA, the obtained R411A variant exhibited 2.39 times higher activity towards TAP and enhanced catalytic activities towards other prochiral aromatic ketones. Additionally, better thermal stability for R411A variant was observed with 25.4% and 16.3% increase in half-life at 30 °C and 40 °C, respectively. Structure-guided analysis revealed that the activity improvement of R411A variant was attributed to the introduction of residue A411, which is responsible for the increase in the hydrophobicity of substrate tunnel and the alleviation of steric hindrance, thereby facilitating the accessibility of hydrophobic substrate TAP to the active center of VsTA. This study provides an efficient strategy for the engineering of ω-TA based on semi-rational approach and has the potential for the molecular modification of other biocatalysts.
Collapse
Affiliation(s)
- Zhi-Wen Duan
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Yao-Wu Wang
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Da-Dong Shen
- Research & Development Center, Zhejiang Medicine Co. Ltd., Shaoxing, 312500, People's Republic of China
| | - Xin-Qiang Sun
- Research & Development Center, Zhejiang Medicine Co. Ltd., Shaoxing, 312500, People's Republic of China
| | - Pu Wang
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
- Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| |
Collapse
|
3
|
Belov F, Gazizova A, Bork H, Gröger H, von Langermann J. Crystallization Assisted Dynamic Kinetic Resolution for the Synthesis of (R)-β-Methylphenethylamine. Chembiochem 2024; 25:e202400203. [PMID: 38602845 DOI: 10.1002/cbic.202400203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/13/2024]
Abstract
This study explores a combination of the concept of enantioselective enzymatic synthesis of β-chiral amines through transamination with in situ product crystallization (ISPC) to overcome product inhibition. Using 2-phenylpropanal as a readily available and easily racemizing substrate of choice, (R)-β-methylphenethylamine ((R)-2-phenylpropan-1-amine) concentrations of up to 250 mM and enantiomeric excesses of up to 99 % are achieved when using a commercially available transaminase from Ruegeria pomeroyi in a fed-batch based dynamic kinetic resolution reaction on preparative scale. The source of substrate decomposition during the reaction is also investigated and the resulting unwanted byproduct formation is successfully reduced to insignificant levels.
Collapse
Affiliation(s)
- Feodor Belov
- Institute of Chemistry, Biocatalytic Synthesis Group, Otto von Guericke University of Magdeburg, Building 28, Universitätsplatz 2, 39106, Magdeburg, Germany
| | - Alina Gazizova
- Institute of Chemistry, Department of Technical Chemistry, University of Rostock, Albert-Einstein-Str. 3A, 18059, Rostock, Germany
| | - Hannah Bork
- Faculty of Chemistry, Bielefeld University, Universitätsstrasse 25, 33615, Bielefeld, Germany
| | - Harald Gröger
- Faculty of Chemistry, Bielefeld University, Universitätsstrasse 25, 33615, Bielefeld, Germany
| | - Jan von Langermann
- Institute of Chemistry, Biocatalytic Synthesis Group, Otto von Guericke University of Magdeburg, Building 28, Universitätsplatz 2, 39106, Magdeburg, Germany
| |
Collapse
|
4
|
Li T, Zhu H, Jia W, Tian X, Xu Z, Zhu J, Liu W, Cao Y. Identification, characterization and application of M16AT, a new organic solvent-tolerant (R)-enantio-selective type IV amine transaminase from Mycobacterium sp. ACS1612. Chembiochem 2024; 25:e202300812. [PMID: 38351400 DOI: 10.1002/cbic.202300812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/10/2024] [Indexed: 02/29/2024]
Abstract
Biocatalysis has emerged as a powerful alternative to traditional chemical methods, especially for asymmetric synthesis. As biocatalysts usually exhibit excellent chemical, regio- and enantioselectivity, they facilitate and simplify many chemical processes for the production of a broad range of products. Here, a new biocatalyst called, R-selective amine transaminases (R-ATAs), was obtained from Mycobacterium sp. ACS1612 (M16AT) using in-silico prediction combined with a genome and protein database. A two-step simple purification process could yield a high concentration of pure enzyme, suggesting that industrial application would be inexpensive. Additionally, the newly identified and characterized R-ATAs displayed a broad substrate spectrum and strong tolerance to organic solvents. Moreover, the synthetic applicability of M16AT has been demonstrated by the asymmetric synthesis of (R)-fendiline from of (R)-1-phenylethan-1-amine.
Collapse
Affiliation(s)
- Tingting Li
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Hai Zhu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Weiwei Jia
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xia Tian
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Ziwen Xu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Jiang Zhu
- State Key Laboratory of Magnetic Resonance and Atomic, and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for PrecisionMeasurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Wencheng Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Key Laboratory of Plant Stress Biology, College of Agriculture, Henan University, Kaifeng, 475004, China
| | - Yang Cao
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| |
Collapse
|
5
|
Yi X, Yu H, Ye L. Rational design of transaminases based on comparative analysis of catalytically active and distance-free modes of the high-energy intermediate state. Biotechnol Bioeng 2024; 121:1005-1015. [PMID: 38108196 DOI: 10.1002/bit.28626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/14/2023] [Accepted: 12/03/2023] [Indexed: 12/19/2023]
Abstract
Bioproduction of chiral amines is limited by low transaminase (TA) activity on nonnatural substrates, leading to the need for protein engineering. To address the challenge of quickly and precisely identifying the engineering targets, a strategy was proposed based on analyzing the mode changes in the high-energy intermediate state (H-state) of the substrate-enzyme complex during catalysis. By substituting the residues with minimal structural changes in catalytically active mode (A-mode) and distance-free mode (F-mode) of the H-state complex with more conserved ones to stabilize it, a TA mutant M5(T295C/L387A/V436A) with 121.9-fold higher activity for synthesizing the (S)-Rivastigmine precursor (S)-1-(3-methoxyphenyl)ethylamine was created. The applicability of this strategy was also validated by engineering another TA for 1.52-fold higher activity and >99% selectivity toward (R)-3-amino-1-butanol biopreparation. The much higher stereoselectivity of the mutant compared with the wild type (28.3%) demonstrated that this strategy is not only advantageous in engineering enzyme activity but also applicable for modulating stereoselectivity.
Collapse
Affiliation(s)
- Xiaomin Yi
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Hongwei Yu
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Lidan Ye
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Zhu FY, Huang MY, Zheng K, Zhang XJ, Cai X, Huang LG, Liu ZQ, Zheng YG. Designing a novel (R)-ω-transaminase for asymmetric synthesis of sitagliptin intermediate via motif swapping and semi-rational design. Int J Biol Macromol 2023; 253:127348. [PMID: 37820904 DOI: 10.1016/j.ijbiomac.2023.127348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/25/2023] [Accepted: 10/09/2023] [Indexed: 10/13/2023]
Abstract
The application of (R)-ω-transaminases as biocatalysts for chiral amine synthesis has been hampered by inadequate stereoselectivity and narrow substrate spectrum. Herein, an effective evolution strategy for (R)-ω-transaminase designing for the asymmetric synthesis of sitagliptin intermediate is presented. Since natural transaminases lack activity toward bulky prositagliptin ketone, transaminase scaffolds with catalytic machinery and activity toward the truncated prositagliptin ketone were firstly screened based on substrate walking principle. A transaminase chimera was established synchronously conferring catalytic activity and (R)-selectivity toward prositagliptin ketone through motif swapping, followed by stepwise evolution. The process resulted in a "best" engineered variant MwTAM8, which exhibited 79.2-fold higher activity than the chimeric scaffold MwTAMc. Structural analysis revealed that the heightened activity is mainly due to the enlarged and adaptive substrate pocket and tunnel. The novel (R)-transaminase exhibited unsatisfied industrial operation stability, which is expected to further modify the protein to enhance its tolerance to temperature, pH, and organic solvents to meet sustainable industrial demands. This study underscores a useful evolution strategy of engineering biocatalysts to confer new properties and functions on enzymes for synthesizing high-value drug intermediates.
Collapse
Affiliation(s)
- Fang-Ying Zhu
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Meng-Yu Huang
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Ken Zheng
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Xiao-Jian Zhang
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Xue Cai
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Liang-Gang Huang
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Zhi-Qiang Liu
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.
| | - Yu-Guo Zheng
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| |
Collapse
|
7
|
Li G, Jia L, Wang K, Sun T, Huang J. Prediction of Thermostability of Enzymes Based on the Amino Acid Index (AAindex) Database and Machine Learning. Molecules 2023; 28:8097. [PMID: 38138586 PMCID: PMC10746113 DOI: 10.3390/molecules28248097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
The combination of wet-lab experimental data on multi-site combinatorial mutations and machine learning is an innovative method in protein engineering. In this study, we used an innovative sequence-activity relationship (innov'SAR) methodology based on novel descriptors and digital signal processing (DSP) to construct a predictive model. In this paper, 21 experimental (R)-selective amine transaminases from Aspergillus terreus (AT-ATA) were used as an input to predict higher thermostability mutants than those predicted using the existing data. We successfully improved the coefficient of determination (R2) of the model from 0.66 to 0.92. In addition, root-mean-squared deviation (RMSD), root-mean-squared fluctuation (RMSF), solvent accessible surface area (SASA), hydrogen bonds, and the radius of gyration were estimated based on molecular dynamics simulations, and the differences between the predicted mutants and the wild-type (WT) were analyzed. The successful application of the innov'SAR algorithm in improving the thermostability of AT-ATA may help in directed evolutionary screening and open up new avenues for protein engineering.
Collapse
Affiliation(s)
- Gaolin Li
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China;
| | - Lili Jia
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China;
| | - Kang Wang
- Department of Physics, Zhejiang University of Science and Technology, Hangzhou 310023, China;
| | - Tingting Sun
- Department of Physics, Zhejiang University of Science and Technology, Hangzhou 310023, China;
| | - Jun Huang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China;
| |
Collapse
|
8
|
Pintor A, Cascelli N, Volkov A, Gotor-Fernández V, Lavandera I. Biotransamination of Furan-Based Aldehydes with Isopropylamine: Enzyme Screening and pH Influence. Chembiochem 2023; 24:e202300514. [PMID: 37737725 DOI: 10.1002/cbic.202300514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 09/23/2023]
Abstract
Furan-based amines are highly valuable compounds which can be directly obtained via reductive amination from easily accessible furfural, 5-(hydroxymethyl)furfural (HMF) and 2,5-diformylfuran (DFF). Herein the biocatalytic amination of these carbonyl derivatives is disclosed using amine transaminases (ATAs) and isopropylamine (IPA) as amine donors. Among the different biocatalysts tested, the ones from Chromobacterium violaceum (Cv-TA), Arthrobacter citreus (ArS-TA), and variants from Arthrobacter sp. (ArRmut11-TA) and Vibrio fluvialis (Vf-mut-TA), afforded high levels of product formation (>80 %) at 100-200 mM aldehyde concentration. The transformations were studied in terms of enzyme and IPA loading. The pH influence was found as a key factor and attributed to the imine/aldehyde equilibrium that can arise from the high reactivity of the carbonyl substrates with a nucleophilic amine such as IPA.
Collapse
Affiliation(s)
- Antía Pintor
- Organic and Inorganic Chemistry Department, University of Oviedo, Avenida Julián Clavería 8, 33006, Oviedo, Spain
- EnginZyme AB, Tomtebodavägen 6, 171 65, Solna, Sweden
| | - Nicoletta Cascelli
- Organic and Inorganic Chemistry Department, University of Oviedo, Avenida Julián Clavería 8, 33006, Oviedo, Spain
- Biopox srl, Viale Maria Bakunin, Napoli, Italy
| | - Alexey Volkov
- EnginZyme AB, Tomtebodavägen 6, 171 65, Solna, Sweden
| | - Vicente Gotor-Fernández
- Organic and Inorganic Chemistry Department, University of Oviedo, Avenida Julián Clavería 8, 33006, Oviedo, Spain
| | - Iván Lavandera
- Organic and Inorganic Chemistry Department, University of Oviedo, Avenida Julián Clavería 8, 33006, Oviedo, Spain
| |
Collapse
|
9
|
Zhu HJ, Pan J, Li CX, Chen FF, Xu JH. Construction and optimization of a biocatalytic route for the synthesis of neomenthylamine from menthone. BIORESOUR BIOPROCESS 2023; 10:75. [PMID: 38647910 PMCID: PMC10992614 DOI: 10.1186/s40643-023-00693-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/09/2023] [Indexed: 04/25/2024] Open
Abstract
(+)-Neomenthylamine is an important industrial precursor used to synthesize high value-added chemicals. Here, we report a novel biocatalytic route to synthesize (+)-neomenthylamine by amination of readily available (-)-menthone substrate using ω-transaminase. By screening a panel of ω-transaminases, an ω-transaminase from Vibrio fluvialis JS17 was identified with considerable amination activity to (-)-menthone, and then characterization of enzymatic properties was conducted for the enzyme. Under optimized conditions, 10 mM (-)-menthone was transformed in a mild aqueous phase with 4.7 mM product yielded in 24 h. The biocatalytic route using inexpensive starting materials (ketone substrate and amino donor) and mild reaction conditions represents an easy and green approach for (+)-neomenthylamine synthesis. This method underscores the potential of biocatalysts in the synthesis of unnatural terpenoid amine derivatives.
Collapse
Affiliation(s)
- Hui-Jue Zhu
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, College of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Jiang Pan
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, College of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Chun-Xiu Li
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, College of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Fei-Fei Chen
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, College of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| | - Jian-He Xu
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, College of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| |
Collapse
|
10
|
Transaminase-mediated chiral selective synthesis of (1R)-(3-methylphenyl)ethan-1-amine from 1-(3-methylphenyl)ethan-1-one: process minutiae, optimization, characterization and 'What If studies'. Bioprocess Biosyst Eng 2023; 46:207-225. [PMID: 36463332 DOI: 10.1007/s00449-022-02824-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/23/2022] [Indexed: 12/07/2022]
Abstract
Transaminases capable of carrying out chiral selective transamination of 1-(3-methylphenyl)ethan-1-one to (1R)-(3-methylphenyl)ethan-1-amine were screened, and ATA-025 was the best enzyme, while dimethylsulfoxide (10% V/V) was the best co-solvent for said bioconversion. The variables such as enzyme loading, substrate loading, temperature, and pH for development of process displaying maximum conversion with good product formation and higher yield were optimized. The ambient processing conditions were 10% enzyme loading/50 g/L substrate loading/45 °C/pH 8.0, and 5% enzyme loading/36.78 g/L substrate loading/42.66 °C/pH 8.2 displaying maximum conversion 99.01 ± 2.47% and 96.115 ± 1.97%, and 76.93 ± 1.05% and 73.12 ± 1.04% yield with one factor at a time approach and numerical optimization with Box Behnken Design, respectively. In the final optimized reaction, ATA-025 showed the highest 99.22 ± 2.61% conversion, 49.55 g/L product formation, with an actual product recovery of 38.16 g corresponding to a product yield 77.03 ± 1.01% with respect to the product formed after reaction. The purity of recovered product (1R)-(3-methylphenyl)ethan-1-amine formed was ≥ 99% (RP-HPLC), and chiral purity ≥ 98.5% (Chiral-GC), and it was also confirmed and characterized with instrumental methods using boiling point, LC-MS, ATR-FTIR, and 1H NMR. The findings of 'What If' studies performed by investigating timely progress of reaction on gram scale by drastically changing the process parameters revealed a substantial modification in process variables to achieve desired results. (1R)-(3-methylphenyl)ethan-1-amine synthesized by green, facile and novel enzymatic approach with an optimized process could be used for synthesis of different active pharma entities.
Collapse
|
11
|
Belov F, Mildner A, Knaus T, Mutti FG, von Langermann J. Crystallization-based downstream processing of ω-transaminase- and amine dehydrogenase-catalyzed reactions. REACT CHEM ENG 2023. [DOI: 10.1039/d2re00496h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
This study highlights the use of selective crystallization as a downstream-processing concept for amine products from biocatalytic reactions.
Collapse
|
12
|
Lu Y, Wang J, Xu H, Zhang C, Cheng P, Du L, Tang L, Li J, Ou Z. Efficient Synthesis of Key Chiral Intermediate in Painkillers (R)-1-[3,5-Bis(trifluoromethyl)phenyl]ethanamine by Bienzyme Cascade System with R-ω-Transaminase and Alcohol Dehydrogenase Functions. Molecules 2022; 27:molecules27217331. [PMID: 36364166 PMCID: PMC9655816 DOI: 10.3390/molecules27217331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/12/2022] [Accepted: 10/25/2022] [Indexed: 11/22/2022] Open
Abstract
(R)-1-[3,5-bis(trifluoromethyl)phenyl]ethanamine, a key chiral intermediate of selective tetrodotoxin-sensitive blockers, was efficiently synthesized by a bienzyme cascade system formed by with R-ω-transaminase (ATA117) and an alcohol dehydrogenase (ADH) co-expression system. Herein, we report that the use of ATA117 as the biocatalyst for the amination of 3,5-bistrifluoromethylacetophenone led to the highest efficiency in product performance (enantiomeric excess > 99.9%). Moreover, to further improve the product yield, ADH was introduced into the reaction system to promote an equilibrium shift. Additionally, bienzyme cascade system was constructed by five different expression systems, including two tandem expression recombinant plasmids (pETDuet-ATA117-ADH and pACYCDuet-ATA117-ADH) and three co-expressed dual-plasmids (pETDuet-ATA117/pET28a-ADH, pACYCDuet-ATA117/pET28a-ADH, and pACYCDuet-ATA117/pETDuet-ADH), utilizing recombinant engineered bacteria. Subsequent studies revealed that as compared with ATA117 single enzyme, the substrate handling capacity of BL21(DE3)/pETDuet-ATA117-ADH (0.25 g wet weight) developed for bienzyme cascade system was increased by 1.50 folds under the condition of 40 °C, 180 rpm, 0.1 M pH9 Tris-HCl for 24 h. To the best of our knowledge, ours is the first report demonstrating the production of (R)-1-[3,5-bis(trifluoromethyl)phenyl]ethanamine using a bienzyme cascade system, thus providing valuable insights into the biosynthesis of chiral amines.
Collapse
Affiliation(s)
- Yuan Lu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jinmei Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Haobo Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chuyue Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Pengpeng Cheng
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lihua Du
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lan Tang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jinghua Li
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
- Correspondence: (J.L.); (Z.O.); Tel./Fax: +86-571-88320320 (Z.O.)
| | - Zhimin Ou
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
- Correspondence: (J.L.); (Z.O.); Tel./Fax: +86-571-88320320 (Z.O.)
| |
Collapse
|
13
|
Ralbovsky NM, Smith JP. Process analytical technology and its recent applications for asymmetric synthesis. Talanta 2022; 252:123787. [DOI: 10.1016/j.talanta.2022.123787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/25/2022] [Indexed: 11/27/2022]
|
14
|
Carceller JM, Arias KS, Climent MJ, Iborra S, Corma A. Enzymatic and chemo-enzymatic strategies to produce highly valuable chiral amines from biomass with ω-transaminases on 2D zeolites. Natl Sci Rev 2022; 9:nwac135. [PMID: 36131886 PMCID: PMC9479500 DOI: 10.1093/nsr/nwac135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/14/2022] [Accepted: 06/27/2022] [Indexed: 12/04/2022] Open
Abstract
Amino transaminases (ATAs) have been supported on a 2D ITQ-2 zeolite through electrostatic interactions, resulting in a highly stable active biocatalyst to obtain a variety of valuable chiral amines starting from prochiral ketones derived from biomass. We have extended the biocatalyst applications by designing a chemo-enzymatic process that allows, as the first step, prochiral ketones to be obtained from biomass-derived compounds through an aldol condensation–reduction step using a bifunctional metal/base catalyst. The prochiral ketone is subsequently converted into the chiral amine using the immobilized ATA. We show that it is feasible to couple both steps in a semi-continuous process to produce industrially relevant chiral amines with yields of >95% and ∼100% enantiomer excess.
Collapse
Affiliation(s)
- J Miguel Carceller
- Instituto de Tecnologia Química (UPV-CSIC), Universitat Politècnica de València , Valencia 46022 , Spain
| | - Karen S Arias
- Instituto de Tecnologia Química (UPV-CSIC), Universitat Politècnica de València , Valencia 46022 , Spain
| | - Maria J Climent
- Instituto de Tecnologia Química (UPV-CSIC), Universitat Politècnica de València , Valencia 46022 , Spain
| | - Sara Iborra
- Instituto de Tecnologia Química (UPV-CSIC), Universitat Politècnica de València , Valencia 46022 , Spain
| | - Avelino Corma
- Instituto de Tecnologia Química (UPV-CSIC), Universitat Politècnica de València , Valencia 46022 , Spain
| |
Collapse
|
15
|
Cai B, Wang J, Hu H, Liu S, Zhang C, Zhu Y, Bocola M, Sun L, Ji Y, Zhou A, He K, Peng Q, Luo X, Hong R, Wang J, Shang C, Wang Z, Yang Z, Bong YK, Daussmann T, Chen H. Transaminase Engineering and Process Development for a Whole-Cell Neat Organic Process to Produce ( R)-α-Phenylethylamine. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.1c00409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Baoqin Cai
- Enzymaster (Ningbo) Bio-engineering Co., Ltd, Zhejiang Innovation Center, No. 2646 East Zhongshan Road, Ningbo 31500, China
| | - Jiyong Wang
- Enzymaster (Ningbo) Bio-engineering Co., Ltd, Zhejiang Innovation Center, No. 2646 East Zhongshan Road, Ningbo 31500, China
| | - Hu Hu
- Enzymaster (Ningbo) Bio-engineering Co., Ltd, Zhejiang Innovation Center, No. 2646 East Zhongshan Road, Ningbo 31500, China
| | - Sitong Liu
- Enzymaster (Ningbo) Bio-engineering Co., Ltd, Zhejiang Innovation Center, No. 2646 East Zhongshan Road, Ningbo 31500, China
| | - Chengxiao Zhang
- Enzymaster (Ningbo) Bio-engineering Co., Ltd, Zhejiang Innovation Center, No. 2646 East Zhongshan Road, Ningbo 31500, China
| | - Ying Zhu
- Enzymaster (Ningbo) Bio-engineering Co., Ltd, Zhejiang Innovation Center, No. 2646 East Zhongshan Road, Ningbo 31500, China
| | - Marco Bocola
- Enzymaster Deutschland GmbH, Neusser Str. 39, Düsseldorf 40219, Germany
| | - Lei Sun
- Enzymaster (Ningbo) Bio-engineering Co., Ltd, Zhejiang Innovation Center, No. 2646 East Zhongshan Road, Ningbo 31500, China
| | - Yaoyao Ji
- Enzymaster (Ningbo) Bio-engineering Co., Ltd, Zhejiang Innovation Center, No. 2646 East Zhongshan Road, Ningbo 31500, China
| | - Ameng Zhou
- Enzymaster (Ningbo) Bio-engineering Co., Ltd, Zhejiang Innovation Center, No. 2646 East Zhongshan Road, Ningbo 31500, China
| | - Kuifang He
- Enzymaster (Ningbo) Bio-engineering Co., Ltd, Zhejiang Innovation Center, No. 2646 East Zhongshan Road, Ningbo 31500, China
| | - Qinli Peng
- Enzymaster (Ningbo) Bio-engineering Co., Ltd, Zhejiang Innovation Center, No. 2646 East Zhongshan Road, Ningbo 31500, China
| | - Xiao Luo
- Enzymaster (Ningbo) Bio-engineering Co., Ltd, Zhejiang Innovation Center, No. 2646 East Zhongshan Road, Ningbo 31500, China
| | - Ruimei Hong
- Enzymaster (Ningbo) Bio-engineering Co., Ltd, Zhejiang Innovation Center, No. 2646 East Zhongshan Road, Ningbo 31500, China
| | - Juanjuan Wang
- Enzymaster (Ningbo) Bio-engineering Co., Ltd, Zhejiang Innovation Center, No. 2646 East Zhongshan Road, Ningbo 31500, China
| | - Chuanyang Shang
- Enzymaster (Ningbo) Bio-engineering Co., Ltd, Zhejiang Innovation Center, No. 2646 East Zhongshan Road, Ningbo 31500, China
| | - Zikun Wang
- Enzymaster (Ningbo) Bio-engineering Co., Ltd, Zhejiang Innovation Center, No. 2646 East Zhongshan Road, Ningbo 31500, China
| | - Zhuhong Yang
- Enzymaster (Ningbo) Bio-engineering Co., Ltd, Zhejiang Innovation Center, No. 2646 East Zhongshan Road, Ningbo 31500, China
| | - Yong Koy Bong
- Enzymaster (Ningbo) Bio-engineering Co., Ltd, Zhejiang Innovation Center, No. 2646 East Zhongshan Road, Ningbo 31500, China
| | - Thomas Daussmann
- Enzymaster Deutschland GmbH, Neusser Str. 39, Düsseldorf 40219, Germany
| | - Haibin Chen
- Enzymaster (Ningbo) Bio-engineering Co., Ltd, Zhejiang Innovation Center, No. 2646 East Zhongshan Road, Ningbo 31500, China
| |
Collapse
|
16
|
Heinks T, Paulus J, Koopmeiners S, Beuel T, Sewald N, Höhne M, Bornscheuer UT, Fischer von Mollard G. Recombinant L-Amino Acid Oxidase with broad substrate spectrum for Co-Substrate Recycling in (S)-Selective Transaminase-Catalyzed Kinetic Resolutions. Chembiochem 2022; 23:e202200329. [PMID: 35713203 PMCID: PMC9543090 DOI: 10.1002/cbic.202200329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/15/2022] [Indexed: 11/08/2022]
Abstract
Chiral and enantiopure amines can be produced by enantioselective transaminases via kinetic resolution of amine racemates. This transamination reaction requires stoichiometric amounts of co-substrate. A dual-enzyme recycling system overcomes this limitation: L-amino acid oxidases (LAAO) recycle the accumulating co-product of ( S )-selective transaminases in the kinetic resolution of racemic amines to produce pure ( R )-amines. However, availability of suitable LAAOs is limited. Here we use the heterologously produced, highly active fungal hcLAAO4 with broad substrate spectrum. H 2 O 2 as by-product of hcLAAO4 is detoxified by a catalase. The final system allows using sub-stoichiometric amounts of 1 mol% of the transaminase co-substrate as well as the initial application of L-amino acids instead of α-keto acids. With an optimized protocol, synthetic potential of this kinetic resolution cascade was proven at the preparative scale (>90 mg) by the synthesis of highly enantiomerically pure ( R )-methylbenzylamine (>99 %ee) at complete conversion (50 %).
Collapse
Affiliation(s)
- Tobias Heinks
- Bielefeld University: Universitat Bielefeld, Faculty of Chemistry, Biochemistry, GERMANY
| | - Jannik Paulus
- Bielefeld University: Universitat Bielefeld, Faculty of Chemistry, Organic and Bioorganic Chemistry, GERMANY
| | - Simon Koopmeiners
- Bielefeld University: Universitat Bielefeld, Faculty of Chemistry, Biochemistry, GERMANY
| | - Tobias Beuel
- Bielefeld University: Universitat Bielefeld, Faculty of Chemistry, Biochemistry, GERMANY
| | - Norbert Sewald
- Bielefeld University: Universitat Bielefeld, Faculty of Chemistry, Organic and Bioorganic Chemistry, GERMANY
| | - Matthias Höhne
- University of Greifswald: Universitat Greifswald, Institute of Biochemistry, GERMANY
| | - Uwe T Bornscheuer
- University of Greifswald: Universitat Greifswald, Institute of Biochemistry, GERMANY
| | - Gabriele Fischer von Mollard
- Bielefeld University: Universitat Bielefeld, Faculty of Chemistry, Biochemistry, Universitätsstr. 25, 33615, Bielefeld, GERMANY
| |
Collapse
|
17
|
Pagar AD, Jeon H, Khobragade TP, Sarak S, Giri P, Lim S, Yoo TH, Ko BJ, Yun H. Non-Canonical Amino Acid-Based Engineering of ( R)-Amine Transaminase. Front Chem 2022; 10:839636. [PMID: 35295971 PMCID: PMC8918476 DOI: 10.3389/fchem.2022.839636] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/07/2022] [Indexed: 01/07/2023] Open
Abstract
Non-canonical amino acids (ncAAs) have been utilized as an invaluable tool for modulating the active site of the enzymes, probing the complex enzyme mechanisms, improving catalytic activity, and designing new to nature enzymes. Here, we report site-specific incorporation of p-benzoyl phenylalanine (pBpA) to engineer (R)-amine transaminase previously created from d-amino acid aminotransferase scaffold. Replacement of the single Phe88 residue at the active site with pBpA exhibits a significant 15-fold and 8-fold enhancement in activity for 1-phenylpropan-1-amine and benzaldehyde, respectively. Reshaping of the enzyme's active site afforded an another variant F86A/F88pBpA, with 30% higher thermostability at 55°C without affecting parent enzyme activity. Moreover, various racemic amines were successfully resolved by transaminase variants into (S)-amines with excellent conversions (∼50%) and enantiomeric excess (>99%) using pyruvate as an amino acceptor. Additionally, kinetic resolution of the 1-phenylpropan-1-amine was performed using benzaldehyde as an amino acceptor, which is cheaper than pyruvate. Our results highlight the utility of ncAAs for designing enzymes with enhanced functionality beyond the limit of 20 canonical amino acids.
Collapse
Affiliation(s)
- Amol D. Pagar
- Department of Systems Biotechnology, Konkuk University, Seoul, South Korea
| | - Hyunwoo Jeon
- Department of Systems Biotechnology, Konkuk University, Seoul, South Korea
| | | | - Sharad Sarak
- Department of Systems Biotechnology, Konkuk University, Seoul, South Korea
| | - Pritam Giri
- Department of Systems Biotechnology, Konkuk University, Seoul, South Korea
| | - Seonga Lim
- Department of Systems Biotechnology, Konkuk University, Seoul, South Korea
| | - Tae Hyeon Yoo
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Byoung Joon Ko
- School of Biopharmaceutical and Medical Sciences, Sungshin Women’s University, Seoul, South Korea
| | - Hyungdon Yun
- Department of Systems Biotechnology, Konkuk University, Seoul, South Korea
| |
Collapse
|
18
|
Espina G, Muñoz-Ibacache SA, Cáceres-Moreno P, Amenabar MJ, Blamey JM. From the Discovery of Extremozymes to an Enzymatic Product: Roadmap Based on Their Applications. Front Bioeng Biotechnol 2022; 9:752281. [PMID: 35096788 PMCID: PMC8790482 DOI: 10.3389/fbioe.2021.752281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/22/2021] [Indexed: 11/20/2022] Open
Abstract
With the advent of the industrial revolution, the use of toxic compounds has grown exponentially, leading to a considerable pollution of the environment. Consequently, the development of more environmentally conscious technologies is an urgent need. Industrial biocatalysis appears as one potential solution, where a higher demand for more robust enzymes aims to replace toxic chemical catalysts. To date, most of the commercially available enzymes are of mesophilic origin, displaying optimal activity in narrow ranges of temperature and pH (i.e., between 20°C and 45°C, neutral pH), limiting their actual application under industrial reaction settings, where they usually underperform, requiring larger quantities to compensate loss of activity. In order to obtain novel biocatalysts better suited for industrial conditions, an efficient solution is to take advantage of nature by searching and discovering enzymes from extremophiles. These microorganisms and their macromolecules have already adapted to thrive in environments that present extreme physicochemical conditions. Hence, extremophilic enzymes stand out for showing higher activity, stability, and robustness than their mesophilic counterparts, being able to carry out reactions at nonstandard conditions. In this brief research report we describe three examples to illustrate a stepwise strategy for the development and production of commercial extremozymes, including a catalase from an Antarctic psychrotolerant microorganism, a laccase from a thermoalkaliphilic bacterium isolated from a hot spring and an amine-transaminase from a thermophilic bacterium isolated from a geothermal site in Antarctica. We will also explore some of their interesting biotechnological applications and comparisons with commercial enzymes.
Collapse
Affiliation(s)
- Giannina Espina
- Fundación Biociencia, Santiago, Chile
- *Correspondence: Giannina Espina, ; Jenny M. Blamey,
| | | | | | | | - Jenny M. Blamey
- Fundación Biociencia, Santiago, Chile
- Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- *Correspondence: Giannina Espina, ; Jenny M. Blamey,
| |
Collapse
|
19
|
Computer Modeling Explains the Structural Reasons for the Difference in Reactivity of Amine Transaminases Regarding Prochiral Methylketones. Int J Mol Sci 2022; 23:ijms23020777. [PMID: 35054965 PMCID: PMC8776209 DOI: 10.3390/ijms23020777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/30/2021] [Accepted: 01/07/2022] [Indexed: 02/04/2023] Open
Abstract
Amine transaminases (ATAs) are pyridoxal-5′-phosphate (PLP)-dependent enzymes that catalyze the transfer of an amino group from an amino donor to an aldehyde and/or ketone. In the past decade, the enzymatic reductive amination of prochiral ketones catalyzed by ATAs has attracted the attention of researchers, and more traditional chemical routes were replaced by enzymatic ones in industrial manufacturing. In the present work, the influence of the presence of an α,β-unsaturated system in a methylketone model substrate was investigated, using a set of five wild-type ATAs, the (R)-selective from Aspergillus terreus (Atr-TA) and Mycobacterium vanbaalenii (Mva-TA), the (S)-selective from Chromobacterium violaceum (Cvi-TA), Ruegeria pomeroyi (Rpo-TA), V. fluvialis (Vfl-TA) and an engineered variant of V. fluvialis (ATA-256 from Codexis). The high conversion rate (80 to 99%) and optical purity (78 to 99% ee) of both (R)- and (S)-ATAs for the substrate 1-phenyl-3-butanone, using isopropylamine (IPA) as an amino donor, were observed. However, the double bond in the α,β-position of 4-phenylbut-3-en-2-one dramatically reduced wild-type ATA reactivity, leading to conversions of <10% (without affecting the enantioselectivity). In contrast, the commercially engineered V. fluvialis variant, ATA-256, still enabled an 87% conversion, yielding a corresponding amine with >99% ee. Computational docking simulations showed the differences in orientation and intermolecular interactions in the active sites, providing insights to rationalize the observed experimental results.
Collapse
|
20
|
Reetz MT, Garcia-Borràs M. The Unexplored Importance of Fleeting Chiral Intermediates in Enzyme-Catalyzed Reactions. J Am Chem Soc 2021; 143:14939-14950. [PMID: 34491742 PMCID: PMC8461649 DOI: 10.1021/jacs.1c04551] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Indexed: 02/07/2023]
Abstract
Decades of extensive research efforts by biochemists, organic chemists, and protein engineers have led to an understanding of the basic mechanisms of essentially all known types of enzymes, but in a formidable number of cases an essential aspect has been overlooked. The occurrence of short-lived chiral intermediates formed by symmetry-breaking of prochiral precursors in enzyme catalyzed reactions has been systematically neglected. We designate these elusive species as fleeting chiral intermediates and analyze such crucial questions as "Do such intermediates occur in homochiral form?" If so, what is the absolute configuration, and why did Nature choose that particular stereoisomeric form, even when the isolable final product may be achiral? Does the absolute configuration of a chiral product depend in any way on the absolute configuration of the fleeting chiral precursor? How does this affect the catalytic proficiency of the enzyme? If these issues continue to be unexplored, then an understanding of the mechanisms of many enzyme types remains incomplete. We have systematized the occurrence of these chiral intermediates according to their structures and enzyme types. This is followed by critical analyses of selected case studies and by final conclusions and perspectives. We hope that the fascinating concept of fleeting chiral intermediates will attract the attention of scientists, thereby opening an exciting new research field.
Collapse
Affiliation(s)
- Manfred T. Reetz
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Muelheim, Germany
- Tianjin
Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport
Economic Area, Tianjin 300308, China
| | - Marc Garcia-Borràs
- Institute
of Computational Chemistry and Catalysis (IQCC) and Departament de
Química, Universitat de Girona, Carrer Maria Aurèlia Capmany
69, 17003 Girona, Spain
| |
Collapse
|
21
|
Cigan E, Eggbauer B, Schrittwieser JH, Kroutil W. The role of biocatalysis in the asymmetric synthesis of alkaloids - an update. RSC Adv 2021; 11:28223-28270. [PMID: 35480754 PMCID: PMC9038100 DOI: 10.1039/d1ra04181a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/30/2021] [Indexed: 12/19/2022] Open
Abstract
Alkaloids are a group of natural products with interesting pharmacological properties and a long history of medicinal application. Their complex molecular structures have fascinated chemists for decades, and their total synthesis still poses a considerable challenge. In a previous review, we have illustrated how biocatalysis can make valuable contributions to the asymmetric synthesis of alkaloids. The chemo-enzymatic strategies discussed therein have been further explored and improved in recent years, and advances in amine biocatalysis have vastly expanded the opportunities for incorporating enzymes into synthetic routes towards these important natural products. The present review summarises modern developments in chemo-enzymatic alkaloid synthesis since 2013, in which the biocatalytic transformations continue to take an increasingly 'central' role.
Collapse
Affiliation(s)
- Emmanuel Cigan
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, BioHealth Heinrichstrasse 28/II 8010 Graz Austria
| | - Bettina Eggbauer
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, BioHealth Heinrichstrasse 28/II 8010 Graz Austria
| | - Joerg H Schrittwieser
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, BioHealth Heinrichstrasse 28/II 8010 Graz Austria
| | - Wolfgang Kroutil
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, BioHealth Heinrichstrasse 28/II 8010 Graz Austria
| |
Collapse
|
22
|
Novel Transaminase and Laccase from Streptomyces spp. Using Combined Identification Approaches. Catalysts 2021. [DOI: 10.3390/catal11080919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Three Streptomyces sp. strains with a multitude of target enzymatic activities confirmed by functional screening, namely BV129, BV286 and BV333, were subjected to genome sequencing aiming at the annotation of genes of interest, in-depth bioinformatics characterization and functional expression of the biocatalysts. A whole-genome shotgun sequencing followed by de novo genome assembly and annotation was performed revealing genomes of 6.4, 9.4 and 7.3 Mbp, respectively. Functional annotation of the proteins of interest resulted in between 2047 and 2763 putative targets. Among the various enzymatic activities that the three Streptomyces strains demonstrated to produce by functional screening, we focused our attention on transaminases (TAs) and laccases due to their high biocatalytic potential. Bioinformatics search allowed the identification of a putative TA from Streptomyces sp. BV333 as a potentially novel broad substrate scope TA and a putative laccase from Streptomyces sp. BV286 as potentially novel blue multicopper oxidase. The two sequences were cloned and overexpressed in Escherichia coli and the two novel enzymes, transaminase Sbv333-TA and laccase Sbv286-LAC, were characterized. Interestingly, both enzymes resulted to be exceptionally thermostable, Sbv333-TA showing a melting temperature (TM = 85 °C) only slightly lower compared to the TM of the most thermostable transaminases described to date (87–88 °C) and Sbv286-LAC being even thermoactivated at temperature >60 °C. Moreover, Sbv333-TA showed a broad substrate scope and remarkably demonstrated to be active in the transamination of β-ketoesters, which are rarely accepted by currently known TAs. On the other hand, Sbv286-LAC showed an improved activity in the presence of the cosolvent acetonitrile. Overall, it was shown that a combination of approaches from standard microbiological and biochemical screens to genome sequencing and analysis is required to afford novel and functional biocatalysts.
Collapse
|
23
|
Lee S, Jeon H, Giri P, Lee UJ, Jung H, Lim S, Sarak S, Khobragade TP, Kim BG, Yun H. The Reductive Amination of Carbonyl Compounds Using Native Amine Dehydrogenase from Laribacter hongkongensis. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-021-0113-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Halling PJ. Kinetics of enzyme-catalysed desymmetrisation of prochiral substrates: product enantiomeric excess is not always constant. Beilstein J Org Chem 2021; 17:873-884. [PMID: 33968260 PMCID: PMC8077619 DOI: 10.3762/bjoc.17.73] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/07/2021] [Indexed: 11/28/2022] Open
Abstract
The kinetics of enzymatic desymmetrisation were analysed for the most common kinetic mechanisms: ternary complex ordered (prochiral ketone reduction); ping-pong second (ketone amination, diol esterification, desymmetrisation in the second half reaction); ping-pong first (diol ester hydrolysis) and ping-pong both (prochiral diacids). For plausible values of enzyme kinetic parameters, the product enantiomeric excess (ee) can decline substantially as the reaction proceeds to high conversion. For example, an ee of 0.95 at the start of the reaction can decline to less than 0.5 at 95% of equilibrium conversion, but for different enzyme properties it will remain almost unchanged. For most mechanisms a single function of multiple enzyme rate constants (which can be termed ee decline parameter, eeDP) accounts for the major effect on the tendency for the ee to decline. For some mechanisms, the concentrations or ratios of the starting materials have an important influence on the fall in ee. For the application of enzymatic desymmetrisation it is important to study if and how the product ee declines at high conversion.
Collapse
Affiliation(s)
- Peter J Halling
- WestCHEM, Dept Pure & Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, Scotland, UK
| |
Collapse
|
25
|
Cao JR, Fan FF, Lv CJ, Wang HP, Li Y, Hu S, Zhao WR, Chen HB, Huang J, Mei LH. Improving the Thermostability and Activity of Transaminase From Aspergillus terreus by Charge-Charge Interaction. Front Chem 2021; 9:664156. [PMID: 33937200 PMCID: PMC8081293 DOI: 10.3389/fchem.2021.664156] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/23/2021] [Indexed: 11/13/2022] Open
Abstract
Transaminases that promote the amination of ketones into amines are an emerging class of biocatalysts for preparing a series of drugs and their intermediates. One of the main limitations of (R)-selective amine transaminase from Aspergillus terreus (At-ATA) is its weak thermostability, with a half-life (t 1/2) of only 6.9 min at 40°C. To improve its thermostability, four important residue sites (E133, D224, E253, and E262) located on the surface of At-ATA were identified using the enzyme thermal stability system (ETSS). Subsequently, 13 mutants (E133A, E133H, E133K, E133R, E133Q, D224A, D224H, D224K, D224R, E253A, E253H, E253K, and E262A) were constructed by site-directed mutagenesis according to the principle of turning the residues into opposite charged ones. Among them, three substitutions, E133Q, D224K, and E253A, displayed higher thermal stability than the wild-type enzyme. Molecular dynamics simulations indicated that these three mutations limited the random vibration amplitude in the two α-helix regions of 130-135 and 148-158, thereby increasing the rigidity of the protein. Compared to the wild-type, the best mutant, D224K, showed improved thermostability with a 4.23-fold increase in t 1/2 at 40°C, and 6.08°C increase in T 50 10 . Exploring the three-dimensional structure of D224K at the atomic level, three strong hydrogen bonds were added to form a special "claw structure" of the α-helix 8, and the residues located at 151-156 also stabilized the α-helix 9 by interacting with each other alternately.
Collapse
Affiliation(s)
- Jia-Ren Cao
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Fang-Fang Fan
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Chang-Jiang Lv
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Hong-Peng Wang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Ye Li
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Sheng Hu
- School of Biotechnology and Chemical Engineering, NingboTech University, Ningbo, China
| | - Wei-Rui Zhao
- School of Biotechnology and Chemical Engineering, NingboTech University, Ningbo, China
| | - Hai-Bin Chen
- Enzymaster (Ningbo) Bio-Engineering Co., Ltd., Ningbo, China
| | - Jun Huang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Le-He Mei
- School of Biotechnology and Chemical Engineering, NingboTech University, Ningbo, China.,Jinhua Advanced Research Institute, Jinhua, China.,Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
26
|
Telzerow A, Paris J, Håkansson M, González‐Sabín J, Ríos‐Lombardía N, Gröger H, Morís F, Schürmann M, Schwab H, Steiner K. Expanding the Toolbox of R-Selective Amine Transaminases by Identification and Characterization of New Members. Chembiochem 2021; 22:1232-1242. [PMID: 33242357 PMCID: PMC8048526 DOI: 10.1002/cbic.202000692] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/22/2020] [Indexed: 12/16/2022]
Abstract
Amine transaminases (ATAs) are used to synthesize enantiomerically pure amines, which are building blocks for pharmaceuticals and agrochemicals. R-selective ATAs belong to the fold type IV PLP-dependent enzymes, and different sequence-, structure- and substrate scope-based features have been identified in the past decade. However, our knowledge is still restricted due to the limited number of characterized (R)-ATAs, with additional bias towards fungal origin. We aimed to expand the toolbox of (R)-ATAs and contribute to the understanding of this enzyme subfamily. We identified and characterized four new (R)-ATAs. The ATA from Exophiala sideris contains a motif characteristic for d-ATAs, which was previously believed to be a disqualifying factor for (R)-ATA activity. The crystal structure of the ATA from Shinella is the first from a Gram-negative bacterium. The ATAs from Pseudonocardia acaciae and Tetrasphaera japonica are the first characterized (R)-ATAs with a shortened/missing N-terminal helix. The active-site charges vary significantly between the new and known ATAs, correlating with their diverging substrate scope.
Collapse
Affiliation(s)
- Aline Telzerow
- Institute of Molecular BiotechnologyGraz University of TechnologyPetersgasse 148010GrazAustria
- InnoSyn B.V.Urmonderbaan 226167RDGeleenThe Netherlands
| | - Juraj Paris
- Chair of Industrial Organic Chemistry and BiotechnologyFaculty of ChemistryBielefeld UniversityUniversitätsstr. 2533615BielefeldGermany
- EntreChem SLVivero Ciencias de la Salud33011OviedoSpain
| | | | | | | | - Harald Gröger
- Chair of Industrial Organic Chemistry and BiotechnologyFaculty of ChemistryBielefeld UniversityUniversitätsstr. 2533615BielefeldGermany
| | | | | | - Helmut Schwab
- Institute of Molecular BiotechnologyGraz University of TechnologyPetersgasse 148010GrazAustria
| | - Kerstin Steiner
- Institute of Molecular BiotechnologyGraz University of TechnologyPetersgasse 148010GrazAustria
| |
Collapse
|
27
|
Liu CY, Cecylia Severin L, Lyu CJ, Zhu WL, Wang HP, Jiang CJ, Mei LH, Liu HG, Huang J. Improving thermostability of (R)-selective amine transaminase from Aspergillus terreus by evolutionary coupling saturation mutagenesis. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.107926] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
28
|
ω-Transaminase-Mediated Asymmetric Synthesis of (S)-1-(4-Trifluoromethylphenyl)Ethylamine. Catalysts 2021. [DOI: 10.3390/catal11030307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The pivotal role played by ω-transaminases (ω-TAs) in the synthesis of chiral amines used as building blocks for drugs and pharmaceuticals is widely recognized. However, chiral bulky amines are challenging to produce. Herein, a ω-TA (TR8) from a marine bacterium was used to synthesize a fluorine chiral amine from a bulky ketone. An analysis of the reaction conditions for process development showed that isopropylamine concentrations above 75 mM had an inhibitory effect on the enzyme. Five different organic solvents were investigated as co-solvents for the ketone (the amine acceptor), among which 25–30% (v/v) dimethyl sulfoxide (DMSO) produced the highest enzyme activity. The reaction reached equilibrium after 18 h at 30% of conversion. An in situ product removal (ISPR) approach using an aqueous organic two-phase system was tested to mitigate product inhibition. However, the enzyme activity initially decreased because the ketone substrate preferentially partitioned into the organic phase, n-hexadecane. Consequently, DMSO was added to the system to increase substrate mass transfer without affecting the ability of the organic phase to prevent inhibition of the enzyme activity by the product. Thus, the enzyme reaction was maintained, and the product amount was increased for a 62 h reaction time. The investigated ω-TA can be used in the bioconversion of bulky ketones to chiral amines for future bioprocess applications.
Collapse
|
29
|
Han R, Cao X, Fang H, Zhou J, Ni Y. Structure-based engineering of ω-transaminase for enhanced catalytic efficiency toward (R)-(+)-1-(1-naphthyl)ethylamine synthesis. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2020.111368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
30
|
Wu S, Snajdrova R, Moore JC, Baldenius K, Bornscheuer UT. Biocatalysis: Enzymatic Synthesis for Industrial Applications. Angew Chem Int Ed Engl 2021; 60:88-119. [PMID: 32558088 PMCID: PMC7818486 DOI: 10.1002/anie.202006648] [Citation(s) in RCA: 605] [Impact Index Per Article: 151.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Indexed: 12/12/2022]
Abstract
Biocatalysis has found numerous applications in various fields as an alternative to chemical catalysis. The use of enzymes in organic synthesis, especially to make chiral compounds for pharmaceuticals as well for the flavors and fragrance industry, are the most prominent examples. In addition, biocatalysts are used on a large scale to make specialty and even bulk chemicals. This review intends to give illustrative examples in this field with a special focus on scalable chemical production using enzymes. It also discusses the opportunities and limitations of enzymatic syntheses using distinct examples and provides an outlook on emerging enzyme classes.
Collapse
Affiliation(s)
- Shuke Wu
- Institute of BiochemistryDept. of Biotechnology & Enzyme CatalysisGreifswald UniversityFelix-Hausdorff-Strasse 417487GreifswaldGermany
| | - Radka Snajdrova
- Novartis Institutes for BioMedical ResearchGlobal Discovery Chemistry4056BaselSwitzerland
| | - Jeffrey C. Moore
- Process Research and DevelopmentMerck & Co., Inc.126 E. Lincoln AveRahwayNJ07065USA
| | - Kai Baldenius
- Baldenius Biotech ConsultingHafenstr. 3168159MannheimGermany
| | - Uwe T. Bornscheuer
- Institute of BiochemistryDept. of Biotechnology & Enzyme CatalysisGreifswald UniversityFelix-Hausdorff-Strasse 417487GreifswaldGermany
| |
Collapse
|
31
|
Gourbeyre L, Heuson E, Charmantray F, Hélaine V, Debard A, Petit JL, de Berardinis V, Gefflaut T. Biocatalysed synthesis of chiral amines: continuous colorimetric assays for mining amine-transaminases. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02070b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Versatile and sensitive continuous colorimetric assays were developed for the high throughput screening of a large collection of amine-TAs from biodiversity, and allowed the discovery of a set of diverse biocatalysts with high synthetic potential.
Collapse
Affiliation(s)
- Léa Gourbeyre
- Université Clermont Auvergne
- CNRS
- SIGMA Clermont
- ICCF
- F-63000 Clermont-Ferrand
| | - Egon Heuson
- Université Clermont Auvergne
- CNRS
- SIGMA Clermont
- ICCF
- F-63000 Clermont-Ferrand
| | - Franck Charmantray
- Université Clermont Auvergne
- CNRS
- SIGMA Clermont
- ICCF
- F-63000 Clermont-Ferrand
| | - Virgil Hélaine
- Université Clermont Auvergne
- CNRS
- SIGMA Clermont
- ICCF
- F-63000 Clermont-Ferrand
| | - Adrien Debard
- Génomique métabolique
- Genoscope
- Institut François Jacob
- CEA
- CNRS
| | | | | | - Thierry Gefflaut
- Université Clermont Auvergne
- CNRS
- SIGMA Clermont
- ICCF
- F-63000 Clermont-Ferrand
| |
Collapse
|
32
|
Stockinger P, Schelle L, Schober B, Buchholz PCF, Pleiss J, Nestl BM. Engineering of Thermostable β-Hydroxyacid Dehydrogenase for the Asymmetric Reduction of Imines. Chembiochem 2020; 21:3511-3514. [PMID: 32939899 PMCID: PMC7756219 DOI: 10.1002/cbic.202000526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Indexed: 01/08/2023]
Abstract
The β-hydroxyacid dehydrogenase from Thermocrinus albus (Ta-βHAD), which catalyzes the NADP+ -dependent oxidation of β-hydroxyacids, was engineered to accept imines as substrates. The catalytic activity of the proton-donor variant K189D was further increased by the introduction of two nonpolar flanking residues (N192 L, N193 L). Engineering the putative alternative proton donor (D258S) and the gate-keeping residue (F250 A) led to a switched substrate specificity as compared to the single and triple variants. The two most active Ta-βHAD variants were applied to biocatalytic asymmetric reductions of imines at elevated temperatures and enabled enhanced product formation at a reaction temperature of 50 °C.
Collapse
Affiliation(s)
- Peter Stockinger
- Institute of Biochemistry and Technical BiochemistryDepartment of Technical BiochemistryUniversity of StuttgartAllmandring 3170569StuttgartGermany
| | - Luca Schelle
- Institute of Biochemistry and Technical BiochemistryDepartment of Technical BiochemistryUniversity of StuttgartAllmandring 3170569StuttgartGermany
| | - Benedikt Schober
- Institute of Biochemistry and Technical BiochemistryDepartment of Technical BiochemistryUniversity of StuttgartAllmandring 3170569StuttgartGermany
| | - Patrick C. F. Buchholz
- Institute of Biochemistry and Technical BiochemistryDepartment of Technical BiochemistryUniversity of StuttgartAllmandring 3170569StuttgartGermany
| | - Jürgen Pleiss
- Institute of Biochemistry and Technical BiochemistryDepartment of Technical BiochemistryUniversity of StuttgartAllmandring 3170569StuttgartGermany
| | - Bettina M. Nestl
- Institute of Biochemistry and Technical BiochemistryDepartment of Technical BiochemistryUniversity of StuttgartAllmandring 3170569StuttgartGermany
| |
Collapse
|
33
|
Structural and Functional Analysis of the Only Two Pyridoxal 5′-Phosphate-Dependent Fold Type IV Transaminases in Bacillus altitudinis W3. Catalysts 2020. [DOI: 10.3390/catal10111308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Aminotransferases are employed as industrial biocatalysts to produce chiral amines with high enantioselectivity and yield. BpTA-1 and BpTA-2 are the only two pyridoxal 5′-phosphate-dependent fold type IV transaminase enzymes in Bacillus altitudinis W3. Herein, we compared the structures and biochemical characteristics of BpTA-1 and BpTA-2 using bioinformatic analysis, circular dichroism spectroscopy, atomic force microscopy and other approaches. BpTA-1 and BpTA-2 are similar overall; both form homodimers and utilize a catalytic lysine. However, there are distinct differences in the substrate cofactor-binding pocket, molecular weight and the proportion of the secondary structure. Both enzymes have the same stereoselectivity but different enzymatic properties. BpTA-2 is more active under partial alkaline and ambient temperature conditions and BpTA-1 is more sensitive to pH and temperature. BpTA-2 as novel enzyme not only fills the building blocks of transaminase but also has broader industrial application potential for (R)-α-phenethylamines than BpTA-1. Structure-function relationships were explored to assess similarities and differences. The findings lay the foundation for modifying these enzymes via protein engineering to enhance their industrial application potential.
Collapse
|
34
|
Ferrandi EE, Bassanini I, Sechi B, Vanoni M, Tessaro D, Guðbergsdóttir SR, Riva S, Peng X, Monti D. Discovery and Characterization of a Novel Thermostable β-Amino Acid Transaminase from a Meiothermus Strain Isolated in an Icelandic Hot Spring. Biotechnol J 2020; 15:e2000125. [PMID: 32893504 DOI: 10.1002/biot.202000125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/29/2020] [Indexed: 02/02/2023]
Abstract
A Meiothermus strain capable of using β-phenylalanine for growth is isolated by culture enrichment of samples collected in hot environments and the genome is sequenced showing the presence of 22 putative transaminase (TA) sequences. On the basis of phylogenetic and sequence analysis, a TA termed Ms-TA2 is selected for further studies. The enzyme is successfully produced in Escherichia coli Rosetta(DE3) cells, with 70 mg of pure protein obtained from 1 L culture after purification by affinity chromatography. Ms-TA2 shows high activity toward (S)-β-phenylalanine and other (S)-β-amino acids, as well as a preference for α-ketoglutarate and aromatic aldehydes as amino acceptors. Moreover, Ms-TA2 is shown to be a thermostable enzyme by maintaining about 60% of the starting activity after 3 h incubation at 50 °C and showing a melting temperature of about 73 °C. Finally, a homology-based structural model of Ms-TA2 is built and key active site interactions for substrate and cofactor binding are analyzed.
Collapse
Affiliation(s)
- Erica E Ferrandi
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" (SCITEC), CNR, Via Mario Bianco 9, Milan, 20131, Italy.,Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen, 2200, Denmark
| | - Ivan Bassanini
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" (SCITEC), CNR, Via Mario Bianco 9, Milan, 20131, Italy.,Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli 25, Milan, 20133, Italy
| | - Barbara Sechi
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" (SCITEC), CNR, Via Mario Bianco 9, Milan, 20131, Italy
| | - Marta Vanoni
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" (SCITEC), CNR, Via Mario Bianco 9, Milan, 20131, Italy
| | - Davide Tessaro
- Dipartimento di Chimica, Materiali e Ingegneria Chimica, Politecnico di Milano, Via Mancinelli 7, Milan, 20131, Italy
| | | | - Sergio Riva
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" (SCITEC), CNR, Via Mario Bianco 9, Milan, 20131, Italy
| | - Xu Peng
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen, 2200, Denmark
| | - Daniela Monti
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" (SCITEC), CNR, Via Mario Bianco 9, Milan, 20131, Italy
| |
Collapse
|
35
|
Structural studies reveal flexible roof of active site responsible for ω-transaminase CrmG overcoming by-product inhibition. Commun Biol 2020; 3:455. [PMID: 32814814 PMCID: PMC7438487 DOI: 10.1038/s42003-020-01184-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/29/2020] [Indexed: 12/16/2022] Open
Abstract
Amine compounds biosynthesis using ω-transaminases has received considerable attention in the pharmaceutical industry. However, the application of ω-transaminases was hampered by the fundamental challenge of severe by-product inhibition. Here, we report that ω-transaminase CrmG from Actinoalloteichus cyanogriseus WH1-2216-6 is insensitive to inhibition from by-product α-ketoglutarate or pyruvate. Combined with structural and QM/MM studies, we establish the detailed catalytic mechanism for CrmG. Our structural and biochemical studies reveal that the roof of the active site in PMP-bound CrmG is flexible, which will facilitate the PMP or by-product to dissociate from PMP-bound CrmG. Our results also show that amino acceptor caerulomycin M (CRM M), but not α-ketoglutarate or pyruvate, can form strong interactions with the roof of the active site in PMP-bound CrmG. Based on our results, we propose that the flexible roof of the active site in PMP-bound CrmG may facilitate CrmG to overcome inhibition from the by-product.
Collapse
|
36
|
Wu S, Snajdrova R, Moore JC, Baldenius K, Bornscheuer UT. Biokatalyse: Enzymatische Synthese für industrielle Anwendungen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006648] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Shuke Wu
- Institut für Biochemie Abt. Biotechnologie & Enzymkatalyse Universität Greifswald Felix-Hausdorff-Straße 4 17487 Greifswald Deutschland
| | - Radka Snajdrova
- Novartis Institutes for BioMedical Research Global Discovery Chemistry 4056 Basel Schweiz
| | - Jeffrey C. Moore
- Process Research and Development Merck & Co., Inc. 126 E. Lincoln Ave Rahway NJ 07065 USA
| | - Kai Baldenius
- Baldenius Biotech Consulting Hafenstraße 31 68159 Mannheim Deutschland
| | - Uwe T. Bornscheuer
- Institut für Biochemie Abt. Biotechnologie & Enzymkatalyse Universität Greifswald Felix-Hausdorff-Straße 4 17487 Greifswald Deutschland
| |
Collapse
|
37
|
Zhang J, Zhao Y, Li C, Song H. Multi-enzyme pyruvate removal system to enhance ( R)-selective reductive amination of ketones. RSC Adv 2020; 10:28984-28991. [PMID: 35520080 PMCID: PMC9055928 DOI: 10.1039/d0ra06140a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 07/28/2020] [Indexed: 01/28/2023] Open
Abstract
Biocatalytic transamination is widely used in industrial production of chiral chemicals. Here, we constructed a novel multi-enzyme system to promote the conversion of the amination reaction. Firstly, we constructed the ArR-ωTA/TdcE/FDH/LDH multi-enzyme system, by combination of (R)-selective ω-transaminase derived from Arthrobacter sp. (ArR-ωTA), formate dehydrogenase (FDH) derived from Candida boidinii, formate acetyltransferase (TdcE) and lactate dehydrogenase (LDH) derived from E. coli MG1655. This multi-enzyme system was used to efficiently remove the by-product pyruvate by TdcE and LDH to facilitate the transamination reaction. The TdcE/FDH pathway was found to dominate the by-product pyruvate removal in the transamination reaction. Secondly, we optimized the reaction conditions, including d-alanine, DMSO, and pyridoxal phosphate (PLP) with different concentration of 2-pentanone (as a model substrate). Thirdly, by using the ArR-ωTA/TdcE/FDH/LDH system, the conversions of 2-pentanone, 4-phenyl-2-butanone and cyclohexanone were 84.5%, 98.2% and 79.3%, respectively. The ArR-ωTA/TdcE/FDH/LDH system is an efficient system for increasing the conversion in the transamination reaction.![]()
Collapse
Affiliation(s)
- Jinhua Zhang
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University Tianjin 300350 P. R. China +86-18722024233
| | - Yanshu Zhao
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University Tianjin 300350 P. R. China +86-18722024233
| | - Chao Li
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University Tianjin 300350 P. R. China +86-18722024233
| | - Hao Song
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University Tianjin 300350 P. R. China +86-18722024233
| |
Collapse
|
38
|
Improving the catalytic thermostability of Bacillus altitudinis W3 ω-transaminase by proline substitutions. 3 Biotech 2020; 10:323. [PMID: 32656056 DOI: 10.1007/s13205-020-02321-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/24/2020] [Indexed: 01/10/2023] Open
Abstract
As a green biocatalyst, transaminase with high thermostability can be better employed to synthesize many pharmaceutical intermediates in industry. To improve the thermostability of (R)-selective amine transaminase from Bacillus altitudinis W3, related mutation sites were determined by multiple amino acid sequence alignment between wild-type ω-transaminase and four potential thermophilic ω-transaminases, followed by replacement of the related amino acid residues with proline by site-directed mutagenesis. Three stabilized mutants (D192P, T237P, and D192P/T237P) showing the highest stability were obtained and used for further analysis. Comparison with the wild-type enzyme revealed that the double mutant D192P/T237P exhibited the largest shift in thermostability, with a 2.5-fold improvement of t 1/2 at 40 °C, and a 6.3 °C increase in T 50 15, and a 5 °C higher optimal catalytic temperature. Additionally, this mutant exhibited an increase in catalytic efficiency (k cat/K m) relative to the wild-type enzyme. Modeling analysis indicated that the improved thermostability of the mutants could be associated with newly formed hydrophobic interactions and hydrogen bonds. This study shown that proline substitutions guided by sequence alignment to improve the thermostability of (R)-selective amine transaminase was effective and this method can also be used to engineering other enzymes.
Collapse
|
39
|
Kelly SA, Mix S, Moody TS, Gilmore BF. Transaminases for industrial biocatalysis: novel enzyme discovery. Appl Microbiol Biotechnol 2020; 104:4781-4794. [PMID: 32300853 PMCID: PMC7228992 DOI: 10.1007/s00253-020-10585-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/18/2020] [Accepted: 03/24/2020] [Indexed: 12/04/2022]
Abstract
Transaminases (TAms) are important enzymes for the production of chiral amines for the pharmaceutical and fine chemical industries. Novel TAms for use in these industries have been discovered using a range of approaches, including activity-guided methods and homologous sequence searches from cultured microorganisms to searches using key motifs and metagenomic mining of environmental DNA libraries. This mini-review focuses on the methods used for TAm discovery over the past two decades, analyzing the changing trends in the field and highlighting the advantages and drawbacks of the respective approaches used. This review will also discuss the role of protein engineering in the development of novel TAms and explore possible directions for future TAm discovery for application in industrial biocatalysis. KEY POINTS: • The past two decades of TAm enzyme discovery approaches are explored. • TAm sequences are phylogenetically analyzed and compared to other discovery methods. • Benefits and drawbacks of discovery approaches for novel biocatalysts are discussed. • The role of protein engineering and future discovery directions is highlighted.
Collapse
Affiliation(s)
- Stephen A Kelly
- School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland
| | - Stefan Mix
- Department of Biocatalysis & Isotope Chemistry, Almac, 20 Seagoe Industrial Estate, Craigavon, UK
| | - Thomas S Moody
- Department of Biocatalysis & Isotope Chemistry, Almac, 20 Seagoe Industrial Estate, Craigavon, UK
- Arran Chemical Company Limited, Unit 1 Monksland Industrial Estate, Athlone, Co. Roscommon, Ireland
| | - Brendan F Gilmore
- School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland.
| |
Collapse
|
40
|
Bezsudnova EY, Stekhanova TN, Ruzhitskiy AO, Popov VO. Effects of pH and temperature on (S)-amine activity of transaminase from the cold-adapted bacterium Psychrobacter cryohalolentis. Extremophiles 2020; 24:537-549. [PMID: 32418069 DOI: 10.1007/s00792-020-01174-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 04/27/2020] [Indexed: 10/24/2022]
Abstract
(7R,8S)-diaminopelargonic acid transaminase from the cold-adapted Gram-negative bacterium Psychrobacter cryohalolentis (Pcryo361) is able to react with unnatural substrates including (S)-( +)-1-phenylethylamine, aldehydes and α-diketones. Additionally, Pcryo361 is active at 0-50 °C and retains up to 10% of the maximum activity at 0 °C. Here, we report a detailed study on the stability and low temperature activity of Pcryo361. At the optimal pH for (S)-amine activity (pH 10.0), the enzyme was stable at 0-10 °C and no decrease in the enzyme activity was observed within 24 h in a slightly alkaline medium, pH 8.0, at 35 °C. Pcryo361 was solvent stable and was activated in 10% DMSO and DMFA at 35 °C. An analysis of the efficiency of catalysis of Pcryo361 at 35 °C and 10 °C showed that the specificity towards (S)-( +)-1-phenylethylamine dropped at 10 °C; however, the specificity towards 2,3-butanedione remained unchanged. Inhibition analysis showed that Pcryo361 activity was not inhibited by acetophenone but inhibited by amines (products of aldehyde amination). The observed pH stability and low temperature activity of Pcryo361 with activated keto substrates are attractive features in the field of development of stereoselective amination at low temperatures.
Collapse
Affiliation(s)
- Ekaterina Yu Bezsudnova
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, Moscow, 119071, Russian Federation.
| | - Tatiana N Stekhanova
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, Moscow, 119071, Russian Federation
| | - Aleksandr O Ruzhitskiy
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, Moscow, 119071, Russian Federation
| | - Vladimir O Popov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, Moscow, 119071, Russian Federation.,Kurchatov Complex of NBICS-Technologies, National Research Centre "Kurchatov Institute", Akad. Kurchatova sqr 1, Moscow, 123182, Russian Federation
| |
Collapse
|
41
|
Fiorati A, Berglund P, Humble MS, Tessaro D. Application of Transaminases in a Disperse System for the Bioamination of Hydrophobic Substrates. Adv Synth Catal 2020. [DOI: 10.1002/adsc.201901434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Andrea Fiorati
- Politecnico di MilanoDepartment of Chemistry, Materials and Chemical Engineering “G. Natta” p.za L. da Vinci 32 I-20133 Milano Italy
| | - Per Berglund
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Department of Industrial BiotechnologyAlbaNova University Center SE-10691 Stockholm Sweden
| | - Maria S. Humble
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Department of Industrial BiotechnologyAlbaNova University Center SE-10691 Stockholm Sweden
- Pharem Biotech AB, Biovation Park Forskargatan 20 J SE-15136 Södertälje Sweden
| | - Davide Tessaro
- Politecnico di MilanoDepartment of Chemistry, Materials and Chemical Engineering “G. Natta” p.za L. da Vinci 32 I-20133 Milano Italy
| |
Collapse
|
42
|
Bezsudnova EY, Popov VO, Boyko KM. Structural insight into the substrate specificity of PLP fold type IV transaminases. Appl Microbiol Biotechnol 2020; 104:2343-2357. [PMID: 31989227 DOI: 10.1007/s00253-020-10369-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/04/2019] [Accepted: 01/09/2020] [Indexed: 01/19/2023]
Abstract
Pyridoxal-5'-phosphate-dependent transaminases of fold type IV (class IV) are promising enzymes for (R)-selective amination of organic compounds. Transaminases of fold type IV exhibit either strict (R)-selectivity or (S)-selectivity that is implemented within geometrically similar active sites of different amino acid compositions. Based on substrate specificity, class IV comprises three large families of transaminases: (S)-selective branched-chain L-amino acid aminotransferases and (R)-selective D-amino acid aminotransferases and (R)-amine:pyruvate transaminases. In this review, we aim to analyze the substrate profiles and correlations between the substrate specificity and organization of the active site in transaminases from these structurally related families. New transaminases with an expanded substrate specificity are also discussed. An analysis of the structural features of substrate binding and comparisons of structural determinants of chiral discrimination between members of the class IV transaminases could be helpful in identifying new biocatalytically relevant enzymes as well as rational protein engineering.
Collapse
Affiliation(s)
- Ekaterina Yu Bezsudnova
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, Moscow, Russian Federation, 119071.
| | - Vladimir O Popov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, Moscow, Russian Federation, 119071.,Kurchatov Complex of NBICS-Technologies, National Research Centre "Kurchatov Institute", Akad. Kurchatova sqr 1, Moscow, Russian Federation, 123182
| | - Konstantin M Boyko
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, Moscow, Russian Federation, 119071
| |
Collapse
|
43
|
Semproli R, Vaccaro G, Ferrandi EE, Vanoni M, Bavaro T, Marrubini G, Annunziata F, Conti P, Speranza G, Monti D, Tamborini L, Ubiali D. Use of Immobilized Amine Transaminase from
Vibrio fluvialis
under Flow Conditions for the Synthesis of (
S
)‐1‐(5‐Fluoropyrimidin‐2‐yl)‐ethanamine. ChemCatChem 2020. [DOI: 10.1002/cctc.201902080] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Riccardo Semproli
- Department of Drug SciencesUniversity of Pavia Viale Taramelli 12 Pavia I-27100 Italy
| | - Gianmarco Vaccaro
- Department of Drug SciencesUniversity of Pavia Viale Taramelli 12 Pavia I-27100 Italy
- Department of Pharmaceutical SciencesUniversity of Milano Via Mangiagalli 25 Milano I-20133 Italy
| | - Erica E. Ferrandi
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC) - CNR Via Bianco 9 Milano I-20131 Italy
| | - Marta Vanoni
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC) - CNR Via Bianco 9 Milano I-20131 Italy
| | - Teodora Bavaro
- Department of Drug SciencesUniversity of Pavia Viale Taramelli 12 Pavia I-27100 Italy
| | - Giorgio Marrubini
- Department of Drug SciencesUniversity of Pavia Viale Taramelli 12 Pavia I-27100 Italy
| | - Francesca Annunziata
- Department of Pharmaceutical SciencesUniversity of Milano Via Mangiagalli 25 Milano I-20133 Italy
| | - Paola Conti
- Department of Pharmaceutical SciencesUniversity of Milano Via Mangiagalli 25 Milano I-20133 Italy
| | - Giovanna Speranza
- Department of ChemistryUniversity of Milano Via Golgi 19 Milano I-20133 Italy
| | - Daniela Monti
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC) - CNR Via Bianco 9 Milano I-20131 Italy
| | - Lucia Tamborini
- Department of Pharmaceutical SciencesUniversity of Milano Via Mangiagalli 25 Milano I-20133 Italy
| | - Daniela Ubiali
- Department of Drug SciencesUniversity of Pavia Viale Taramelli 12 Pavia I-27100 Italy
| |
Collapse
|
44
|
Alvarenga N, Payer SE, Petermeier P, Kohlfuerst C, Meleiro Porto AL, Schrittwieser JH, Kroutil W. Asymmetric Synthesis of Dihydropinidine Enabled by Concurrent Multienzyme Catalysis and a Biocatalytic Alternative to Krapcho Dealkoxycarbonylation. ACS Catal 2019. [DOI: 10.1021/acscatal.9b04611] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Natália Alvarenga
- Chemistry Institute of São Carlos, University of São Paulo, Av. Trabalhador São-carlense, 400, São Carlos, São Paulo 13566-590, Brazil
- Institute of Chemistry, NAWI Graz, BioTechMed Graz, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Stefan E. Payer
- Institute of Chemistry, NAWI Graz, BioTechMed Graz, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Philipp Petermeier
- Institute of Chemistry, NAWI Graz, BioTechMed Graz, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Christoph Kohlfuerst
- Institute of Chemistry, NAWI Graz, BioTechMed Graz, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - André Luiz Meleiro Porto
- Chemistry Institute of São Carlos, University of São Paulo, Av. Trabalhador São-carlense, 400, São Carlos, São Paulo 13566-590, Brazil
| | - Joerg H. Schrittwieser
- Institute of Chemistry, NAWI Graz, BioTechMed Graz, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Wolfgang Kroutil
- Institute of Chemistry, NAWI Graz, BioTechMed Graz, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria
| |
Collapse
|
45
|
Rodrigues CJC, Sanches JM, de Carvalho CCCR. Determining transaminase activity in bacterial libraries by time-lapse imaging. Chem Commun (Camb) 2019; 55:13538-13541. [PMID: 31647085 DOI: 10.1039/c9cc07507k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Transaminase activity was determined by time-lapse imaging using a colourimetric reaction and image analysis. A correlation between the benzaldehyde conversion and relative luminance was determined, allowing the identification of the most promising biocatalysts, the determination of kinetic parameters, and the assessment of the effect of the substrate concentration on activity.
Collapse
Affiliation(s)
- Carlos J C Rodrigues
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
| | - João M Sanches
- Institute for Systems and Robotics (ISR/IST), LARSyS, Bioengineering Department, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Carla C C R de Carvalho
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
46
|
Ruggieri F, Campillo-Brocal JC, Chen S, Humble MS, Walse B, Logan DT, Berglund P. Insight into the dimer dissociation process of the Chromobacterium violaceum (S)-selective amine transaminase. Sci Rep 2019; 9:16946. [PMID: 31740704 PMCID: PMC6861513 DOI: 10.1038/s41598-019-53177-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/24/2019] [Indexed: 12/19/2022] Open
Abstract
One of the main factors hampering the implementation in industry of transaminase-based processes for the synthesis of enantiopure amines is their often low storage and operational stability. Our still limited understanding of the inactivation processes undermining the stability of wild-type transaminases represents an obstacle to improving their stability through enzyme engineering. In this paper we present a model describing the inactivation process of the well-characterized (S)-selective amine transaminase from Chromobacterium violaceum. The cornerstone of the model, supported by structural, computational, mutagenesis and biophysical data, is the central role of the catalytic lysine as a conformational switch. Upon breakage of the lysine-PLP Schiff base, the strain associated with the catalytically active lysine conformation is dissipated in a slow relaxation process capable of triggering the known structural rearrangements occurring in the holo-to-apo transition and ultimately promoting dimer dissociation. Due to the occurrence in the literature of similar PLP-dependent inactivation models valid for other non-transaminase enzymes belonging to the same fold-class, the role of the catalytic lysine as conformational switch might extend beyond the transaminase enzyme group and offer new insight to drive future non-trivial engineering strategies.
Collapse
Affiliation(s)
- Federica Ruggieri
- Department of Industrial Biotechnology, KTH Royal Institute of Technology, AlbaNova University Center, SE-106 91, Stockholm, Sweden
- SARomics Biostructures AB, Medicon Village, SE-223 81, Lund, Sweden
| | - Jonatan C Campillo-Brocal
- Department of Industrial Biotechnology, KTH Royal Institute of Technology, AlbaNova University Center, SE-106 91, Stockholm, Sweden
| | - Shan Chen
- Department of Industrial Biotechnology, KTH Royal Institute of Technology, AlbaNova University Center, SE-106 91, Stockholm, Sweden
| | - Maria S Humble
- Pharem Biotech AB, Biovation Park, SE-151 36, Södertälje, Sweden
| | - Björn Walse
- SARomics Biostructures AB, Medicon Village, SE-223 81, Lund, Sweden
| | - Derek T Logan
- SARomics Biostructures AB, Medicon Village, SE-223 81, Lund, Sweden
| | - Per Berglund
- Department of Industrial Biotechnology, KTH Royal Institute of Technology, AlbaNova University Center, SE-106 91, Stockholm, Sweden.
| |
Collapse
|
47
|
Zhang XJ, Fan HH, Liu N, Wang XX, Cheng F, Liu ZQ, Zheng YG. A novel self-sufficient biocatalyst based on transaminase and pyridoxal 5′-phosphate covalent co-immobilization and its application in continuous biosynthesis of sitagliptin. Enzyme Microb Technol 2019; 130:109362. [DOI: 10.1016/j.enzmictec.2019.109362] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/12/2019] [Accepted: 06/16/2019] [Indexed: 12/31/2022]
|
48
|
Márquez SL, Atalah J, Blamey JM. Characterization of a novel thermostable (S)-amine-transaminase from an Antarctic moderately-thermophilic bacterium Albidovulum sp. SLM16. Enzyme Microb Technol 2019; 131:109423. [PMID: 31615676 DOI: 10.1016/j.enzmictec.2019.109423] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 08/26/2019] [Accepted: 09/03/2019] [Indexed: 12/12/2022]
Abstract
Amine-transaminases (ATAs) are enzymes that catalyze the reversible transfer of an amino group between primary amines and carbonyl compounds. They have been widely studied in the last decades for their application in stereoselective synthesis of chiral amines, which are one of the most valuable building blocks in pharmaceuticals manufacturing. Their excellent enantioselectivity, use of low-cost substrates and no need for external cofactors has turned these enzymes into a promising alternative to the chemical synthesis of chiral amines. Nevertheless, its application at industrial scale remains limited mainly because most of the available ATAs are scarcely tolerant to harsh reaction conditions such as high temperatures and presence of organic solvents. In this work, a novel (S)-ATA was discovered in a thermophilic bacterium, Albidovulum sp. SLM16, isolated from a geothermal Antarctic environmental sample, more specifically from a shoreline fumarole in Deception Island. The transaminase-coding gene was identified in the genome of the microorganism, cloned and overexpressed in Escherichia coli for biochemical characterization. The activity of the recombinant ATA was optimal at 65 °C and pH 9.5. Molecular mass estimates suggest a 75 kDa homodimeric structure. The enzyme turned out to be highly thermostable, maintaining 80% of its specific activity after 5 days of incubation at 50 °C. These results indicate that ATA_SLM16 is an excellent candidate for potential applications in biocatalytic synthesis. To the best of our knowledge, this would be the first report of the characterization of a thermostable (S)-ATA discovered by means of in vivo screening of thermophilic microorganisms.
Collapse
Affiliation(s)
- Sebastián L Márquez
- Facultad de Química y Biología, Departamento de Biología, Universidad de Santiago de Chile, Santiago, Chile; Fundación Científica y Cultural Biociencia, Santiago, Chile
| | - Joaquín Atalah
- Fundación Científica y Cultural Biociencia, Santiago, Chile
| | - Jenny M Blamey
- Facultad de Química y Biología, Departamento de Biología, Universidad de Santiago de Chile, Santiago, Chile; Fundación Científica y Cultural Biociencia, Santiago, Chile.
| |
Collapse
|
49
|
A co-expression system to shift the equilibrium of transamination reactions toward the synthesis of enantiomerically pure amines. MOLECULAR CATALYSIS 2019. [DOI: 10.1016/j.mcat.2019.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
50
|
Hülsewede D, Dohm J, von Langermann J. Donor Amine Salt‐Based Continuous
in
situ‐
Product Crystallization in Amine Transaminase‐Catalyzed Reactions. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Dennis Hülsewede
- University of RostockInstitute of Chemistry, Biocatalytic Synthesis Group Albert-Einstein-Str. 3 A 18059 Rostock Germany
| | - Jan‐Niklas Dohm
- University of RostockInstitute of Chemistry, Biocatalytic Synthesis Group Albert-Einstein-Str. 3 A 18059 Rostock Germany
| | - Jan von Langermann
- University of RostockInstitute of Chemistry, Biocatalytic Synthesis Group Albert-Einstein-Str. 3 A 18059 Rostock Germany
| |
Collapse
|