1
|
Chaos-Hernández D, Reynel-Ávila HE, Bonilla-Petriciolet A, Villalobos-Delgado FJ. Extraction methods of algae oils for the production of third generation biofuels - A review. CHEMOSPHERE 2023; 341:139856. [PMID: 37598949 DOI: 10.1016/j.chemosphere.2023.139856] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/19/2023] [Accepted: 08/15/2023] [Indexed: 08/22/2023]
Abstract
Microalgae are the main source of third-generation biofuels because they have a lipid content of 20-70%, can be abundantly produced and do not compete in the food market besides other benefits. Biofuel production from microalgae is a promising option to contribute for the resolution of the eminent crisis of fossil energy and environmental pollution specially in the transporting sector. The choice of lipid extraction method is of relevance and associated to the algae morphology (i.e., rigid cells). Therefore, it is essential to develop suitable extraction technologies for economically viable and environment-friendly lipid recovery processes with the aim of achieving a commercial production of biofuels from this biomass. This review presents an exhaustive analysis and discussion of different methods and processes of lipid extraction from microalgae for the subsequent conversion to biodiesel. Physical methods based on the use of supercritical fluids, ultrasound and microwaves were reviewed. Chemical methods using solvents with different polarities, aside from mechanical techniques such as mechanical pressure and enzymatic methods, were also analyzed. The advantages, drawbacks, challenges and future prospects of lipid extraction methods from microalgae have been summarized to provide a wide panorama of this relevant topic for the production of economic and sustainable energy worldwide.
Collapse
Affiliation(s)
- D Chaos-Hernández
- Instituto Tecnológico de Aguascalientes, Av. Adolfo López Mateos #1801, Aguascalientes, Ags., C.P. 20256, Mexico
| | - H E Reynel-Ávila
- Instituto Tecnológico de Aguascalientes, Av. Adolfo López Mateos #1801, Aguascalientes, Ags., C.P. 20256, Mexico; CONACYT, Av. Insurgentes 1582 Sur, Ciudad de México, 03940, Aguascalientes, Ags, Mexico.
| | - A Bonilla-Petriciolet
- Instituto Tecnológico de Aguascalientes, Av. Adolfo López Mateos #1801, Aguascalientes, Ags., C.P. 20256, Mexico
| | - F J Villalobos-Delgado
- Instituto Tecnológico de Aguascalientes, Av. Adolfo López Mateos #1801, Aguascalientes, Ags., C.P. 20256, Mexico
| |
Collapse
|
2
|
Méndez L, Rodríguez A, Aubourg SP, Medina I. Low-Toxicity Solvents for the Extraction of Valuable Lipid Compounds from Octopus ( Octopus vulgaris) Waste. Foods 2023; 12:3631. [PMID: 37835284 PMCID: PMC10572350 DOI: 10.3390/foods12193631] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
This study focused on the recovery of valuable lipid compounds from octopus (Octopus vulgaris) by-products. Extraction conditions of total lipids (TLs), phospholipids (PLs), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) were optimized by employing a Simplex-Lattice design; for it, different relative concentrations of three low-toxicity solvents (ethanol, acetone, and ethyl acetate) were considered. The optimization process was also addressed in reference to fatty acid (FA) ratios (total polyunsaturated FAs/total saturated FAs and total ω3 FAs/total ω6 FAs). The variance analysis of multiple regression data demonstrated that the quadratic model was significant (p < 0.05) for TL, PL, and DHA values and the ω3/ω6 ratio. As a result, the following optimized values were obtained: 113.8 g·kg-1 dry by-products (TLs), 217.3 g·kg-1 lipids (PLs), 22.55 g·100 g-1 total FAs (DHA), and 3.70 (ω3/ω6 ratio). According to the model developed, optimized values were shown to correspond to the following relative solvent concentrations (ethanol/acetone/ethyl acetate): 0.46/0.00/0.54, 0.93/0.07/0.00, 0.83/0.17/0.00, and 0.64/0.00/0.36, respectively. Comparison to yields obtained by the conventional chloroform/methanol method was carried out. A novel strategy based on the employment of low-toxicity solvents is proposed for the extraction of valuable lipid constituents from octopus waste. A different solvent ratio would be necessary according to the lipid compound concerned.
Collapse
Affiliation(s)
- Lucía Méndez
- Department of Food Technology, Marine Research Institute (CSIC), 36208 Vigo, Spain
| | - Alicia Rodríguez
- Department of Food Science and Chemical Technology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago 8380494, Chile
| | - Santiago P Aubourg
- Department of Food Technology, Marine Research Institute (CSIC), 36208 Vigo, Spain
| | - Isabel Medina
- Department of Food Technology, Marine Research Institute (CSIC), 36208 Vigo, Spain
| |
Collapse
|
3
|
Aubourg SP, Rodríguez A, Trigo M, Medina I. Yield Enhancement of Valuable Lipid Compounds from Squid ( Doryteuthis gahi) Waste by Ethanol/Acetone Extraction. Foods 2023; 12:2649. [PMID: 37509742 PMCID: PMC10379310 DOI: 10.3390/foods12142649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/06/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
The study focused on the extraction of valuable lipid compounds from squid (Doryteuthis gahi) waste by a low-toxicity solvent mixture (ethanol/acetone, 50:50, v/v). The effect of the waste weight/solvent volume (WW/SV, g·mL-1) ratio and the number of extractions (NoE) on the total lipid (TL), phospholipid (PL), and tocopherol yields and on the fatty acid (FA) profile (eicosapentaenoic and docosahexaenoic acid contents; polyunsaturated FAs/saturated FAs and ω3/ω6 ratios) was investigated. As a result, an increased NoE led to an increased (p < 0.05) TL yield but a decreased (p < 0.05) proportion of PLs in the lipid extract. Additionally, a lower (p < 0.05) polyunsaturated FA/saturated FA ratio was detected by increasing the NoE. Some differences (p < 0.05) could be outlined as a result of increasing the WW/SV ratio; however, a definite trend for this extraction condition could not be concluded for any of the lipid parameters measured. Yield results were compared to those obtained by the conventional chloroform/methanol procedure. In order to attain an increased yield, the NoE required would depend on the polarity degree of the lipid molecule concerned. All ethanol/acetone extracting conditions tested led to remarkable yields for lipid compounds (PLs, α-tocopherol, ω3 FAs) and FA ratios with healthy, nutritional, and preserving properties.
Collapse
Affiliation(s)
- Santiago P Aubourg
- Department of Food Technology, Marine Research Institute (CSIC), c/E. Cabello, 6, 36208 Vigo, Spain
| | - Alicia Rodríguez
- Department of Food Science and Chemical Technology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, c/Santos Dumont, 964, Santiago 8380000, Chile
| | - Marcos Trigo
- Department of Food Technology, Marine Research Institute (CSIC), c/E. Cabello, 6, 36208 Vigo, Spain
| | - Isabel Medina
- Department of Food Technology, Marine Research Institute (CSIC), c/E. Cabello, 6, 36208 Vigo, Spain
| |
Collapse
|
4
|
Fan X, Yuan X, Huang M, Wang C, Jiang H, Zhang X, Sun H. Goat milk powder supplemented with branched-chain fatty acid: influence on quality and microstructure. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2631-2640. [PMID: 36494899 DOI: 10.1002/jsfa.12379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/22/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Branched-chain fatty acid (BCFA) is effective in preventing and helping to treat neonatal necrotizing enterocolitis. It is essential to supplement goat-milk powder for formula-fed preterm infants with BCFA. In this study, the quality and microstructures of milk powders supplemented with different concentrations of BCFA were evaluated, using goat milk powder without BCFA as the control group (CG). RESULTS In comparison with the CG, goat milk powder supplemented with BCFA exhibited smaller fat globules and a significant drop in overall particle size. During 16 weeks of storage, BCFA-supplemented groups showed suitable moisture content and viscosity and good solubility. The BCFA also helped reduce the number of folds on the surface of the milk powder particles. CONCLUSION The findings of this study indicate that goat milk powders with BCFA exhibit differences in quality and microstructure in comparison with ordinary goat milk powder, which is relevant for the future development and application of BCFA in foods. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaoxue Fan
- College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Xinlu Yuan
- Class 13 Grade 2022, High School Attached To Shandong Normal University, Jinan, China
| | - Mengyao Huang
- College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Cunfang Wang
- College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Hua Jiang
- College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Xiaoning Zhang
- College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Hongyan Sun
- Research and Development Department, Linyi Gerui Food Co., Ltd, Linyi, China
| |
Collapse
|
5
|
Rodríguez A, Trigo M, Aubourg SP, Medina I. Optimisation of Low-Toxicity Solvent Employment for Total Lipid and Tocopherol Compound Extraction from Patagonian Squid By-Products. Foods 2023; 12:foods12030504. [PMID: 36766033 PMCID: PMC9914702 DOI: 10.3390/foods12030504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
The extraction of total lipids and tocopherol compounds from Patagonian squid (Doriteuthis gahi) by-products (viscera, heads, skin, etc.), resulting from squid mantel commercialisation, was studied. An optimisation simplex-lattice design by employing low-toxicity solvents (ethanol, acetone, and ethyl acetate) was carried out taking into account their relative concentrations. The variance analysis of data showed that the quadratic model was statistically significant (p < 0.05); empirical coded equations were obtained as a function of the low-toxicity solvent ratios. The optimised lipid extraction was obtained by employing the 0.642/0.318/0.040 (ethanol/acetone/ethyl acetate) solvent ratio, respectively, leading to an 84% recovery of the total lipids extracted by the traditional procedure. In all extracting systems tested, the presence of α-, γ-, and δ-tocopherol compounds was detected, α-tocopherol being the most abundant. For α-, γ-, and δ-tocopherol compounds, the optimisation process showed that acetone extraction led to the highest concentrations in the lipid extract obtained (2736.5, 36.8, and 2.8 mg·kg-1 lipids, respectively). Taking into account the recovery yield on a by-product basis, the values obtained for the three tocopherols were included in the 88.0-97.7%, 80.0-95.0%, and 25-75% ranges, respectively, when compared to the traditional extraction. This study provides a novel and valuable possibility for α-tocopherol extraction from marine by-products.
Collapse
Affiliation(s)
- Alicia Rodríguez
- Department of Food Science and Chemical Technology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, C/Santos Dumont 964, Santiago 8380000, Chile
| | - Marcos Trigo
- Department of Food Technology, Marine Research Institute (CSIC), c/E. Cabello 6., 36208 Vigo, Spain
| | - Santiago P. Aubourg
- Department of Food Technology, Marine Research Institute (CSIC), c/E. Cabello 6., 36208 Vigo, Spain
- Correspondence: ; Tel.: +34-986-231-930
| | - Isabel Medina
- Department of Food Technology, Marine Research Institute (CSIC), c/E. Cabello 6., 36208 Vigo, Spain
| |
Collapse
|
6
|
Gougoulias N, Papapolymerou G, Mpesios A, Kasiteropoulou D, Metsoviti MN, Gregoriou ME. Effect of macronutrients and of anaerobic digestate on the heterotrophic cultivation of Chlorella vulgaris grown with glycerol. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:29638-29650. [PMID: 34846658 DOI: 10.1007/s11356-021-17698-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
The aim of this work was to investigate the kinetics of the heterotrophic growth of Chlorella vulgaris as a means of producing bio-oil for biodiesel production. Glycerol was used as the sole organic carbon substrate. Anaerobic digestate from a local plant was used to examine its effect on the kinetics and the protein and lipid content of the biomass. The effect of the initial carbon and nitrogen concentrations on the carbon uptake rate was studied independently. In the one set of five experiments, the organic carbon in the form of glycerol varied from 0.27 to 5.36 g L-1, while the concentration of atomic nitrogen was held constant and equal to 45.4 mg L-1. The Co/No ratio varied from 6 to 118.1. In the second set, also of five experiments, the organic carbon was held constant and equal to 3.3 g L-1 and atomic nitrogen varied from 22.7 to 450 mg L-1. The Co/No ratio varied from 7.3 to 145.4. In the third set of experiments, anaerobic digestate was added in increasing amounts into the culture media from 4 to 16%. It was found that the carbon uptake rate as well as the lipid and protein content depended on the Co/No ratio. Increasing ratios of Co/No led to higher carbon uptake rates, higher lipid content, and lower protein content. The initial nitrogen concentration was also found to affect the growth rate of C. vulgaris. The addition of anaerobic digestate did not affect appreciably the protein and lipid content of the biomass, while the addition of anaerobic digestate up to 16% in the culture medium increased the carbon uptake rate by about 24%.
Collapse
Affiliation(s)
- Nikolaos Gougoulias
- Department of Agrotechnology, University of Thessaly, Gaiopolis Campus, Larisa, Greece
| | - George Papapolymerou
- Department of Environmental Studies, University of Thessaly, Gaiopolis Campus, Larisa, Greece
| | - Anastasios Mpesios
- Department of Environmental Studies, University of Thessaly, Gaiopolis Campus, Larisa, Greece
| | - Dorothea Kasiteropoulou
- Department of Environmental Studies, University of Thessaly, Gaiopolis Campus, Larisa, Greece
| | - Maria N Metsoviti
- Department of Environmental Studies, University of Thessaly, Gaiopolis Campus, Larisa, Greece.
| | - Maria Eleni Gregoriou
- Department of Environmental Studies, University of Thessaly, Gaiopolis Campus, Larisa, Greece
| |
Collapse
|
7
|
Effect of Anaerobic Digestate on the Fatty Acid Profile and Biodiesel Properties of Chlorella sorokiniana Grown Heterotrophically. SUSTAINABILITY 2022. [DOI: 10.3390/su14010561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The growth kinetics and the lipid and protein content of the microalgal species Chlorella sorokiniana (CS) grown heterotrophically in growth media containing glycerol and increasing amounts of anaerobic digestate (AD) equal to 0%, 15%, 30%, and 50% was studied. The effect of the AD on the fatty acid (FA) distribution of the bio-oil extracted from the CS, as well as on the fatty acid methyl ester (FAME) properties such as the saponification number (SN), the iodine value (IV), the cetane number (CN), and the higher heating value (HHV) was also estimated. The percentage of AD in the growth medium affects the rate of carbon uptake. The maximum carbon uptake rate occurs at about 30% AD. Protein and lipid content ranged from 32.3–38.4% and 18.1–23.1%, respectively. Fatty acid distribution ranged from C10 to C26. In all AD percentages the predominant fatty acids were the medium chain FA C16 to C18 constituting up to about 89% of the total FA at 0% AD and 15% AD and up to about 54% of the total FA at 30% AD and 50% AD. With respect to unsaturation, monounsaturated FA (MUFA) were predominant, up to 56%, while significant percentages, up to about 38%, of saturated FA (SFA) were also produced. The SN, IV, CN, and HHV ranged from 198.5–208.3 mg KOH/g FA, 74.5–93.1 g I/100 g FAME, 52.7–56.1, and 39.7–40.0 MJ/kg, respectively. The results showed that with increasing AD percentage, the CN values tend to increase, while decrease in IV leads to biofuel with better ignition quality.
Collapse
|
8
|
Evaluation of the effects of pressurized solvents and extraction process parameters on seed oil extraction in Pachira aquatica. J Supercrit Fluids 2020. [DOI: 10.1016/j.supflu.2020.104823] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Zuo E, Zhang C, Mao J, Gao C, Hu S, Shi X, Piao F. 2,5-Hexanedione mediates neuronal apoptosis through suppression of NGF via PI3K/Akt signaling in the rat sciatic nerve. Biosci Rep 2019; 39:BSR20181122. [PMID: 30670632 PMCID: PMC6900430 DOI: 10.1042/bsr20181122] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 01/01/2019] [Accepted: 01/15/2019] [Indexed: 12/27/2022] Open
Abstract
Because precise mechanism for 2,5-hexanedione (HD)-induced neuronal apoptosis largely remains unknown, we explored the potential mechanisms both in vivo and in vitro Rats were intraperitoneally exposed to HD at different doses for 5 weeks, following which the expression levels of nerve growth factor (NGF), phosphorylation of Akt and Bad, dimerization of Bad and Bcl-xL, as well as the release of cytochrome c and the caspase-3 activity were measured. Moreover, these variables were also examined in vitro in HD-exposed VSC4.1 cells with or without a PI3K-specific agonist (IGF-1), and in HD-exposed VSC4.1 cells with or without a PI3K-specific inhibitor (LY294002) in the presence or absence of NGF. The data indicate that, as the concentration of HD increased, rats exhibited progressive gait abnormalities, and enhanced neuronal apoptosis in the rat sciatic nerve, compared with the results observed in the control group. Furthermore, HD significantly down-regulated NGF expression in the rat sciatic nerve. Moreover, suppression of NGF expression inhibited the phosphorylation of Akt and Bad. Meanwhile, an increase in the dimerization of Bad and Bcl-xL in mitochondria resulted in cytochrome c release and caspase-3 activation. In contrast, HD-induced apoptosis was eliminated by IGF-1. Additionally, NGF supplementation reversed the decrease in phosphorylation of Akt and Bad, as well as reversing the neuronal apoptosis in HD-exposed VSC4.1 cells. However, LY294002 blocked these effects of NGF. Collectively, our results demonstrate that mitochondrial-dependent apoptosis is induced by HD through NGF suppression via the PI3K/Akt pathway both in vivo and in vitro.
Collapse
Affiliation(s)
- Enjun Zuo
- College of Stomatology, Dalian Medical University, Dalian 116044, China
| | - Cong Zhang
- Department of Food Nutrition and Safety, Dalian Medical University, Dalian 116044, China
| | - Jun Mao
- Department of Pathology, Dalian Medical University, Dalian 116044, China
| | - Chenxue Gao
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian 116044, China
| | - Shuhai Hu
- College of Stomatology, Dalian Medical University, Dalian 116044, China
| | - Xiaoxia Shi
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian 116044, China
| | - Fengyuan Piao
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian 116044, China
| |
Collapse
|