1
|
Alves GS, de Andrades D, Salgado JCS, Mariano CB, Berto GL, Segato F, Ayub MAZ, Ward RJ, Alnoch RC, Polizeli MDLTM. Homologous expression, purification, and characterization of a recombinant acetylxylan esterase from Aspergillus nidulans. Int J Biol Macromol 2024; 280:135816. [PMID: 39306183 DOI: 10.1016/j.ijbiomac.2024.135816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 10/14/2024]
Abstract
Acetylxylan esterases (AXEs) are essential enzymes that break down the acetyl groups in acetylated xylan found in plant cell walls polysaccharides. They work synergistically with backbone-depolymerizing xylanolytic enzymes to accelerate the degradation of complex polysaccharides. In this study, we cloned the gene axeA, which encodes the acetylxylan esterase from Aspergillus nidulans FGSC A4 (AxeAN), into the pEXPYR expression vector and introduced it into the high protein-producing strain A. nidulans A773. The purified AxeAN, with a molecular weight of 33.5 kDa as confirmed by SDS-PAGE, was found to be active on ρ-nitrophenyl acetate (ρNPA), exhibiting a remarkably high specific activity (170 U mg-1) at pH 7.0 and 55 °C. AxeAN demonstrated stability over a wide pH range (5.5-9.0), retaining >80% of its initial activity after 24 h. The KM and Vmax were 0.098 mmol L-1 and 320 U mg-1, respectively, using ρNPA as a substrate. We also evaluated the synergistic effect of AxeAN with an endo-1,4-β-xylanase from Malbranchea pulchella (MpXyn10) in the hydrolysis of four different xylans (Birchwood, Beechwood, Oat spelt, and Arabinoxylan) to produce xylooligosaccharides (XOS). The best results were obtained using Birchwood xylan as substrate and MpXyn10-AxeAN as biocatalysts after 24 h of reaction (50 °C), with a XOS-yield of 91%, value 41% higher when compared to MpXyn10 (XOS-yield of 63%). These findings showed the potential of the application of AxeAN, together with other xylanases, to produce xylooligosaccharides with high purity and other products with high added value in the field of lignocellulosic biorefinery.
Collapse
Affiliation(s)
- Gabriela S Alves
- Department of Biochemistry and Immunology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Diandra de Andrades
- Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Jose C S Salgado
- Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil; Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-900, SP, Brazil
| | - Clara B Mariano
- Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Gabriela Leila Berto
- Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena 12602-810, SP, Brazil
| | - Fernando Segato
- Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena 12602-810, SP, Brazil
| | - Marco Antônio Záchia Ayub
- Laboratory of Biotechnology and Biochemical Engineering (BiotecLab), Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Porto Alegre 91501-970, RS, Brazil
| | - Richard J Ward
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-900, SP, Brazil
| | - Robson C Alnoch
- Department of Biochemistry and Immunology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil; Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil.
| | - Maria de Lourdes T M Polizeli
- Department of Biochemistry and Immunology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil; Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil.
| |
Collapse
|
2
|
Lisov AV, Belova OV, Belov AA, Lisova ZA, Nagel AS, Shadrin AM, Andreeva-Kovalevskaya ZI, Nagornykh MO, Zakharova MV, Leontievsky AA. Expression in Pichia pastoris of Thermostable Endo-1,4-β-xylanase from the Actinobacterium Nocardiopsis halotolerans: Properties and Use for Saccharification of Xylan-Containing Products. Int J Mol Sci 2024; 25:9121. [PMID: 39201806 PMCID: PMC11355003 DOI: 10.3390/ijms25169121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/03/2024] Open
Abstract
A gene encoding a polysaccharide-degrading enzyme was cloned from the genome of the bacterium Nocardiopsis halotolerans. Analysis of the amino acid sequence of the protein showed the presence of the catalytic domain of the endo-1,4-β-xylanases of the GH11 family. The gene was amplified by PCR and ligated into the pPic9m vector. A recombinant producer based on Pichia pastoria was obtained. The production of the enzyme, which we called NhX1, was carried out in a 10 L fermenter. Enzyme production was 10.4 g/L with an activity of 927 U/mL. Purification of NhX1 was carried out using Ni-NTA affinity chromatography. The purified enzyme catalyzed the hydrolysis of xylan but not other polysaccharides. Endo-1,4-β-xylanase NhX1 showed maximum activity and stability at pH 6.0-7.0. The enzyme showed high thermal stability, remaining active at 90 °C for 20 min. With beechwood xylan, the enzyme showed Km 2.16 mg/mL and Vmax 96.3 U/mg. The products of xylan hydrolysis under the action of NhX1 were xylobiose, xylotriose, xylopentaose, and xylohexaose. Endo-1,4-β-xylanase NhX1 effectively saccharified xylan-containing products used for the production of animal feed. The xylanase described herein is a thermostable enzyme with biotechnological potential produced in large quantities by P. pastoria.
Collapse
Affiliation(s)
- Alexander V. Lisov
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Oksana V. Belova
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Andrey A. Belov
- Faculty of Soil Science, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Zoya A. Lisova
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Alexey S. Nagel
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Andrey M. Shadrin
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Zhanna I. Andreeva-Kovalevskaya
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Maxim O. Nagornykh
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Marina V. Zakharova
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Alexey A. Leontievsky
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 142290 Pushchino, Russia
| |
Collapse
|
3
|
Topalian J, Navas L, Ontañon O, Valacco MP, Noseda DG, Blasco M, Peña MJ, Urbanowicz BR, Campos E. Production of a bacterial secretome highly efficient for the deconstruction of xylans. World J Microbiol Biotechnol 2024; 40:266. [PMID: 38997527 DOI: 10.1007/s11274-024-04075-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/06/2024] [Indexed: 07/14/2024]
Abstract
Bacteria within the Paenibacillus genus are known to secrete a diverse array of enzymes capable of breaking down plant cell wall polysaccharides. We studied the extracellular xylanolytic activity of Paenibacillus xylanivorans and examined the complete range of secreted proteins when grown on carbohydrate-based carbon sources of increasing complexity, including wheat bran, sugar cane straw, beechwood xylan and sucrose, as control. Our data showed that the relative abundances of secreted proteins varied depending on the carbon source used. Extracellular enzymatic extracts from wheat bran (WB) or sugar cane straw (SCR) cultures had the highest xylanolytic activity, coincidently with the largest representation of carbohydrate active enzymes (CAZymes). Scaling-up to a benchtop bioreactor using WB resulted in a significant enhancement in productivity and in the overall volumetric extracellular xylanase activity, that was further concentrated by freeze-drying. The enzymatic extract was efficient in the deconstruction of xylans from different sources as well as sugar cane straw pretreated by alkali extrusion (SCRe), resulting in xylobiose and xylose, as primary products. The overall yield of xylose released from SCRe was improved by supplementing the enzymatic extract with a recombinant GH43 β-xylosidase (EcXyl43) and a GH62 α-L-arabinofuranosidase (CsAbf62A), two activities that were under-represented. Overall, we showed that the extracellular enzymatic extract from P. xylanivorans, supplemented with specific enzymatic activities, is an effective approach for targeting xylan within lignocellulosic biomass.
Collapse
Affiliation(s)
- Juliana Topalian
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De los Reseros y N. Repetto s/n, Hurlingham, Buenos Aires, B1686IGC, Argentina
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Laura Navas
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De los Reseros y N. Repetto s/n, Hurlingham, Buenos Aires, B1686IGC, Argentina
| | - Ornella Ontañon
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De los Reseros y N. Repetto s/n, Hurlingham, Buenos Aires, B1686IGC, Argentina
| | - Maria Pia Valacco
- Centro de Estudios Químicos y Biológicos por Espectrometría de Masa (CEQUIBIEM-FCEN), Departamento de Química Biológica Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires (UBA-IQUIBICEN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Diego Gabriel Noseda
- Instituto de Investigaciones Biotecnológicas (IIBio), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| | - Martín Blasco
- Departamento de Bioprocesos, Instituto Nacional de Tecnología Industrial (INTI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Maria Jesus Peña
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, 315 Riverbend Road, Athens, GA, USA
| | - Breeanna R Urbanowicz
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, 315 Riverbend Road, Athens, GA, USA
| | - Eleonora Campos
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De los Reseros y N. Repetto s/n, Hurlingham, Buenos Aires, B1686IGC, Argentina.
| |
Collapse
|
4
|
Abdoli P, Vulin C, Lepiz M, Chase AB, Weihe C, Rodríguez-Verdugo A. Substrate complexity buffers negative interactions in a synthetic community of leaf litter degraders. FEMS Microbiol Ecol 2024; 100:fiae102. [PMID: 39020097 PMCID: PMC11289631 DOI: 10.1093/femsec/fiae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 07/02/2024] [Accepted: 07/16/2024] [Indexed: 07/19/2024] Open
Abstract
Leaf litter microbes collectively degrade plant polysaccharides, influencing land-atmosphere carbon exchange. An open question is how substrate complexity-defined as the structure of the saccharide and the amount of external processing by extracellular enzymes-influences species interactions. We tested the hypothesis that monosaccharides (i.e. xylose) promote negative interactions through resource competition, and polysaccharides (i.e. xylan) promote neutral or positive interactions through resource partitioning or synergism among extracellular enzymes. We assembled a three-species community of leaf litter-degrading bacteria isolated from a grassland site in Southern California. In the polysaccharide xylan, pairs of species stably coexisted and grew equally in coculture and in monoculture. Conversely, in the monosaccharide xylose, competitive exclusion and negative interactions prevailed. These pairwise dynamics remained consistent in a three-species community: all three species coexisted in xylan, while only two species coexisted in xylose, with one species capable of using peptone. A mathematical model showed that in xylose these dynamics could be explained by resource competition. Instead, the model could not predict the coexistence patterns in xylan, suggesting other interactions exist during biopolymer degradation. Overall, our study shows that substrate complexity influences species interactions and patterns of coexistence in a synthetic microbial community of leaf litter degraders.
Collapse
Affiliation(s)
- Parmis Abdoli
- Department of Ecology and Evolutionary Biology, University of California Irvine, 321 Steinhaus Hall, Irvine, CA 92697, United States
| | - Clément Vulin
- Department of Fundamental Microbiology, University of Lausanne, Biophore, CH-1015 Lausanne, Switzerland
| | - Miriam Lepiz
- Department of Ecology and Evolutionary Biology, University of California Irvine, 321 Steinhaus Hall, Irvine, CA 92697, United States
| | - Alexander B Chase
- Department of Earth Sciences, Southern Methodist University, 3225 Daniel Avenue, Suite 207, Heroy Hall, Dallas, TX 75205, United States
| | - Claudia Weihe
- Department of Ecology and Evolutionary Biology, University of California Irvine, 321 Steinhaus Hall, Irvine, CA 92697, United States
| | - Alejandra Rodríguez-Verdugo
- Department of Ecology and Evolutionary Biology, University of California Irvine, 321 Steinhaus Hall, Irvine, CA 92697, United States
| |
Collapse
|
5
|
Asoutis Didaras N, Karaiskou I, Nikolaidis M, Siaperopoulou C, Georgi I, Tsadila C, Karatasou K, Amoutzias GD, Mossialos D. Contribution of Microbiota to Bioactivity Exerted by Bee Bread. Pharmaceuticals (Basel) 2024; 17:761. [PMID: 38931428 PMCID: PMC11206572 DOI: 10.3390/ph17060761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/27/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Bee-collected pollen (BCP) and bee bread (BB) are honey bee products known for their beneficial biological properties. The main goal of this study was to investigate BB microbiota and its contribution to bioactivity exerted by BB. The microbiota of BB samples collected at different maturation stages was investigated via culture-independent (Next Generation Sequencing, NGS) and culture-dependent methods. Microbial communities dynamically fluctuate during BB maturation, ending in a stable microbial community structure in mature BB. Bee bread bacterial isolates were tested for phenotypes and genes implicated in the production and secretion of enzymes as well as antibacterial activity. Out of 309 bacterial isolates, 41 secreted hemicellulases, 13 cellulases, 39 amylases, 132 proteinases, 85 Coomassie brilliant blue G or R dye-degrading enzymes and 72 Malachite Green dye-degrading enzymes. Furthermore, out of 309 bacterial isolates, 42 exhibited antibacterial activity against Staphylococcus aureus, 34 against Pseudomonas aeruginosa, 47 against Salmonella enterica ser. Typhimurium and 43 against Klebsiella pneumoniae. Artificially fermented samples exerted higher antibacterial activity compared to fresh BCP, strongly indicating that BB microbiota contribute to BB antibacterial activity. Our findings suggest that BB microbiota is an underexplored source of novel antimicrobial agents and enzymes that could lead to new applications in medicine and the food industry.
Collapse
Affiliation(s)
- Nikos Asoutis Didaras
- Microbial Biotechnology-Molecular Bacteriology-Virology Laboratory, Department of Biochemistry & Biotechnology, University of Thessaly, 41500 Larissa, Greece; (N.A.D.); (I.K.); (C.S.); (I.G.); (C.T.)
| | - Ioanna Karaiskou
- Microbial Biotechnology-Molecular Bacteriology-Virology Laboratory, Department of Biochemistry & Biotechnology, University of Thessaly, 41500 Larissa, Greece; (N.A.D.); (I.K.); (C.S.); (I.G.); (C.T.)
| | - Marios Nikolaidis
- Bioinformatics Laboratory, Department of Biochemistry & Biotechnology, University of Thessaly, 41500 Larissa, Greece; (M.N.); (G.D.A.)
| | - Christina Siaperopoulou
- Microbial Biotechnology-Molecular Bacteriology-Virology Laboratory, Department of Biochemistry & Biotechnology, University of Thessaly, 41500 Larissa, Greece; (N.A.D.); (I.K.); (C.S.); (I.G.); (C.T.)
| | - Irini Georgi
- Microbial Biotechnology-Molecular Bacteriology-Virology Laboratory, Department of Biochemistry & Biotechnology, University of Thessaly, 41500 Larissa, Greece; (N.A.D.); (I.K.); (C.S.); (I.G.); (C.T.)
| | - Christina Tsadila
- Microbial Biotechnology-Molecular Bacteriology-Virology Laboratory, Department of Biochemistry & Biotechnology, University of Thessaly, 41500 Larissa, Greece; (N.A.D.); (I.K.); (C.S.); (I.G.); (C.T.)
| | - Katerina Karatasou
- Apicultural Centre of Larissa, Federation of Greek Beekeepers Associations, 41222 Larissa, Greece;
| | - Grigoris D. Amoutzias
- Bioinformatics Laboratory, Department of Biochemistry & Biotechnology, University of Thessaly, 41500 Larissa, Greece; (M.N.); (G.D.A.)
| | - Dimitris Mossialos
- Microbial Biotechnology-Molecular Bacteriology-Virology Laboratory, Department of Biochemistry & Biotechnology, University of Thessaly, 41500 Larissa, Greece; (N.A.D.); (I.K.); (C.S.); (I.G.); (C.T.)
| |
Collapse
|
6
|
Rodríguez-Sanz A, Fuciños C, Soares C, Torrado AM, Lima N, Rúa ML. A comprehensive method for the sequential separation of extracellular xylanases and β-xylosidases/arabinofuranosidases from a new Fusarium species. Int J Biol Macromol 2024; 272:132722. [PMID: 38821304 DOI: 10.1016/j.ijbiomac.2024.132722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
Several fungal species produce diverse carbohydrate-active enzymes useful for the xylooligosaccharide biorefinery. These enzymes can be isolated by different purification methods, but fungi usually produce other several compounds which interfere in the purification process. So, the present work has three interconnected aims: (i) compare β-xylosidase production by Fusarium pernambucanum MUM 18.62 with other crop pathogens; (ii) optimise F. pernambucanum xylanolytic enzymes expression focusing on the pre-inoculum media composition; and (iii) design a downstream strategy to eliminate interfering substances and sequentially isolate β-xylosidases, arabinofuranosidases and endo-xylanases from the extracellular media. F. pernambucanum showed the highest β-xylosidase activity among all the evaluated species. It also produced endo-xylanase and arabinofuranosidase. The growth and β-xylosidase expression were not influenced by the pre-inoculum source, contrary to endo-xylanase activity, which was higher with xylan-enriched agar. Using a sequential strategy involving ammonium sulfate precipitation of the extracellular interferences, and several chromatographic steps of the supernatant (hydrophobic chromatography, size exclusion chromatography, and anion exchange chromatography), we were able to isolate different enzyme pools: four partially purified β-xylosidase/arabinofuranoside; FpXylEAB trifunctional GH10 endo-xylanase/β-xylosidase/arabinofuranoside enzyme (39.8 kDa) and FpXynE GH11 endo-xylanase with molecular mass (18.0 kDa). FpXylEAB and FpXynE enzymes were highly active at pH 5-6 and 60-50 °C.
Collapse
Affiliation(s)
- Andrea Rodríguez-Sanz
- Biochemistry Laboratory, Department of Analytical and Food Chemistry, University of Vigo, Ourense, Spain
| | - Clara Fuciños
- Biochemistry Laboratory, Department of Analytical and Food Chemistry, University of Vigo, Ourense, Spain
| | - Célia Soares
- CEB-Biological Engineering Centre, University of Minho, Campus de Gualtar, Braga, Portugal; LABBELS-Associate Laboratory, Braga, Guimarães, Portugal
| | - Ana M Torrado
- Biochemistry Laboratory, Department of Analytical and Food Chemistry, University of Vigo, Ourense, Spain
| | - Nelson Lima
- CEB-Biological Engineering Centre, University of Minho, Campus de Gualtar, Braga, Portugal; LABBELS-Associate Laboratory, Braga, Guimarães, Portugal
| | - María L Rúa
- Biochemistry Laboratory, Department of Analytical and Food Chemistry, University of Vigo, Ourense, Spain.
| |
Collapse
|
7
|
Hussain A, Parveen F, Saxena A, Ashfaque M. A review of nanotechnology in enzyme cascade to address challenges in pre-treating biomass. Int J Biol Macromol 2024; 270:132466. [PMID: 38761904 DOI: 10.1016/j.ijbiomac.2024.132466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/09/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
Nanotechnology has become a revolutionary technique for improving the preliminary treatment of lignocellulosic biomass in the production of biofuels. Traditional methods of pre-treatment have encountered difficulties in effectively degrading the intricate lignocellulosic composition, thereby impeding the conversion of biomass into fermentable sugars. Nanotechnology has enabled the development of enzyme cascade processes that present a potential solution for addressing the limitations. The focus of this review article is to delve into the utilization of nanotechnology in the pretreatment of lignocellulosic biomass through enzyme cascade processes. The review commences with an analysis of the composition and structure of lignocellulosic biomass, followed by a discussion on the drawbacks associated with conventional pre-treatment techniques. The subsequent analysis explores the importance of efficient pre-treatment methods in the context of biofuel production. We thoroughly investigate the utilization of nanotechnology in the pre-treatment of enzyme cascades across three distinct sections. Nanomaterials for enzyme immobilization, enhanced enzyme stability and activity through nanotechnology, and nanocarriers for controlled enzyme delivery. Moreover, the techniques used to analyse nanomaterials and the interactions between enzymes and nanomaterials are introduced. This review emphasizes the significance of comprehending the mechanisms underlying the synergy between nanotechnology and enzymes establishing sustainable and environmentally friendly nanotechnology applications.
Collapse
Affiliation(s)
- Akhtar Hussain
- Lignocellulose & Biofuel Laboratory, Department of Biosciences, Integral University, Lucknow 226026, Uttar Pradesh, India
| | - Fouziya Parveen
- Lignocellulose & Biofuel Laboratory, Department of Biosciences, Integral University, Lucknow 226026, Uttar Pradesh, India
| | - Ayush Saxena
- Lignocellulose & Biofuel Laboratory, Department of Biosciences, Integral University, Lucknow 226026, Uttar Pradesh, India
| | - Mohammad Ashfaque
- Lignocellulose & Biofuel Laboratory, Department of Biosciences, Integral University, Lucknow 226026, Uttar Pradesh, India.
| |
Collapse
|
8
|
Ramatsui L, Sithole T, Gandla ML, Jönsson LJ, Edkins AL, Malgas S, Pletschke BI. In vitro evaluation of the application of an optimized xylanase cocktail for improved monogastric feed digestibility. J Anim Physiol Anim Nutr (Berl) 2024; 108:596-610. [PMID: 38169048 DOI: 10.1111/jpn.13917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024]
Abstract
Xylanases from glycoside hydrolase (GH) families 10 and 11 are common feed additives for broiler chicken diets due to their catalytic activity on the nonstarch polysaccharide xylan. This study investigated the potential of an optimized binary GH10 and GH11 xylanase cocktail to mitigate the antinutritional effects of xylan on the digestibility of locally sourced chicken feed. Immunofluorescence visualization of the activity of the xylanase cocktail on xylan in the yellow corn of the feed showed a substantial collapse in the morphology of cell walls. Secondly, the reduction in the viscosity of the digesta of the feed by the cocktail showed an effective degradation of the soluble fraction of xylan. Analysis of the xylan degradation products from broiler feeds by the xylanase cocktail showed that xylotriose and xylopentaose were the major xylooligosaccharides (XOS) produced. In vitro evaluation of the prebiotic potential of these XOS showed that they improved the growth of the beneficial bacteria Streptococcus thermophilus and Lactobacillus bulgaricus. The antibacterial activity of broths from XOS-supplemented probiotic cultures showed a suppressive effect on the growth of the extraintestinal infectious bacterium Klebsiella pneumoniae. Supplementing the xylanase cocktail in cereal animal feeds attenuated xylan's antinutritional effects by reducing digesta viscosity and releasing entrapped nutrients. Furthermore, the production of prebiotic XOS promoted the growth of beneficial bacteria while inhibiting the growth of pathogens. Based on these effects of the xylanase cocktail on the feed, improved growth performance and better feed conversion can potentially be achieved during poultry rearing.
Collapse
Affiliation(s)
- Lebogang Ramatsui
- Enzyme Science Programme (ESP), Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa
| | - Tariro Sithole
- Enzyme Science Programme (ESP), Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa
| | | | | | - Adrienne L Edkins
- Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa
| | - Samkelo Malgas
- Department of Biochemistry, Genetics, and Microbiology, University of Pretoria, Hatfield, South Africa
| | - Brett I Pletschke
- Enzyme Science Programme (ESP), Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa
| |
Collapse
|
9
|
Ordeñana Manso J, Nielsen MB, Balaguer Moya E, Sandri JP, Yamakawa CK, Mussatto SI. Intensification of corn fiber saccharification using a tailor made enzymatic cocktail. Enzyme Microb Technol 2024; 172:110347. [PMID: 37931383 DOI: 10.1016/j.enzmictec.2023.110347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 11/08/2023]
Abstract
The transition from an economic model based on resource extraction to a more sustainable and circular economy requires the development of innovative methods to unlock the potential of raw materials such as lignocellulosic biomasses. Corn fiber differs from more traditional lignocellulosic biomasses due to its high starch content, which provides additional carbohydrates for fermentation-based biomanufacturing processes. Due to its unique chemical composition, this study focused on the development of a tailor made enzymatic cocktail for corn fiber saccharification into monosaccharides. Three commercially available hydrolytic enzymes (Cellic® CTec2, Pentopan® Mono BG, and Termamyl® 300 L) were combined to hydrolyze the polysaccharide structure of the three main carbohydrate fractions of corn fiber (cellulose, hemicellulose and starch, respectively). Prior to saccharification, corn fiber was submitted to a mild hydrothermal pretreatment (30 min at 100 °C). Then, two experimental designs were used to render an enzymatic cocktail capable of providing efficient release of monosaccharides. Using 60 FPU/g DM of Cellic® CTec2 and 4.62 U/g DM of Termamyl® 300 L, without addition of Pentopan® Mono BG, resulted in the highest efficiencies for glucose and xylose release (66% and 30%, respectively). While higher enzyme dosages could enhance the saccharification efficiency, adding more enzymes would have a more pronounced effect on the overall process costs rather than in increasing the efficiency for monosaccharides release. The results revealed that the recalcitrance of corn fiber poses a problem for its full enzymatic degradation. This fact combined with the unique chemical composition of this material, justify the need for developing a tailor made enzymatic cocktail for its degradation. However, attention should also be given to the pretreatment step to reduce even more the recalcitrance of corn fiber and improve the performance of the tailored cocktail, as a consequence.
Collapse
Affiliation(s)
- Julen Ordeñana Manso
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 223, 2800, Kongens Lyngby, Denmark
| | - Martin B Nielsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 223, 2800, Kongens Lyngby, Denmark
| | - Eva Balaguer Moya
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 223, 2800, Kongens Lyngby, Denmark
| | - Juliana P Sandri
- Graduate Program of Chemical Engineering, Federal University of São Carlos, Rod. Washington Luís, Km 235, 13565-905, São Carlos, SP, Brazil
| | - Celina K Yamakawa
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 223, 2800, Kongens Lyngby, Denmark
| | - Solange I Mussatto
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 223, 2800, Kongens Lyngby, Denmark.
| |
Collapse
|
10
|
Mafa MS, Malgas S. Towards an understanding of the enzymatic degradation of complex plant mannan structures. World J Microbiol Biotechnol 2023; 39:302. [PMID: 37688610 PMCID: PMC10492685 DOI: 10.1007/s11274-023-03753-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/04/2023] [Indexed: 09/11/2023]
Abstract
Plant cell walls are composed of a heterogeneous mixture of polysaccharides that require several different enzymes to degrade. These enzymes are important for a variety of biotechnological processes, from biofuel production to food processing. Several classical mannanolytic enzyme functions of glycoside hydrolases (GH), such as β-mannanase, β-mannosidase and α-galactosidase activities, are helpful for efficient mannan hydrolysis. In this light, we bring three enzymes into the model of mannan degradation that have received little or no attention. By linking their three-dimensional structures and substrate specificities, we have predicted the interactions and cooperativity of these novel enzymes with classical mannanolytic enzymes for efficient mannan hydrolysis. The novel exo-β-1,4-mannobiohydrolases are indispensable for the production of mannobiose from the terminal ends of mannans, this product being the preferred product for short-chain mannooligosaccharides (MOS)-specific β-mannosidases. Second, the side-chain cleaving enzymes, acetyl mannan esterases (AcME), remove acetyl decorations on mannan that would have hindered backbone cleaving enzymes, while the backbone cleaving enzymes liberate MOS, which are preferred substrates of the debranching and sidechain cleaving enzymes. The nonhydrolytic expansins and swollenins disrupt the crystalline regions of the biomass, improving their accessibility for AcME and GH activities. Finally, lytic polysaccharide monooxygenases have also been implicated in promoting the degradation of lignocellulosic biomass or mannan degradation by classical mannanolytic enzymes, possibly by disrupting adsorbed mannan residues. Modelling effective enzymatic mannan degradation has implications for improving the saccharification of biomass for the synthesis of value-added and upcycling of lignocellulosic wastes.
Collapse
Affiliation(s)
- Mpho Stephen Mafa
- Carbohydrates and Enzymology Laboratory (CHEM-LAB), Department of Plant Sciences, University of the Free State, Bloemfontein, 9300 South Africa
| | - Samkelo Malgas
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, 0028 South Africa
| |
Collapse
|
11
|
Østby H, Várnai A. Hemicellulolytic enzymes in lignocellulose processing. Essays Biochem 2023; 67:533-550. [PMID: 37068264 PMCID: PMC10160854 DOI: 10.1042/ebc20220154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 04/19/2023]
Abstract
Lignocellulosic biomass is the most abundant source of carbon-based material on a global basis, serving as a raw material for cellulosic fibers, hemicellulosic polymers, platform sugars, and lignin resins or monomers. In nature, the various components of lignocellulose (primarily cellulose, hemicellulose, and lignin) are decomposed by saprophytic fungi and bacteria utilizing specialized enzymes. Enzymes are specific catalysts and can, in many cases, be produced on-site at lignocellulose biorefineries. In addition to reducing the use of often less environmentally friendly chemical processes, the application of such enzymes in lignocellulose processing to obtain a range of specialty products can maximize the use of the feedstock and valorize many of the traditionally underutilized components of lignocellulose, while increasing the economic viability of the biorefinery. While cellulose has a rich history of use in the pulp and paper industries, the hemicellulosic fraction of lignocellulose remains relatively underutilized in modern biorefineries, among other reasons due to the heterogeneous chemical structure of hemicellulose polysaccharides, the composition of which varies significantly according to the feedstock and the choice of pretreatment method and extraction solvent. This paper reviews the potential of hemicellulose in lignocellulose processing with focus on what can be achieved using enzymatic means. In particular, we discuss the various enzyme activities required for complete depolymerization of the primary hemicellulose types found in plant cell walls and for the upgrading of hemicellulosic polymers, oligosaccharides, and pentose sugars derived from hemicellulose depolymerization into a broad spectrum of value-added products.
Collapse
Affiliation(s)
- Heidi Østby
- Norwegian University of Life Sciences (NMBU), Faculty of Chemistry, Biotechnology and Food Science, P.O. Box 5003, N-1432 Aas, Norway
| | - Anikó Várnai
- Norwegian University of Life Sciences (NMBU), Faculty of Chemistry, Biotechnology and Food Science, P.O. Box 5003, N-1432 Aas, Norway
| |
Collapse
|
12
|
Sankar M, Mathew RM, Puthiyamadam A, Sreeja-Raju A, Christopher M, Gokhale DV, Sukumaran RK. Comparison of the solid-state and submerged fermentation derived secretomes of hyper-cellulolytic Penicillium janthinellum NCIM 1366 reveals the changes responsible for differences in hydrolytic performance. BIORESOURCE TECHNOLOGY 2023; 371:128602. [PMID: 36632853 DOI: 10.1016/j.biortech.2023.128602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Solid-state fermentation (SSF) and submerged fermentation (SmF) have often been compared for production of biomass hydrolyzing enzymes highlighting the superiority of the SSF produced enzymes, but the reasons for the performance differences are under-explored. Penicillium janthinellum NCIM 1366 culture extracts from SSF had better hydrolytic performance along with a higher initial rate of reaction. Secretome analyses of the SSF and SmF enzymes using LC/MS-MS, indicated that while the type of proteins secreted were similar in both modes, the abundance of specific beta glucosidases, lytic polysaccharide monooxygenases and hemicellulolytic enzymes were very high in SSF resulting in efficient initiation, low accumulation of cellobiose and high initial reaction rates. Key enzymes that catalyse lignocellulose breakdown under SSF and SmF are therefore different and the fungus may be speculated to have regulation mechanisms that aid differential expression under different cultivation modes.
Collapse
Affiliation(s)
- Meena Sankar
- Microbial Processes and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology, Industrial Estate P.O., Pappanamcode, Thiruvananthapuram 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Reshma M Mathew
- Microbial Processes and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology, Industrial Estate P.O., Pappanamcode, Thiruvananthapuram 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anoop Puthiyamadam
- Microbial Processes and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology, Industrial Estate P.O., Pappanamcode, Thiruvananthapuram 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Athiraraj Sreeja-Raju
- Microbial Processes and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology, Industrial Estate P.O., Pappanamcode, Thiruvananthapuram 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Meera Christopher
- Microbial Processes and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology, Industrial Estate P.O., Pappanamcode, Thiruvananthapuram 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | | | - Rajeev K Sukumaran
- Microbial Processes and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology, Industrial Estate P.O., Pappanamcode, Thiruvananthapuram 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
13
|
Effects of Tibetan kefir grain fermentation on the physicochemical properties, phenolics, enzyme activity, and antioxidant activity of Lycium barbarum (Goji berry) juice. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
14
|
Shahid S, Batool S, Khaliq A, Ahmad S, Batool H, Sajjad M, Akhtar MW. Improved catalytic efficiency of chimeric xylanase 10B from Thermotoga petrophila RKU1 and its synergy with cellulases. Enzyme Microb Technol 2023; 166:110213. [PMID: 36822057 DOI: 10.1016/j.enzmictec.2023.110213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/11/2023] [Accepted: 02/16/2023] [Indexed: 02/21/2023]
Abstract
TpXyl10B is a glycoside hydrolase family 10 xylanase of hyperthermophile Thermotoga petrophila RKU-1. This enzyme is of considerable importance due to its thermostability. However, in its native state, this enzyme does not possess any carbohydrate-binding module (CBM) for efficient binding to plant biomass. In this study CBM6 from Clostridium thermocellum was attached to the N- and C-termini of TpXyl10B, thereby producing the variants TpXyl10B-B6C and TpXyl10B-CB6, respectively. TpXyl10B-B6C showed 5-7 folds increased activity on Beechwood xylan and the different types of plant biomass as compared to that from the catalytic domain only. However, the activity of TpXyl10B-CB6 decreased 0.6-0.8 folds on Beechwood xylan and plant biomass compared to the catalytic domain. We explained these results through molecular modeling, which showed that binding residues of CBM6's cleft B, which were previously reported to show no contribution towards binding due to steric hindrance from a loop region, were exposed in a favorable position in TpXyl10B-B6C such that they efficiently bound the substrate. In contrast, these binding residues of CBM6 in TpXyl10B-CB6 were exposed opposite to the catalytic residues; thus, binding to the substrate resulted in decreased exposure of catalytic residues to the substrate. CD spectroscopy and thermostability assays showed that TpXyl10B-B6C was highly thermostable, having a melting point > 90 °C, which is relatively higher than that of the other variant, TpXyl10B-CB6. In addition, this xylanase variant showed synergism with cellulases for the hydrolysis of plant biomass. Therefore, TpXyl10B-B6C, an engineered xylanase in this study, can be a valuable candidate for industrial applications.
Collapse
Affiliation(s)
- Saher Shahid
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore, Pakistan; Department of Biochemistry and Biophysics, Stockholm University, Sweden.
| | - Sana Batool
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore, Pakistan
| | - Aasia Khaliq
- Department of Life Sciences, Lahore University of Management Sciences, Lahore, Pakistan.
| | - Sajjad Ahmad
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore, Pakistan; DNA and Serology Lab, Punjab Forensic Science Agency, Lahore, Pakistan
| | - Hina Batool
- Department of Life Sciences, School of Science, University of Management and Technology, Johar Town, Lahore, Pakistan.
| | - Muhammad Sajjad
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore, Pakistan.
| | - Muhammad Waheed Akhtar
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore, Pakistan.
| |
Collapse
|
15
|
Ji S, Gavande PV, Choudhury B, Goyal A. Computational design and structure dynamics analysis of bifunctional chimera of endoxylanase from Clostridium thermocellum and xylosidase from Bacteroides ovatus. 3 Biotech 2023; 13:59. [PMID: 36714550 PMCID: PMC9877272 DOI: 10.1007/s13205-023-03482-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 01/13/2023] [Indexed: 01/26/2023] Open
Abstract
Development of chimeric enzymes by protein engineering can more efficiently contribute toward biomass conversion for bioenergy generation. Therefore, prior to experimental validation, a computational approach by modeling and molecular dynamic simulation can assess the structural and functional behavior of chimeric enzymes. In this study, a bifunctional chimera, CtXyn11A-BoGH43A comprising an efficient endoxylanase (CtXyn11A) from Clostridium thermocellum and xylosidase (BoGH43A) from Bacteroides ovatus was computationally designed and its binding and stability analysis with xylooligosaccharides were performed. The modeled chimera showed β-jellyroll fold for CtXyn11A and 5-bladed β-propeller fold for BoGH43A module. Stereo-chemical properties analyzed by Ramachandran plot showed 98.8% residues in allowed region, validating the modeled chimera. The catalytic residues identified by multiple sequence alignment were Glu94 and Glu184 for CtXyn11A and Asp229 and Glu384 for BoGH43A modules. CtXyn11A followed retaining-type, whereas BoGH43A enforced inverting-type of reaction mechanism during xylan hydrolysis as revealed by superposition and GH11 and GH43 familial analyses. Molecular docking studies showed binding energy, (ΔG) - 4.54 and - 4.18 kcal/mol for CtXyn11A and BoGH43A modules of chimera, respectively, with xylobiose, while - 3.94 and - 3.82 kcal/mol for CtXyn11A and BoGH43A modules of chimera, respectively, with xylotriose. MD simulation of CtXyn11A-BoGH43A complexed with xylobiose and xylotriose till 100 ns displayed stability by RMSD, compactness by R g and conformational stability by SASA analyses. The lowered values of RMSF in active-site residues, Glu94, Glu184, Asp229, Asp335 and Glu384 confirmed the efficient binding of chimera with xylobiose and xylotriose. These results were in agreement with the earlier experimental studies on CtXyn11A releasing xylooligosaccharides from xylan and BoGH43A releasing d-xylose from xylooligosaccharides and xylobiose. The chimera showed stronger affinity in terms of total short-range interaction energy; - 190 and - 121 kJ/mol for with xylobiose and xylotriose, respectively. The bifunctional chimera, CtXyn11A-BoGH43A showed stability and integrity with xylobiose and xylotriose. The designed chimera can be constructed and applied for efficient biomass conversion.
Collapse
Affiliation(s)
- Shyam Ji
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039 India
| | - Parmeshwar Vitthal Gavande
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039 India
| | - Bipasha Choudhury
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039 India
| | - Arun Goyal
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039 India
| |
Collapse
|
16
|
Tamburino R, Marcolongo L, Sannino L, Ionata E, Scotti N. Plastid Transformation: New Challenges in the Circular Economy Era. Int J Mol Sci 2022; 23:ijms232315254. [PMID: 36499577 PMCID: PMC9736159 DOI: 10.3390/ijms232315254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
In a circular economy era the transition towards renewable and sustainable materials is very urgent. The development of bio-based solutions, that can ensure technological circularity in many priority areas (e.g., agriculture, biotechnology, ecology, green industry, etc.), is very strategic. The agricultural and fishing industry wastes represent important feedstocks that require the development of sustainable and environmentally-friendly industrial processes to produce and recover biofuels, chemicals and bioactive molecules. In this context, the replacement, in industrial processes, of chemicals with enzyme-based catalysts assures great benefits to humans and the environment. In this review, we describe the potentiality of the plastid transformation technology as a sustainable and cheap platform for the production of recombinant industrial enzymes, summarize the current knowledge on the technology, and display examples of cellulolytic enzymes already produced. Further, we illustrate several types of bacterial auxiliary and chitinases/chitin deacetylases enzymes with high biotechnological value that could be manufactured by plastid transformation.
Collapse
Affiliation(s)
- Rachele Tamburino
- CNR-IBBR, Institute of Biosciences and BioResources, 80055 Naples, Italy
| | | | - Lorenza Sannino
- CNR-IBBR, Institute of Biosciences and BioResources, 80055 Naples, Italy
| | - Elena Ionata
- CNR-IRET, Research Institute on Terrestrial Ecosystems, 80131 Naples, Italy
| | - Nunzia Scotti
- CNR-IBBR, Institute of Biosciences and BioResources, 80055 Naples, Italy
- Correspondence:
| |
Collapse
|
17
|
Embaby AM, Mahmoud HE. Recombinant acetylxylan esterase of Halalkalibacterium halodurans NAH-Egypt: molecular and biochemical study. AMB Express 2022; 12:135. [DOI: 10.1186/s13568-022-01476-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 10/15/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractAcetylxylan esterase plays a crucial role in xylan hydrolysis as the acetyl side-groups restrict endoxylanase action by stearic hindrance. In this study, an acetylxylan esterase (AXE-HAS10: 960 bp & 319 a.a) putative ORF from Halalkalibacterium halodurans NAH-Egypt was extensively studied through heterologous overexpression in Escherichia coli, biochemical characterization, and structural modeling. The AXE-HAS10 tertiary structure was predicted by the Local Meta Threading Server. AXE-HAS10 belongs to the carbohydrate esterase Family 7. Purified to homogeneity AXE-HAS10 showed specific activity (36.99 U/mg), fold purification (11.42), and molecular mass (41.39 kDa). AXE-HAS10 showed optimal pH (8.5) and temperature (40 oC). After 15 h of incubation at pH 7.0–9.0, AXE-HAS10 maintained 100% activity. After 120 min at 35 and 40 oC, the retained activity was 80 and 50%, respectively. At 10 mM Mn2+, Fe3+, K+, and Ca2+ after 30 min, retained activity was 329 ± 15, 212 ± 5.2, 123 ± 1.4, and 120 ± 3.0%, respectively. After 30 min of preincubation with triton x-100, SDS, and CTAB at 0.1% (v/v), the retained activity was 150 ± 19, 88 ± 4, and 82 ± 7%, respectively. At 6.0 M NaCl after 30 min, retained activity was 58%. A 1.44-fold enhancement of beechwood xylan hydrolysis was achieved by AXE-HAS10 and Penicillium chrysogenum DSM105774 β-xylanase concurrently. Present data underpins AXE-HAS10 as a promising AXE for industrial exploitation.
Collapse
|
18
|
Optimization of Compound Ratio of Exogenous Xylanase and Debranching Enzymes Supplemented in Corn-Based Broiler Diets Using In Vitro Simulated Gastrointestinal Digestion and Response Surface Methodology. Animals (Basel) 2022; 12:ani12192641. [PMID: 36230382 PMCID: PMC9558992 DOI: 10.3390/ani12192641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/29/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022] Open
Abstract
This experiment aimed to explore the zymogram of endo-xylanase (EX) and debranching enzymes (arabinofuranosidase [EA] and ferulic acid esterase [EF]) supplemented in the corn−soybean meal-based diet of broilers. An in vitro simulated gastrointestinal digestion model was adopted. According to single-factor, completely random design, the optimal supplemental levels of individual carbohydrase were determined by reducing sugars (RS) and in vitro dry matter digestibility (IVDMD). Response surface method (RSM) was used to predict the proper compound ratio of three carbohydrases. Results showed that shifts were different for feedstuffs such as corn−soybean meal−distillers dried grains with solubles, corn hull, and wheat bran, revealing that the net increase of RS or IVDMD distinctly dropped when degrading corn and related by-products by EX (p < 0.05). There was a significant quadratic relationship between the above response metrics and addition levels of each enzyme (p < 0.05). The determined dosage was 54 U/g EX, 5.0 U/g EA, and 0.4 U/g of EF, respectively. The optimistic zymogram of carbohydrases in corn basal substrates was judged by the IVDMD screening (R2 = 0.9089, p < 0.001). Conclusively, the in vitro assay and RSM were convenient and rapid methods for the optimization of xylan-degrading zymogram, and also testified asthenic hydrolysis of corn arabinoxylan by EX, thus highlighting the synergistic combinations with debranching enzymes.
Collapse
|
19
|
Alagöz D, Varan NE, Yildirim D, Fernandéz-Lafuente R. Optimization of the immobilization of xylanase from Thermomyces lanuginosus to produce xylooligosaccharides in a batch type reactor. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
20
|
Sohail M, Barzkar N, Michaud P, Tamadoni Jahromi S, Babich O, Sukhikh S, Das R, Nahavandi R. Cellulolytic and Xylanolytic Enzymes from Yeasts: Properties and Industrial Applications. Molecules 2022; 27:3783. [PMID: 35744909 PMCID: PMC9229053 DOI: 10.3390/molecules27123783] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/17/2022] Open
Abstract
Lignocellulose, the main component of plant cell walls, comprises polyaromatic lignin and fermentable materials, cellulose and hemicellulose. It is a plentiful and renewable feedstock for chemicals and energy. It can serve as a raw material for the production of various value-added products, including cellulase and xylanase. Cellulase is essentially required in lignocellulose-based biorefineries and is applied in many commercial processes. Likewise, xylanases are industrially important enzymes applied in papermaking and in the manufacture of prebiotics and pharmaceuticals. Owing to the widespread application of these enzymes, many prokaryotes and eukaryotes have been exploited to produce cellulase and xylanases in good yields, yet yeasts have rarely been explored for their plant-cell-wall-degrading activities. This review is focused on summarizing reports about cellulolytic and xylanolytic yeasts, their properties, and their biotechnological applications.
Collapse
Affiliation(s)
- Muhammad Sohail
- Department of Microbiology, University of Karachi, Karachi 75270, Pakistan;
| | - Noora Barzkar
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas 3995, Iran
| | - Philippe Michaud
- Institute Pascal, Université Clermont Auvergne, CNRS, Clermont Auvergne INP, F-63000 Clermont-Ferrand, France;
| | - Saeid Tamadoni Jahromi
- Persian Gulf and Oman Sea Ecology Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research Education and Extension Organization (AREEO), Bandar Abbas 3995, Iran
| | - Olga Babich
- Institute of Living Systems, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia; (O.B.); (S.S.)
| | - Stanislav Sukhikh
- Institute of Living Systems, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia; (O.B.); (S.S.)
| | - Rakesh Das
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), 1433 Aas, Norway;
| | - Reza Nahavandi
- Animal Science Research Institute of Iran (ASRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj 8361, Iran;
| |
Collapse
|
21
|
Mafa MS, Rufetu E, Alexander O, Kemp G, Mohase L. Cell-wall structural carbohydrates reinforcements are part of the defence mechanisms of wheat against Russian wheat aphid (Diuraphis noxia) infestation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 179:168-178. [PMID: 35358867 DOI: 10.1016/j.plaphy.2022.03.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/13/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Russian wheat aphid (RWA) is one of the most challenging pests for wheat crops globally. In South Africa, RWA has breached the strategy of introducing resistant genes into wheat plants, and so far, five RWA biotypes with different virulence levels have been documented in the field. Our study investigated how the cell wall plays a defensive role in Tugela-Dn1 (susceptible) and-Dn5 (resistant) cultivars infested with South African RWA-biotype 2 (RWASA2). The activities of enzymes related to defense responses were measured. The cell wall's holo-cellulose content, soluble lignin and physicochemical changes were quantified in the infested susceptible and resistant cultivars. Lastly, in vitro RWASA2 saliva-associated CWDEs activity was determined on cell wall-related model substrates. The results show that apoplastic peroxidase and β-1,3-glucanase activities were significantly higher in Tugela-Dn5 relative to the control during the infestation periods. Peroxidase activity is associated with lignin cross-linking of the cell wall, which could deter RWASA2 feeding. The total phenolic and holo-cellulose contents were significantly induced in Tugela-Dn5 at 72 and 120 h post infestation (hpi). These findings were corroborated by the FTIR results, which showed that holocellulose and lignin regions of the resistant and susceptible wheat were affected by infestation at 72 hpi. However, Tugela-Dn5 reinforced cell wall content at 120 hpi. An increased crystallinity index in the resistant cultivar validated the cell wall reinforcement at 120 hpi, while Tugela-Dn1 delayed cell wall reinforcement. This study demonstrates that cell wall reinforcement's modification is part of defense responses against Russian wheat aphid infestation.
Collapse
Affiliation(s)
- Mpho S Mafa
- Carbohydrates and Enzymology Laboratory (CHEM-LAB), Department of Plant Sciences, University of the Free State, P.O. Box 339, Bloemfontein, 9300, South Africa.
| | - Ellen Rufetu
- Carbohydrates and Enzymology Laboratory (CHEM-LAB), Department of Plant Sciences, University of the Free State, P.O. Box 339, Bloemfontein, 9300, South Africa; Department of Plant Sciences, University of the Free State, P.O. Box 339, Bloemfontein, 9300, South Africa
| | - Orbett Alexander
- Department of Chemistry, University of the Free State, 9301, Bloemfontein, South Africa
| | - Gabre Kemp
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, South Africa
| | - Lintle Mohase
- Department of Plant Sciences, University of the Free State, P.O. Box 339, Bloemfontein, 9300, South Africa
| |
Collapse
|
22
|
Dong R, Liu X, Wang Y, Qin X, Wang X, Zhang H, Wang Y, Luo H, Yao B, Bai Y, Tu T. Fusion of a proline-rich oligopeptide to the C-terminus of a ruminal xylanase improves catalytic efficiency. Bioengineered 2022; 13:10482-10492. [PMID: 35441569 PMCID: PMC9161913 DOI: 10.1080/21655979.2022.2061290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Xylanases are widely used in the degradation of lignocellulose and are important industrial enzymes. Therefore, increasing the catalytic activity of xylanases can improve their efficiency and performance. In this study, we introduced the C-terminal proline-rich oligopeptide of the rumen-derived XynA into XylR, a GH10 family xylanase. The optimum temperature and pH of the fused enzyme (XylR-Fu) were consistent with those of XylR; however, its catalytic efficiency was 2.48-fold higher than that of XylR. Although the proline-rich oligopeptide did not change the enzyme hydrolysis mode, the amount of oligosaccharides released from beechwood xylan by XylR-Fu was 17% higher than that released by XylR. This increase may be due to the abundance of proline in the oligopeptide, which plays an important role in substrate binding. Furthermore, circular dichroism analysis indicated that the proline-rich oligopeptide might increase the rigidity of the overall structure, thereby enhancing the affinity to the substrate and catalytic activity of the enzyme. Our study shows that the proline-rich oligopeptide enhances the catalytic efficiency of GH10 xylanases and provides a better understanding of the C-terminal oligopeptide-function relationships. This knowledge can guide the rational design of GH10 xylanases to improve their catalytic activity and provides clues for further applications of xylanases in industry.
Collapse
Affiliation(s)
- Ruyue Dong
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoqing Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yaru Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xing Qin
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaolu Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Honglian Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuan Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huiying Luo
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bin Yao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yingguo Bai
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tao Tu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
23
|
The Emergence of New Catalytic Abilities in an Endoxylanase from Family GH10 by Removing an Intrinsically Disordered Region. Int J Mol Sci 2022; 23:ijms23042315. [PMID: 35216436 PMCID: PMC8874783 DOI: 10.3390/ijms23042315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 02/05/2023] Open
Abstract
Endoxylanases belonging to family 10 of the glycoside hydrolases (GH10) are versatile in the use of different substrates. Thus, an understanding of the molecular mechanisms underlying substrate specificities could be very useful in the engineering of GH10 endoxylanases for biotechnological purposes. Herein, we analyzed XynA, an endoxylanase that contains a (β/α)8-barrel domain and an intrinsically disordered region (IDR) of 29 amino acids at its amino end. Enzyme activity assays revealed that the elimination of the IDR resulted in a mutant enzyme (XynAΔ29) in which two new activities emerged: the ability to release xylose from xylan, and the ability to hydrolyze p-nitrophenyl-β-d-xylopyranoside (pNPXyl), a substrate that wild-type enzyme cannot hydrolyze. Circular dichroism and tryptophan fluorescence quenching by acrylamide showed changes in secondary structure and increased flexibility of XynAΔ29. Molecular dynamics simulations revealed that the emergence of the pNPXyl-hydrolyzing activity correlated with a dynamic behavior not previously observed in GH10 endoxylanases: a hinge-bending motion of two symmetric regions within the (β/α)8-barrel domain, whose hinge point is the active cleft. The hinge-bending motion is more intense in XynAΔ29 than in XynA and promotes the formation of a wider active site that allows the accommodation and hydrolysis of pNPXyl. Our results open new avenues for the study of the relationship between IDRs, dynamics and activity of endoxylanases, and other enzymes containing (β/α)8-barrel domain.
Collapse
|
24
|
Ordoñez-Arévalo B, Huerta-Lwanga E, Calixto-Romo MDLÁ, Dunn MF, Guillén-Navarro K. Hemicellulolytic bacteria in the anterior intestine of the earthworm Eisenia fetida (Sav.). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151221. [PMID: 34717991 DOI: 10.1016/j.scitotenv.2021.151221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Tropical agriculture produces large amounts of lignocellulosic residues that can potentially be used as a natural source of value-added products. The complexity of lignocellulose makes industrial-scale processing difficult. New processing techniques must be developed to improve the yield and avoid this valuable resource going to waste. Hemicelluloses comprise a variety of polysaccharides with different backbone compositions and decorations (such as methylations and acetylations), and form part of an intricate framework that confers structural stability to the plant cell wall. Organisms that are able to degrade these biopolymers include earthworms (Eisenia fetida), which can rapidly decompose a wide variety of lignocellulosic substrates. This ability probably derives from enzymes and symbiotic microorganisms in the earthworm gut. In this work, two substrates with similar C/N ratios but different hemicellulose content were selected. Palm fibre and coffee husk have relatively high (28%) and low (5%) hemicellulose contents, respectively. A vermicomposting mixture was prepared for the earthworms to feed on by mixing a hemicellulose substrate with organic market waste. Xylanase activity was determined in earthworm gut and used as a selection criterion for the isolation of hemicellulose-degrading bacteria. Xylanase activity was similar for both substrates, even though their physicochemical properties principally pH and electrical conductivity, as shown by the MANOVA analysis) were different for the total duration of the experiment (120 days). Xylanolytic strains isolated from earthworm gut were identified by sequence analysis of the 16S rRNA gene. Our results indicate that the four Actinobacteria, two Proteobacteria, and one Firmicutes isolated are active participants of the xylanolytic degradation by microbiota in the intestine of E. fetida. Most bacteria were more active at pH 7 and 28 °C, and those with higher activities are reported as being facultatively anaerobic, coinciding with the microenvironment reported for the earthworm gut. Each strain had a different degradative capacity.
Collapse
Affiliation(s)
- Berenice Ordoñez-Arévalo
- Grupo Académico de Biotecnología Ambiental, Unidad Tapachula, El Colegio de la Frontera Sur, Carretera Antiguo Aeropuerto Km 2.5, C.P. 30700 Tapachula, Chiapas, Mexico
| | - Esperanza Huerta-Lwanga
- Grupo Académico de Agroecología, El Colegio de la Frontera Sur, Unidad Campeche, Av. Polígono s/n, Ciudad Industrial, C.P. 24500 Lerma, Campeche, Mexico; Soil Physics and Land Management Group, Wageningen University & Research, P.O. Box 47, 6700AA Wageningen, the Netherlands
| | - María de Los Ángeles Calixto-Romo
- Grupo Académico de Biotecnología Ambiental, Unidad Tapachula, El Colegio de la Frontera Sur, Carretera Antiguo Aeropuerto Km 2.5, C.P. 30700 Tapachula, Chiapas, Mexico
| | - Michael Frederick Dunn
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Col. Chamilpa, C.P. 62210 Cuernavaca, Morelos, Mexico
| | - Karina Guillén-Navarro
- Grupo Académico de Biotecnología Ambiental, Unidad Tapachula, El Colegio de la Frontera Sur, Carretera Antiguo Aeropuerto Km 2.5, C.P. 30700 Tapachula, Chiapas, Mexico.
| |
Collapse
|
25
|
Hlahla JM, Mafa MS, van der Merwe R, Alexander O, Duvenhage MM, Kemp G, Moloi MJ. The Photosynthetic Efficiency and Carbohydrates Responses of Six Edamame ( Glycine max. L. Merrill) Cultivars under Drought Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030394. [PMID: 35161375 PMCID: PMC8840725 DOI: 10.3390/plants11030394] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 05/06/2023]
Abstract
Vegetable-type soybean, also known as edamame, was recently introduced to South Africa. However, there is lack of information on its responses to drought. The aim of this study was to investigate the photosynthetic efficiency and carbohydrates responses of six edamame cultivars under drought stress. Photosynthetic efficiency parameters, including chlorophyll fluorescence and stomatal conductance, were determined using non-invasive methods, while pigments were quantified spectrophotometrically. Non-structural carbohydrates were quantified using Megazyme kits. Structural carbohydrates were determined using Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). Drought stress significantly increased the Fv/Fm and PIabs of AGS429 and UVE17 at pod filling stage. Chlorophyll-a, which was most sensitive to drought, was significantly reduced in AGS429 and UVE17, but chlorophyll-b was relatively stable in all cultivars, except UVE17, which showed a significant decline at flowering stage. AGS354 and AGS429 also showed reduced chlorophyll-b at pod filling. UVE17 showed a significant reduction in carotenoid content and a substantial reduction in stomatal conductance during pod filling. Drought stress during pod filling resulted in a significant increase in the contents of trehalose, sucrose and starch, but glucose was decreased. Chlorophyll-a positively correlated with starch. The FTIR and XRD results suggest that the cell wall of UVE14, followed by UVE8 and AGS429, was the most intact during drought stress. It was concluded that carotenoids, stomatal conductance, starch and hemicellulose could be used as physiological/biochemical indicators of drought tolerance in edamame. This information expands our knowledge of the drought defense responses in edamame, and it is essential for the physiological and biochemical screening of drought tolerance.
Collapse
Affiliation(s)
- Jeremiah M. Hlahla
- Department of Plant Sciences-Botany Division, Faculty of Natural and Agricultural Sciences, University of the Free State, 205 Nelson Mandela Drive, Park West, Bloemfontein 9301, South Africa; (J.M.H.); (R.v.d.M.)
| | - Mpho S. Mafa
- Carbohydrates and Enzymology Laboratory (CHEM-LAB), Department of Plant Sciences-Botany Division, University of the Free State, 205 Nelson Mandela Drive, Park West, Bloemfontein 9301, South Africa;
| | - Rouxléne van der Merwe
- Department of Plant Sciences-Botany Division, Faculty of Natural and Agricultural Sciences, University of the Free State, 205 Nelson Mandela Drive, Park West, Bloemfontein 9301, South Africa; (J.M.H.); (R.v.d.M.)
| | - Orbett Alexander
- Department of Chemistry, University of the Free State, 205 Nelson Mandela Drive, Park West, Bloemfontein 9301, South Africa;
| | - Mart-Mari Duvenhage
- Department of Physics, University of the Free State, 205 Nelson Mandela Drive, Park West, Bloemfontein 9301, South Africa;
| | - Gabre Kemp
- Department of Microbiology and Biochemistry, University of the Free State, 205 Nelson Mandela Drive, Park West, Bloemfontein 9301, South Africa;
| | - Makoena J. Moloi
- Department of Plant Sciences-Botany Division, Faculty of Natural and Agricultural Sciences, University of the Free State, 205 Nelson Mandela Drive, Park West, Bloemfontein 9301, South Africa; (J.M.H.); (R.v.d.M.)
- Correspondence: ; Tel.: +27-51-4019483
| |
Collapse
|
26
|
Bankeeree W, Prasongsuk S, Lotrakul P, Abd‐Aziz S, Punnapayak H. Enzymes for Hemicellulose Degradation. BIOREFINERY OF OIL PRODUCING PLANTS FOR VALUE‐ADDED PRODUCTS 2022:199-220. [DOI: 10.1002/9783527830756.ch11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
27
|
Immerzeel P, Fiskari J. Synergism of enzymes in chemical pulp bleaching from an industrial point of view‐A critical review. CAN J CHEM ENG 2022. [DOI: 10.1002/cjce.24374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Peter Immerzeel
- Mid Sweden University, Fibre Science and Communication Network Sundsvall Sweden
| | - Juha Fiskari
- Mid Sweden University, Fibre Science and Communication Network Sundsvall Sweden
| |
Collapse
|
28
|
Monclaro AV, Gorgulho Silva CDO, Gomes HAR, Moreira LRDS, Filho EXF. The enzyme interactome concept in filamentous fungi linked to biomass valorization. BIORESOURCE TECHNOLOGY 2022; 344:126200. [PMID: 34710591 DOI: 10.1016/j.biortech.2021.126200] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 05/15/2023]
Abstract
Biomass represents an abundant and inexpensive source of sugars and aromatic compounds that can be used as raw materials for conversion into value-added bioproducts. Filamentous fungi are sources of plant cell wall degrading enzymes in nature. Understanding the interactions between enzymes is crucial for optimizing biomass degradation processes. Herein, the concept of the interactome is presented as a holistic approach that depicts the interactions among enzymes, substrates, metabolites, and inhibitors. The interactome encompasses several stages of biomass degradation, starting with the sensing of the substrate and the subsequent synthesis of hydrolytic and oxidative enzymes (fungus-substrate interaction). Enzyme-enzyme interactions are exemplified in the complex processes of lignocellulosic biomass degradation. The enzyme-substrate-metabolite-inhibitor interaction also provides a better understanding of biomass conversion, allowing bioproduct production from recalcitrant agro-industrial residues, thus bringing greater value to residual biomass. Finally, technological applications are presented for optimizing the interactome at various levels.
Collapse
Affiliation(s)
- Antonielle Vieira Monclaro
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Center for Advanced Process Technology and Urban Resource Efficiency (CAPTURE), Frieda Saeysstraat, 9052 Ghent, Belgium
| | - Caio de Oliveira Gorgulho Silva
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432 Ås, Norway; Protein Chemistry and Enzyme Technology Section, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Helder Andrey Rocha Gomes
- Health Science School, University Center of the Federal District (UDF), DF, Brasília 70390045, Brazil
| | | | | |
Collapse
|
29
|
Li X, Dilokpimol A, Kabel MA, de Vries RP. Fungal xylanolytic enzymes: Diversity and applications. BIORESOURCE TECHNOLOGY 2022; 344:126290. [PMID: 34748977 DOI: 10.1016/j.biortech.2021.126290] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 05/26/2023]
Abstract
As important polysaccharide degraders in nature, fungi can diversify their extensive set of carbohydrate-active enzymes to survive in ecological habitats of various composition. Among these enzymes, xylanolytic ones can efficiently and sustainably degrade xylans into (fermentable) monosaccharides to produce valuable chemicals or fuels from, for example relevant for upgrading agro-food industrial side streams. Moreover, xylanolytic enzymes are being used in various industrial applications beyond biomass saccharification, e.g. food, animal feed, biofuel, pulp and paper. As a reference for researchers working in related areas, this review summarized the current knowledge on substrate specificity of xylanolytic enzymes from different families of the Carbohydrate-Active enZyme database. Additionally, the diversity of enzyme sets in fungi were discussed by comparing the number of genes encoding xylanolytic enzymes in selected fungal genomes. Finally, to support bio-economy, the current applications of fungal xylanolytic enzymes in industry were reviewed.
Collapse
Affiliation(s)
- Xinxin Li
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Adiphol Dilokpimol
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Mirjam A Kabel
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands.
| |
Collapse
|
30
|
Saini S, Sharma KK. Fungal lignocellulolytic enzymes and lignocellulose: A critical review on their contribution to multiproduct biorefinery and global biofuel research. Int J Biol Macromol 2021; 193:2304-2319. [PMID: 34800524 DOI: 10.1016/j.ijbiomac.2021.11.063] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/27/2021] [Accepted: 11/10/2021] [Indexed: 01/15/2023]
Abstract
The continuous increase in the global energy demand has diminished fossil fuel reserves and elevated the risk of environmental deterioration and human health. Biorefinery processes involved in producing bio-based energy-enriched chemicals have paved way to meet the energy demands. Compared to the thermochemical processes, fungal system biorefinery processes seems to be a promising approach for lignocellulose conversion. It also offers an eco-friendly and energy-efficient route for biofuel generation. Essentially, ligninolytic white-rot fungi and their enzyme arsenals degrade the plant biomass into structural constituents with minimal by-products generation. Hemi- or cellulolytic enzymes from certain soft and brown-rot fungi are always favoured to hydrolyze complex polysaccharides into fermentable sugars and other value-added products. However, the cost of saccharifying enzymes remains the major limitation, which hinders their application in lignocellulosic biorefinery. In the past, research has been focused on the role of lignocellulolytic fungi in biofuel production; however, a cumulative study comprising the contribution of the lignocellulolytic enzymes in biorefinery technologies is still lagging. Therefore, the overarching goal of this review article is to discuss the major contribution of lignocellulolytic fungi and their enzyme arsenal in global biofuel research and multiproduct biorefinery.
Collapse
Affiliation(s)
- Sonu Saini
- Laboratory of Enzymology and Recombinant DNA Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Krishna Kant Sharma
- Laboratory of Enzymology and Recombinant DNA Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India.
| |
Collapse
|
31
|
Zerva A, Pentari C, Ferousi C, Nikolaivits E, Karnaouri A, Topakas E. Recent advances on key enzymatic activities for the utilisation of lignocellulosic biomass. BIORESOURCE TECHNOLOGY 2021; 342:126058. [PMID: 34597805 DOI: 10.1016/j.biortech.2021.126058] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
The field of enzymatic degradation of lignocellulose is actively growing and the recent updates of the last few years indicate that there is still much to learn. The growing number of protein sequences with unknown function in microbial genomes indicates that there is still much to learn on the mechanisms of lignocellulose degradation. In this review, a summary of the progress in the field is presented, including recent discoveries on the nature of the structural polysaccharides, new technologies for the discovery and functional annotation of gene sequences including omics technologies, and the novel lignocellulose-acting enzymes described. Novel enzymatic activities and enzyme families as well as accessory enzymes and their synergistic relationships regarding biomass breakdown are described. Moreover, it is shown that all the valuable knowledge of the enzymatic decomposition of plant biomass polymers can be employed towards the decomposition and upgrading of synthetic polymers, such as plastics.
Collapse
Affiliation(s)
- Anastasia Zerva
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Christina Pentari
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Christina Ferousi
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Efstratios Nikolaivits
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Anthi Karnaouri
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Evangelos Topakas
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece; Biochemical Process Engineering, Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden.
| |
Collapse
|
32
|
Unraveling Synergism between Various GH Family Xylanases and Debranching Enzymes during Hetero-Xylan Degradation. Molecules 2021; 26:molecules26226770. [PMID: 34833862 PMCID: PMC8618192 DOI: 10.3390/molecules26226770] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/15/2021] [Accepted: 10/27/2021] [Indexed: 11/20/2022] Open
Abstract
Enzymes classified with the same Enzyme Commission (EC) that are allotted in different glycoside hydrolase (GH) families can display different mechanisms of action and substrate specificities. Therefore, the combination of different enzyme classes may not yield synergism during biomass hydrolysis, as the GH family allocation of the enzymes influences their behavior. As a result, it is important to understand which GH family combinations are compatible to gain knowledge on how to efficiently depolymerize biomass into fermentable sugars. We evaluated GH10 (Xyn10D and XT6) and GH11 (XynA and Xyn2A) β-xylanase performance alone and in combination with various GH family α-l-arabinofuranosidases (GH43 AXH-d and GH51 Abf51A) and α-d-glucuronidases (GH4 Agu4B and GH67 AguA) during xylan depolymerization. No synergistic enhancement in reducing sugar, xylose and glucuronic acid released from beechwood xylan was observed when xylanases were supplemented with either one of the glucuronidases, except between Xyn2A and AguA (1.1-fold reducing sugar increase). However, overall sugar release was significantly improved (≥1.1-fold reducing sugar increase) when xylanases were supplemented with either one of the arabinofuranosidases during wheat arabinoxylan degradation. Synergism appeared to result from the xylanases liberating xylo-oligomers, which are the preferred substrates of the terminal arabinofuranosyl-substituent debranching enzyme, Abf51A, allowing the exolytic β-xylosidase, SXA, to have access to the generated unbranched xylo-oligomers. Here, it was shown that arabinofuranosidases are key enzymes in the efficient saccharification of hetero-xylan into xylose. This study demonstrated that consideration of GH family affiliations of the carbohydrate-active enzymes (CAZymes) used to formulate synergistic enzyme cocktails is crucial for achieving efficient biomass saccharification.
Collapse
|
33
|
Endo-xylanases from Cohnella sp. AR92 aimed at xylan and arabinoxylan conversion into value-added products. Appl Microbiol Biotechnol 2021; 105:6759-6778. [PMID: 34458936 DOI: 10.1007/s00253-021-11495-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/29/2021] [Accepted: 08/03/2021] [Indexed: 10/20/2022]
Abstract
The genus Cohnella belongs to a group of Gram-positive endospore-forming bacteria within the Paenibacillaceae family. Although most species were described as xylanolytic bacteria, the literature still lacks some key information regarding their repertoire of xylan-degrading enzymes. The whole genome sequence of an isolated xylan-degrading bacterium Cohnella sp. strain AR92 was found to contain five genes encoding putative endo-1,4-β-xylanases, of which four were cloned, expressed, and characterized to better understand the contribution of the individual endo-xylanases to the overall xylanolytic properties of strain AR92. Three of the enzymes, CoXyn10A, CoXyn10C, and CoXyn11A, were shown to be effective at hydrolyzing xylans-derived from agro-industrial, producing oligosaccharides with substrate conversion values of 32.5%, 24.7%, and 10.6%, respectively, using sugarcane bagasse glucuronoarabinoxylan and of 29.9%, 19.1%, and 8.0%, respectively, using wheat bran-derived arabinoxylan. The main reaction products from GH10 enzymes were xylobiose and xylotriose, whereas CoXyn11A produced mostly xylooligosaccharides (XOS) with 2 to 5 units of xylose, often substituted, resulting in potentially prebiotic arabinoxylooligosaccharides (AXOS). The endo-xylanases assay displayed operational features (temperature optima from 49.9 to 50.4 °C and pH optima from 6.01 to 6.31) fitting simultaneous xylan utilization. Homology modeling confirmed the typical folds of the GH10 and GH11 enzymes, substrate docking studies allowed the prediction of subsites (- 2 to + 1 in GH10 and - 3 to + 1 in GH11) and identification of residues involved in ligand interactions, supporting the experimental data. Overall, the Cohnella sp. AR92 endo-xylanases presented significant potential for enzymatic conversion of agro-industrial by-products into high-value products.Key points• Cohnella sp. AR92 genome encoded five potential endo-xylanases.• Cohnella sp. AR92 enzymes produced xylooligosaccharides from xylan, with high yields.• GH10 enzymes from Cohnella sp. AR92 are responsible for the production of X2 and X3 oligosaccharides.• GH11 from Cohnella sp. AR92 contributes to the overall xylan degradation by producing substituted oligosaccharides.
Collapse
|
34
|
Metagenome-assembled genome of a Chitinophaga sp. and its potential in plant biomass degradation, as well of affiliated Pandoraea and Labrys species. World J Microbiol Biotechnol 2021; 37:162. [PMID: 34448059 DOI: 10.1007/s11274-021-03128-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/12/2021] [Indexed: 12/23/2022]
Abstract
The prospection of new degrading enzymes of the plant cell wall has been the subject of many studies and is fundamental for industries, due to the great biotechnological importance of achieving a more efficient depolymerization conversion from plant polysaccharides to fermentable sugars, which are useful not only for biofuel production but also for various bioproducts. Thus, we explored the shotgun metagenome data of a bacterial community (CB10) isolated from sugarcane bagasse and recovered three metagenome-assembled genomes (MAGs). The genomic distance analyses, along with phylogenetic analysis, revealed the presence of a putative novel Chitinophaga species, a Pandoraea nosoerga, and Labrys sp. isolate. The isolation process for each one of these bacterial lineages from the community was carried out in order to relate them with the MAGs. The recovered draft genomes have reasonable completeness (72.67-100%) and contamination (0.26-2.66%) considering the respective marker lineage for Chitinophaga (Bacteroidetes), Pandoraea (Burkholderiales), and Labrys (Rhizobiales). The in-vitro assay detected cellulolytic activity (endoglucanases) only for the isolate Chitinophaga, and its genome analysis revealed 319 CAZymes, of which 115 are classified as plant cell wall degrading enzymes, which can act in fractions of hemicellulose and pectin. Our study highlights the potential of this Chitinophaga isolate provides several plant-polysaccharide-degrading enzymes.
Collapse
|
35
|
Lee S, Akeprathumchai S, Bundidamorn D, Salaipeth L, Poomputsa K, Ratanakhanokchai K, Chang KL, Phitsuwan P. Interplays of enzyme, substrate, and surfactant on hydrolysis of native lignocellulosic biomass. Bioengineered 2021; 12:5110-5124. [PMID: 34369275 PMCID: PMC8806531 DOI: 10.1080/21655979.2021.1961662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Tracking enzyme, substrate, and surfactant interactions to reach maximum reducing sugar production during enzymatic hydrolysis of plant biomass may provide a better understanding of factors that limit the lignocellulosic material degradation in native rice straw. In this study, enzymes (Cellic Ctec2 cellulase and Cellic Htec2 xylanase) and Triton X-100 (surfactant) were used as biocatalysts for cellulose and xylan degradation and as a lignin blocking agent, respectively. The response surface model (R2 = 0.99 and R2-adj = 0.97) indicated that Cellic Ctec2 cellulase (p < 0.0001) had significant impacts on reducing sugar production, whereas Cellic Htec2 xylanase and Triton X-100 had insignificant impacts on sugar yield. Although FTIR analysis suggested binding of Triton X-100 to lignin surfaces, the morphological observation by SEM revealed similar surface features (i.e., smooth surfaces with some pores) of rice straw irrespective of Triton X-100. The reducing sugar yields from substrate hydrolysis with or without the surfactant were comparable, suggesting similar exposure of polysaccharides accessible to the enzymes. The model analysis and chemical and structural evidence suggest that there would be no positive effects on enzymatic hydrolysis by blocking lignins with Triton X-100 if high lignin coverage exists in the substrate due to the limited availability of hydrolyzable polysaccharides.
Collapse
Affiliation(s)
- Sengthong Lee
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkuntien, Bangkok Thailand.,LigniTech-Lignin Technology Research Group, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkuntien, Bangkok, Thailand
| | - Saengchai Akeprathumchai
- Division of Biotechnology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkuntien, Bangkok Thailand
| | - Damkerng Bundidamorn
- LigniTech-Lignin Technology Research Group, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkuntien, Bangkok, Thailand
| | - Lakha Salaipeth
- Natural Resource Management Program, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkuntien, Bangkok, Thailand
| | - Kanokwan Poomputsa
- Division of Biotechnology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkuntien, Bangkok Thailand
| | - Khanok Ratanakhanokchai
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkuntien, Bangkok Thailand
| | - Ken-Lin Chang
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Paripok Phitsuwan
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkuntien, Bangkok Thailand.,LigniTech-Lignin Technology Research Group, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkuntien, Bangkok, Thailand
| |
Collapse
|
36
|
Vuong TV, Master ER. Enzymatic upgrading of heteroxylans for added-value chemicals and polymers. Curr Opin Biotechnol 2021; 73:51-60. [PMID: 34311175 DOI: 10.1016/j.copbio.2021.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/27/2021] [Accepted: 07/02/2021] [Indexed: 02/06/2023]
Abstract
Xylan is one of the most abundant, natural polysaccharides, and much recent interest focuses on upgrading heteroxylan to make use of its unique structures and chemistries. Significant progress has been made in the discovery and application of novel enzymes for debranching and modifying heteroxylans. Debranching enzymes include acetylxylan esterases, α-l-arabinofuranosidases and α-dglucuronidases that release side groups from the xylan backbone to recover both biochemicals and less substituted xylans for polymer applications in food packaging or drug delivery systems. Besides esterases and hydrolases, many oxidoreductases including carbohydrate oxidases, lytic polysaccharide monooxygenases, laccases and peroxidases have been also applied to alter different types of xylans for improved physical and chemical properties. This review will highlight the recent discovery and application of enzymes for upgrading xylans for use as added-value chemicals and in functional polymers.
Collapse
Affiliation(s)
- Thu V Vuong
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
| | - Emma R Master
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada; Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland.
| |
Collapse
|
37
|
Marasinghe SD, Jo E, Hettiarachchi SA, Lee Y, Eom TY, Gang Y, Kang YH, Oh C. Characterization of glycoside hydrolase family 11 xylanase from Streptomyces sp. strain J103; its synergetic effect with acetyl xylan esterase and enhancement of enzymatic hydrolysis of lignocellulosic biomass. Microb Cell Fact 2021; 20:129. [PMID: 34238305 PMCID: PMC8265113 DOI: 10.1186/s12934-021-01619-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 06/25/2021] [Indexed: 11/18/2022] Open
Abstract
Background Xylanase-containing enzyme cocktails are used on an industrial scale to convert xylan into value-added products, as they hydrolyse the β-1,4-glycosidic linkages between xylopyranosyl residues. In the present study, we focused on xynS1, the glycoside hydrolase (GH) 11 xylanase gene derived from the Streptomyces sp. strain J103, which can mediate XynS1 protein synthesis and lignocellulosic material hydrolysis. Results xynS1 has an open reading frame with 693 base pairs that encodes a protein with 230 amino acids. The predicted molecular weight and isoelectric point of the protein were 24.47 kDa and 7.92, respectively. The gene was cloned into the pET-11a expression vector and expressed in Escherichia coli BL21(DE3). Recombinant XynS1 (rXynS1) was purified via His-tag affinity column chromatography. rXynS1 exhibited optimal activity at a pH of 5.0 and temperature of 55 °C. Thermal stability was in the temperature range of 50–55 °C. The estimated Km and Vmax values were 51.4 mg/mL and 898.2 U/mg, respectively. One millimolar of Mn2+ and Na+ ions stimulated the activity of rXynS1 by up to 209% and 122.4%, respectively, and 1 mM Co2+ and Ni2+ acted as inhibitors of the enzyme. The mixture of rXynS1, originates from Streptomyces sp. strain J103 and acetyl xylan esterase (AXE), originating from the marine bacterium Ochrovirga pacifica, enhanced the xylan degradation by 2.27-fold, compared to the activity of rXynS1 alone when Mn2+ was used in the reaction mixture; this reflected the ability of both enzymes to hydrolyse the xylan structure. The use of an enzyme cocktail of rXynS1, AXE, and commercial cellulase (Celluclast® 1.5 L) for the hydrolysis of lignocellulosic biomass was more effective than that of commercial cellulase alone, thereby increasing the relative activity 2.3 fold. Conclusion The supplementation of rXynS1 with AXE enhanced the xylan degradation process via the de-esterification of acetyl groups in the xylan structure. Synergetic action of rXynS1 with commercial cellulase improved the hydrolysis of pre-treated lignocellulosic biomass; thus, rXynS1 could potentially be used in several industrial applications. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01619-x.
Collapse
Affiliation(s)
- Svini Dileepa Marasinghe
- Korea Institute of Ocean Science and Technology, 2670, Iljudong-ro, Gujwa-eup, Jeju, Republic of Korea.,Department of Ocean Science, University of Science and Technology, (34113) 217, Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Eunyoung Jo
- Korea Institute of Ocean Science and Technology, 2670, Iljudong-ro, Gujwa-eup, Jeju, Republic of Korea
| | - Sachithra Amarin Hettiarachchi
- Korea Institute of Ocean Science and Technology, 2670, Iljudong-ro, Gujwa-eup, Jeju, Republic of Korea.,Department of Ocean Science, University of Science and Technology, (34113) 217, Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea.,Department of Fisheries and Aquaculture, Faculty of Fisheries and Marine Sciences and Technology, University of Ruhuna, Matara, Sri Lanka
| | - Youngdeuk Lee
- Korea Institute of Ocean Science and Technology, 2670, Iljudong-ro, Gujwa-eup, Jeju, Republic of Korea
| | - Tae-Yang Eom
- Korea Institute of Ocean Science and Technology, 2670, Iljudong-ro, Gujwa-eup, Jeju, Republic of Korea.,Department of Ocean Science, University of Science and Technology, (34113) 217, Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Yehui Gang
- Korea Institute of Ocean Science and Technology, 2670, Iljudong-ro, Gujwa-eup, Jeju, Republic of Korea.,Department of Ocean Science, University of Science and Technology, (34113) 217, Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Yoon-Hyeok Kang
- Korea Institute of Ocean Science and Technology, 2670, Iljudong-ro, Gujwa-eup, Jeju, Republic of Korea.,Department of Ocean Science, University of Science and Technology, (34113) 217, Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Chulhong Oh
- Korea Institute of Ocean Science and Technology, 2670, Iljudong-ro, Gujwa-eup, Jeju, Republic of Korea. .,Department of Ocean Science, University of Science and Technology, (34113) 217, Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea.
| |
Collapse
|
38
|
Molecular modification, structural characterization, and biological activity of xylans. Carbohydr Polym 2021; 269:118248. [PMID: 34294285 DOI: 10.1016/j.carbpol.2021.118248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 12/17/2022]
Abstract
The differences in the source and structure of xylans make them have various biological activities. However, due to their inherent structural limitations, the various biological activities of xylans are far lower than those of commercial drugs. Currently, several types of molecular modification methods have been developed to address these limitations, and many derivatives with specific biological activity have been obtained. Further research on structural characteristics, structure-activity relationship and mechanism of action is of great significance for the development of xylan derivatives. Therefore, the major molecular modification methods of xylans are introduced in this paper, and the primary structure and conformation characteristics of xylans and their derivatives are summarized. In addition, the biological activity and structure-activity relationship of the modified xylans are also discussed.
Collapse
|
39
|
Identification and Characterization of a Novel, Cold-Adapted d-Xylobiose- and d-Xylose-Releasing Endo-β-1,4-xylanase from an Antarctic Soil Bacterium, Duganella sp. PAMC 27433. Biomolecules 2021; 11:biom11050680. [PMID: 33946575 PMCID: PMC8147214 DOI: 10.3390/biom11050680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/29/2021] [Accepted: 04/29/2021] [Indexed: 11/17/2022] Open
Abstract
Endo-β-1,4-xylanase is a key enzyme in the degradation of β-1,4-d-xylan polysaccharides through hydrolysis. A glycoside hydrolase family 10 (GH10) endo-β-1,4-xylanase (XylR) from Duganella sp. PAMC 27433, an Antarctic soil bacterium, was identified and functionally characterized. The XylR gene (1122-bp) encoded an acidic protein containing a single catalytic GH10 domain that was 86% identical to that of an uncultured bacterium BLR13 endo-β-1,4-xylanase (ACN58881). The recombinant enzyme (rXylR: 42.0 kDa) showed the highest beechwood xylan-degrading activity at pH 5.5 and 40 °C, and displayed 12% of its maximum activity even at 4 °C. rXylR was not only almost completely inhibited by 5 mM N-bromosuccinimide or metal ions (each 1 mM) including Hg2+, Ca2+, or Cu2+ but also significantly suppressed by 1 mM Ni2+, Zn2+, or Fe2+. However, its enzyme activity was upregulated (>1.4-fold) in the presence of 0.5% Triton X-100 or Tween 80. The specific activities of rXylR toward beechwood xylan, birchwood xylan, oat spelts xylan, and p-nitrophenyl-β-d-cellobioside were 274.7, 103.2, 35.6, and 365.1 U/mg, respectively. Enzymatic hydrolysis of birchwood xylan and d-xylooligosaccharides yielded d-xylose and d-xylobiose as the end products. The results of the present study suggest that rXylR is a novel cold-adapted d-xylobiose- and d-xylose-releasing endo-β-1,4-xylanase.
Collapse
|
40
|
Yan S, Xu Y, Yu XW. Rational engineering of xylanase hyper-producing system in Trichoderma reesei for efficient biomass degradation. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:90. [PMID: 33832521 PMCID: PMC8033665 DOI: 10.1186/s13068-021-01943-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/27/2021] [Indexed: 05/27/2023]
Abstract
BACKGROUND Filamentous fungus Trichoderma reesei has been widely used as a workhorse for cellulase and xylanase productions. Xylanase has been reported as the crucial accessory enzyme in the degradation of lignocellulose for higher accessibility of cellulase. In addition, the efficient hydrolysis of xylan needs the co-work of multiple xylanolytic enzymes, which rise an increasing demand for the high yield of xylanase for efficient biomass degradation. RESULTS In this study, a xylanase hyper-producing system in T. reesei was established by tailoring two transcription factors, XYR1 and ACE1, and homologous overexpression of the major endo-xylanase XYNII. The expressed xylanase cocktail contained 5256 U/mL xylanase activity and 9.25 U/mL β-xylosidase (pNPXase) activity. Meanwhile, the transcription level of the xylanolytic genes in the strain with XYR1 overexpressed was upregulated, which was well correlated with the amount of XYR1-binding sites. In addition, the higher expression of associated xylanolytic enzymes would result in more efficient xylan hydrolysis. Besides, 2310-3085 U/mL of xylanase activities were achieved using soluble carbon source, which was more efficient and economical than the traditional strategy of xylan induction. Unexpectedly, deletion of ace1 in C30OExyr1 did not give any improvement, which might be the result of the disturbed function of the complex formed between ACE1 and XYR1. The enzymatic hydrolysis of alkali pretreated corn stover using the crude xylanase cocktails as accessory enzymes resulted in a 36.64% increase in saccharification efficiency with the ratio of xylanase activity vs FPase activity at 500, compared to that using cellulase alone. CONCLUSIONS An efficient and economical xylanase hyper-producing platform was developed in T. reesei RUT-C30. The novel platform with outstanding ability for crude xylanase cocktail production would greatly fit in biomass degradation and give a new perspective of further engineering in T. reesei for industrial purposes.
Collapse
Affiliation(s)
- Su Yan
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Yan Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Xiao-Wei Yu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China.
| |
Collapse
|
41
|
de Godoi Contessoto V, Ramos FC, de Melo RR, de Oliveira VM, Scarpassa JA, de Sousa AS, Zanphorlin LM, Slade GG, Leite VBP, Ruller R. Electrostatic interaction optimization improves catalytic rates and thermotolerance on xylanases. Biophys J 2021; 120:2172-2180. [PMID: 33831390 DOI: 10.1016/j.bpj.2021.03.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 02/08/2021] [Accepted: 03/23/2021] [Indexed: 10/21/2022] Open
Abstract
Understanding the aspects that contribute to improving proteins' biochemical properties is of high relevance for protein engineering. Properties such as the catalytic rate, thermal stability, and thermal resistance are crucial for applying enzymes in the industry. Different interactions can influence those biochemical properties of an enzyme. Among them, the surface charge-charge interactions have been a target of particular attention. In this study, we employ the Tanford-Kirkwood solvent accessibility model using the Monte Carlo algorithm (TKSA-MC) to predict possible interactions that could improve stability and catalytic rate of a WT xylanase (XynAWT) and its M6 xylanase (XynAM6) mutant. The modeling prediction indicates that mutating from a lysine in position 99 to a glutamic acid (K99E) favors the native state stabilization in both xylanases. Our lab results showed that mutated xylanases had their thermotolerance and catalytic rate increased, which conferred higher processivity of delignified sugarcane bagasse. The TKSA-MC approach employed here is presented as an efficient computational-based design strategy that can be applied to improve the thermal resistance of enzymes with industrial and biotechnological applications.
Collapse
Affiliation(s)
- Vinícius de Godoi Contessoto
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, Brazil; Center for Theoretical Biological Physics, Rice University, Houston, Texas; Department of Physics, Institute of Biosciences, Letters and Exact Sciences, São Paulo State University, São José do Rio Preto, São Paulo, Brazil
| | - Felipe Cardoso Ramos
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, Brazil
| | - Ricardo Rodrigues de Melo
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, Brazil
| | - Vinícius Martins de Oliveira
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, Brazil
| | - Josiane Aniele Scarpassa
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, Brazil
| | - Amanda Silva de Sousa
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, Brazil
| | - Letıcia Maria Zanphorlin
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, Brazil
| | - Gabriel Gouvea Slade
- Theoretical Biophysics Laboratory, Institute of Exact Sciences, Natural and Education, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Vitor Barbanti Pereira Leite
- Department of Physics, Institute of Biosciences, Letters and Exact Sciences, São Paulo State University, São José do Rio Preto, São Paulo, Brazil.
| | - Roberto Ruller
- Microorganisms and General Biochemistry Laboratory, Institute of Bioscience, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| |
Collapse
|
42
|
Tamayo-Ordóñez MC, Contreras-Esquivel JC, Ayil-Gutiérrez BA, De la Cruz-Arguijo EA, Tamayo-Ordóñez FA, Ríos-González LJ, Tamayo-Ordóñez YJ. Interspecific evolutionary relationships of alpha-glucuronidase in the genus Aspergillus. Fungal Biol 2021; 125:560-575. [PMID: 34140152 DOI: 10.1016/j.funbio.2021.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 02/05/2021] [Accepted: 02/21/2021] [Indexed: 12/15/2022]
Abstract
The increased availability and production of lignocellulosic agroindustrial wastes has originated proposals for their use as raw material to obtain biofuels (ethanol and biodiesel) or derived products. However, for biomass generated from lignocellulosic residues to be successfully degraded, in most cases it requires a physical (thermal), chemical, or enzymatic pretreatment before the application of microbial or enzymatic fermentation technologies (biocatalysis). In the context of enzymatic technologies, fungi have demonstrated to produce enzymes capable of degrading polysaccharides like cellulose, hemicelluloses and pectin. Because of this ability for degrading lignocellulosic material, researchers are making efforts to isolate and identify fungal enzymes that could have a better activity for the degradation of plant cell walls and agroindustrial biomass. We performed an in silico analysis of alpha-glucoronidase in 82 accessions of the genus Aspergillus. The constructed dendrograms of amino acid sequences defined the formation of 6 groups (I, II, III, IV, V, and VI), which demonstrates the high diversity of the enzyme. Despite this ample divergence between enzyme groups, our 3D structure modeling showed both conservation and differences in amino acid residues participating in enzyme-substrate binding, which indicates the possibility that some enzymes are functionally specialized for the specific degradation of a substrate depending on the genetics of each species in the genus and the condition of the habitat where they evolved. The identification of alpha-glucuronidase isoenzymes would allow future use of genetic engineering and biocatalysis technologies aimed at specific production of the enzyme for its use in biotransformation.
Collapse
Affiliation(s)
- M C Tamayo-Ordóñez
- Laboratorio de Ingeniería Genética, Departamento de Biotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Ing J. Cárdenas Valdez S/N, República, 25280, Saltillo, Coah, Mexico
| | - J C Contreras-Esquivel
- Laboratorio de Glicobiotecnologia Aplicada, Departamento de Ciencia y Tecnología de Alimentos, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Ing. J. Cárdenas Valdez S/N, República, 25280, Saltillo, Coah, Mexico
| | - B A Ayil-Gutiérrez
- CONACYT- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Biotecnologia Vegetal. Blvd. del Maestro, s/n, Esq. Elías Piña, Reynosa, 88710, Mexico
| | - E A De la Cruz-Arguijo
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Blvd. del Maestro, s/n, Esq. Elías Piña, Reynosa, 88710, Mexico
| | - F A Tamayo-Ordóñez
- Facultad de Química, Universidad Autónoma del Carmen, Calle 56 No. 4 por Av. Concordia, Campus Principal, 24180, Ciudad del Carmen, Campeche, Mexico
| | - L J Ríos-González
- Departamento de Biotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Ing Cárdenas Valdez S/N, República, 25280, Saltillo, Coah, Mexico
| | - Y J Tamayo-Ordóñez
- Estancia Posdoctoral Nacional-CONACyT, Posgrado en Ciencia y Tecnología de Alimentos, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Ing J. Cardenas Valdez S/N, República, 25280, Saltillo, Coah, Mexico.
| |
Collapse
|
43
|
Mafa MS, Malgas S, Pletschke BI. Feruloyl esterase (FAE-1) sourced from a termite hindgut and GH10 xylanases synergy improves degradation of arabinoxylan. AMB Express 2021; 11:21. [PMID: 33464449 PMCID: PMC7815865 DOI: 10.1186/s13568-021-01180-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 01/05/2021] [Indexed: 12/26/2022] Open
Abstract
Cereal feedstocks have high arabinoxylan content as their main hemicellulose, which is linked to lignin by hydroxycinnamic acids such as ferulic acid. The ferulic acid is linked to arabinoxylan by ester bonds, and generally, the high substitution of ferulic acid leads to a loss of activity of xylanases targeting the arabinoxylan. In the current study, a feruloyl esterase (FAE-1) from a termite hindgut bacteria was functionally characterised and used in synergy with xylanases during xylan hydrolysis. The FAE-1 displayed temperature and pH optima of 60 ℃ and 7.0, respectively. FAE-1 did not release reducing sugars from beechwood xylan (BWX), wheat arabinoxylan (WAX) and oat spelt xylan (OX), however, displayed high activity of 164.74 U/mg protein on p-nitrophenyl-acetate (pNPA). In contrast, the GH10 xylanases; Xyn10 and XT6, and a GH11 xylanase, Xyn2A, showed more than two-fold increased activity on xylan substrates with low sidechain substitutions; BWX and OX, compared to the highly branched substrate, WAX. Interestingly, the FAE-1 and GH10 xylanases (Xyn10D and XT6) displayed a degree of synergy (DS) that was higher than 1 in all enzyme loading combinations during WAX hydrolysis. The 75%XT6:25%FAE-1 synergistic enzyme combination increased the release of reducing sugars by 1.34-fold from WAX compared to the control, while 25%Xyn10D:75%FAE-1 synergistic combination released about 2.1-fold of reducing sugars from WAX compared to controls. These findings suggest that FAE-1 can be used in concert with xylanases, particularly those from GH10, to efficiently degrade arabinoxylans contained in cereal feedstocks for various industrial settings such as in animal feeds and baking.
Collapse
|
44
|
Conversion of Wheat Bran to Xylanases and Dye Adsorbent by Streptomyces thermocarboxydus. Polymers (Basel) 2021; 13:polym13020287. [PMID: 33477336 PMCID: PMC7830096 DOI: 10.3390/polym13020287] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 11/16/2022] Open
Abstract
Agro-byproducts can be utilized as effective and low-cost nutrient sources for microbial fermentation to produce a variety of usable products. In this study, wheat bran powder (WBP) was found to be the most effective carbon source for xylanase production by Streptomyces thermocarboxydus TKU045. The optimal media for xylanase production was 2% (w/v) WBP, 1.50% (w/v) KNO3, 0.05% (w/v) MgSO4, and 0.10% (w/v) K2HPO4, and the optimal culture conditions were 50 mL (in a 250 mL-volume Erlenmeyer flask), initial pH 9.0, 37 °C, 125 rpm, and 48 h. Accordingly, the highest xylanase activity was 6.393 ± 0.130 U/mL, 6.9-fold higher than that from un-optimized conditions. S. thermocarboxydus TKU045 secreted at least four xylanases with the molecular weights of >180, 36, 29, and 27 kDa when cultured on the WBP-containing medium. The enzyme cocktail produced by S. thermocarboxydus TKU045 was optimally active over a broad range of temperature and pH (40–70 °C and pH 5–8, respectively) and could hydrolyze birchwood xylan to produce xylobiose as the major product. The obtained xylose oligosaccharide (XOS) were investigated for 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity and the growth effect of lactic acid bacteria. Finally, the solid waste from the WBP fermentation using S. thermocarboxydus TKU045 revealed the high adsorption of Congo red, Red 7, and Methyl blue. Thus, S. thermocarboxydus TKU045 could be a potential strain to utilize wheat bran to produce xylanases for XOS preparation and dye adsorbent.
Collapse
|
45
|
Teramoto K, Tsutsui S, Sato T, Fujimoto Z, Kaneko S. Substrate Specificities of GH8, GH39, and GH52 β-xylosidases from Bacillus halodurans C-125 Toward Substituted Xylooligosaccharides. Appl Biochem Biotechnol 2021; 193:1042-1055. [PMID: 33394289 DOI: 10.1007/s12010-020-03451-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/08/2020] [Indexed: 11/30/2022]
Abstract
Substrate specificities of glycoside hydrolase families 8 (Rex), 39 (BhXyl39), and 52 (BhXyl52) β-xylosidases from Bacillus halodurans C-125 were investigated. BhXyl39 hydrolyzed xylotriose most efficiently among the linear xylooligosaccharides. The activity decreased in the order of xylohexaose > xylopentaose > xylotetraose and it had little effect on xylobiose. In contrast, BhXyl52 hydrolyzed xylobiose and xylotriose most efficiently, and its activity decreased when the main chain became longer as follows: xylotetraose > xylopentaose > xylohexaose. Rex produced O-β-D-xylopyranosyl-(1 → 4)-[O-α-L-arabinofuranosyl-(1 → 3)]-O-β-D-xylopyranosyl-(1 → 4)-β-D-xylopyranose (Ara2Xyl3) and O-β-D-xylopyranosyl-(1 → 4)-[O-4-O-methyl-α-D-glucuronopyranosyl-(l → 2)]-β-D-xylopyranosyl-(1 → 4)-β-D-xylopyranose (MeGlcA2Xyl3), which lost a xylose residue from the reducing end of O-β-D-xylopyranosyl-(1 → 4)-[O-α-L-arabinofuranosyl-(1 → 3)]-O-β-D-xylopyranosyl-(1 → 4)-β-D-xylopyranosyl-(1 → 4)-β-D-xylopyranose (Ara3Xyl4) and O-β-D-xylopyranosyl-(1 → 4)-[O-4-O-methyl-α-D-glucuronopyranosyl-(1 → 2)]-β-D-xylopyranosyl-(1 → 4)-β-D-xylopyranosyl-(1 → 4)-β-D-xylopyranose (MeGlcA3Xyl4). It was considered that there is no space to accommodate side chains at subsite -1. BhXyl39 rapidly hydrolyzes the non-reducing-end xylose linkages of MeGlcA3Xyl4, while the arabinose branch does not significantly affect the enzyme activity because it degrades Ara3Xyl4 as rapidly as unmodified xylotetraose. The model structure suggested that BhXyl39 enhanced the activity for MeGlcA3Xyl4 by forming a hydrogen bond between glucuronic acid and Lys265. BhXyl52 did not hydrolyze Ara3Xyl4 and MeGlcA3Xyl4 because it has a narrow substrate binding pocket and 2- and 3-hydroxyl groups of xylose at subsite +1 hydrogen bond to the enzyme.
Collapse
Affiliation(s)
- Koji Teramoto
- Department of Subtropical Biochemistry and Biotechnology, Faculty of Agriculture, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan
| | - Sosyu Tsutsui
- Department of Subtropical Biochemistry and Biotechnology, Faculty of Agriculture, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan.,The United Graduate School of Agricultural Sciences, Kagoshima University, Korimoto, Kagoshima, 890-0065, Japan
| | - Tomoko Sato
- Advanced Analysis Center, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba, 305-8602, Japan
| | - Zui Fujimoto
- Advanced Analysis Center, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba, 305-8602, Japan
| | - Satoshi Kaneko
- Department of Subtropical Biochemistry and Biotechnology, Faculty of Agriculture, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan. .,The United Graduate School of Agricultural Sciences, Kagoshima University, Korimoto, Kagoshima, 890-0065, Japan.
| |
Collapse
|
46
|
Santibáñez L, Henríquez C, Corro-Tejeda R, Bernal S, Armijo B, Salazar O. Xylooligosaccharides from lignocellulosic biomass: A comprehensive review. Carbohydr Polym 2021; 251:117118. [DOI: 10.1016/j.carbpol.2020.117118] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/22/2020] [Accepted: 09/04/2020] [Indexed: 02/04/2023]
|
47
|
High-Throughput Generation of Product Profiles for Arabinoxylan-Active Enzymes from Metagenomes. Appl Environ Microbiol 2020; 86:AEM.01505-20. [PMID: 32948521 DOI: 10.1128/aem.01505-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/15/2020] [Indexed: 11/20/2022] Open
Abstract
Metagenomics is an exciting alternative to seek carbohydrate-active enzymes from a range of sources. Typically, metagenomics reveals dozens of putative catalysts that require functional characterization for further application in industrial processes. High-throughput screening methods compatible with adequate natural substrates are crucial for an accurate functional elucidation of substrate preferences. Based on DNA sequencer-aided fluorophore-assisted carbohydrate electrophoresis (DSA-FACE) analysis of enzymatic-reaction products, we generated product profiles to consequently infer substrate cleavage positions, resulting in the generation of enzymatic-degradation maps. Product profiles were produced in high throughput for arabinoxylan (AX)-active enzymes belonging to the glycoside hydrolase families GH43 (subfamilies 2 [MG432], 7 [MG437], and 28 [MG4328]) and GH8 (MG8) starting from 12 (arabino)xylo-oligosaccharides. These enzymes were discovered through functional metagenomic studies of feces from the North American beaver (Castor canadensis). This work shows how enzyme loading alters the product profiles of all enzymes studied and gives insight into AX degradation patterns, revealing sequential substrate preferences of AX-active enzymes.IMPORTANCE Arabinoxylan is mainly found in the hemicellulosic fractions of rice straw, corn cobs, and rice husk. Converting arabinoxylan into (arabino)xylo-oligosaccharides as added-value products that can be applied in food, feed, and cosmetics presents a sustainable and economic alternative for the biorefinery industries. Efficient and profitable AX degradation requires a set of enzymes with particular characteristics. Therefore, enzyme discovery and the study of substrate preferences are of utmost importance. Beavers, as consumers of woody biomass, are a promising source of a repertoire of enzymes able to deconstruct hemicelluloses into soluble oligosaccharides. High-throughput analysis of the oligosaccharide profiles produced by these enzymes will assist in the selection of the most appropriate enzymes for the biorefinery.
Collapse
|
48
|
Enzyme Selection and Hydrolysis under Optimal Conditions Improved Phenolic Acid Solubility, and Antioxidant and Anti-Inflammatory Activities of Wheat Bran. Antioxidants (Basel) 2020; 9:antiox9100984. [PMID: 33066226 PMCID: PMC7602008 DOI: 10.3390/antiox9100984] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/01/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023] Open
Abstract
Valorization of wheat bran (WB) into new high-value products is of great interest within the framework of sustainability and circular economy. In the present study, we utilized a multi-step approach to extract nutraceutical compounds (phenolic acids) from WB and improved its antioxidant and anti-inflammatory properties through using sequential hydrothermal and enzymatic hydrolysis. Thirteen commercial glycosidases differing in their specific activity were screened and compared for hydrolytic efficiency to release monosaccharides, ferulic acid, and diferulic acid. Ultraflo XL was selected as the desired enzyme treatment on the basis of its higher WB solubilization, as well as its monosaccharide and phenolic acids yields. The relationships between better hydrolytic performance of Ultraflo XL and its particular activity profile were established. To determine the optimum conditions for Ultraflo XL treatment, we tested different factors (solvent pH, incubation temperature, and time) under 15 experiments. A multicomponent analysis (MCA), including central composite design, model fitness, regression coefficients, analysis of variance, 3D response curves, and desirability, was used for processing optimization. A beneficial effect of autoclave treatment on the release of phenolic compounds was also evidenced. The results of MCA showed involvement of linear, quadratic, and interactive effects of processing factors, although solvent pH was the main determinant factor, affecting enzymatic extraction of phenolics and bioactivity of hydrolysates. As compared to control WB, under optimized conditions (47 °C, pH = 4.4, and 20.8 h), WB hydrolysates showed 4.2, 1.5, 2, and 3 times higher content of ferulic acid (FA) and capacity to scavenge oxygen radicals, chelate transition metals, and inhibit monocyte chemoattractant protein-1 secretion in macrophages, respectively. These approaches could be applied for the sustainable utilization of WB, harnessing its nutraceutical potential.
Collapse
|
49
|
Østby H, Hansen LD, Horn SJ, Eijsink VGH, Várnai A. Enzymatic processing of lignocellulosic biomass: principles, recent advances and perspectives. J Ind Microbiol Biotechnol 2020; 47:623-657. [PMID: 32840713 PMCID: PMC7658087 DOI: 10.1007/s10295-020-02301-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 07/30/2020] [Indexed: 02/06/2023]
Abstract
Efficient saccharification of lignocellulosic biomass requires concerted development of a pretreatment method, an enzyme cocktail and an enzymatic process, all of which are adapted to the feedstock. Recent years have shown great progress in most aspects of the overall process. In particular, increased insights into the contributions of a wide variety of cellulolytic and hemicellulolytic enzymes have improved the enzymatic processing step and brought down costs. Here, we review major pretreatment technologies and different enzyme process setups and present an in-depth discussion of the various enzyme types that are currently in use. We pay ample attention to the role of the recently discovered lytic polysaccharide monooxygenases (LPMOs), which have led to renewed interest in the role of redox enzyme systems in lignocellulose processing. Better understanding of the interplay between the various enzyme types, as they may occur in a commercial enzyme cocktail, is likely key to further process improvements.
Collapse
Affiliation(s)
- Heidi Østby
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Aas, Norway
| | - Line Degn Hansen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Aas, Norway
| | - Svein J Horn
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Aas, Norway
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Aas, Norway
| | - Anikó Várnai
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Aas, Norway.
| |
Collapse
|
50
|
Evaluating Feruloyl Esterase—Xylanase Synergism for Hydroxycinnamic Acid and Xylo-Oligosaccharide Production from Untreated, Hydrothermally Pre-Treated and Dilute-Acid Pre-Treated Corn Cobs. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10050688] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Agricultural residues are considered the most promising option as a renewable feedstock for biofuel and high valued-added chemical production due to their availability and low cost. The efficient enzymatic hydrolysis of agricultural residues into value-added products such as sugars and hydroxycinnamic acids is a challenge because of the recalcitrant properties of the native biomass. Development of synergistic enzyme cocktails is required to overcome biomass residue recalcitrance, and achieve high yields of potential value-added products. In this study, the synergistic action of two termite metagenome-derived feruloyl esterases (FAE5 and FAE6), and an endo-xylanase (Xyn11) from Thermomyces lanuginosus, was optimized using 0.5% (w/v) insoluble wheat arabinoxylan (a model substrate) and then applied to 1% (w/v) corn cobs for the efficient production of xylo-oligosaccharides (XOS) and hydroxycinnamic acids. The enzyme combination of 66% Xyn11 and 33% FAE5 or FAE6 (protein loading) produced the highest amounts of XOS, ferulic acid, and p-coumaric acid from untreated, hydrothermal, and acid pre-treated corn cobs. The combination of 66% Xyn11 and 33% FAE6 displayed an improvement in reducing sugars of approximately 1.9-fold and 3.4-fold for hydrothermal and acid pre-treated corn cobs (compared to Xyn11 alone), respectively. The hydrolysis product profiles revealed that xylobiose was the dominant XOS produced from untreated and pre-treated corn cobs. These results demonstrated that the efficient production of hydroxycinnamic acids and XOS from agricultural residues for industrial applications can be achieved through the synergistic action of FAE5 or FAE6 and Xyn11.
Collapse
|