1
|
Cereijo AE, Ferretti MV, Iglesias AA, Álvarez HM, Asencion Diez MD. Study of two glycosyltransferases related to polysaccharide biosynthesis in Rhodococcus jostii RHA1. Biol Chem 2024; 405:325-340. [PMID: 38487862 DOI: 10.1515/hsz-2023-0339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/23/2024] [Indexed: 05/04/2024]
Abstract
The bacterial genus Rhodococcus comprises organisms performing oleaginous behaviors under certain growth conditions and ratios of carbon and nitrogen availability. Rhodococci are outstanding producers of biofuel precursors, where lipid and glycogen metabolisms are closely related. Thus, a better understanding of rhodococcal carbon partitioning requires identifying catalytic steps redirecting sugar moieties to storage molecules. Here, we analyzed two GT4 glycosyl-transferases from Rhodococcus jostii (RjoGlgAb and RjoGlgAc) annotated as α-glucan-α-1,4-glucosyl transferases, putatively involved in glycogen synthesis. Both enzymes were produced in Escherichia coli cells, purified to homogeneity, and kinetically characterized. RjoGlgAb and RjoGlgAc presented the "canonical" glycogen synthase activity and were actives as maltose-1P synthases, although to a different extent. Then, RjoGlgAc is a homologous enzyme to the mycobacterial GlgM, with similar kinetic behavior and glucosyl-donor preference. RjoGlgAc was two orders of magnitude more efficient to glucosylate glucose-1P than glycogen, also using glucosamine-1P as a catalytically efficient aglycon. Instead, RjoGlgAb exhibited both activities with similar kinetic efficiency and preference for short-branched α-1,4-glucans. Curiously, RjoGlgAb presented a super-oligomeric conformation (higher than 15 subunits), representing a novel enzyme with a unique structure-to-function relationship. Kinetic results presented herein constitute a hint to infer on polysaccharides biosynthesis in rhodococci from an enzymological point of view.
Collapse
Affiliation(s)
- Antonela Estefania Cereijo
- Laboratorio de Enzimología Molecular, 603337 Instituto de Agrobiotecnología del Litoral (UNL-CONICET) & Facultad de Bioquímica y Ciencias Biológicas , Santa Fe, Argentina
| | - María Victoria Ferretti
- Laboratorio de Enzimología Molecular, 603337 Instituto de Agrobiotecnología del Litoral (UNL-CONICET) & Facultad de Bioquímica y Ciencias Biológicas , Santa Fe, Argentina
| | - Alberto Alvaro Iglesias
- Laboratorio de Enzimología Molecular, 603337 Instituto de Agrobiotecnología del Litoral (UNL-CONICET) & Facultad de Bioquímica y Ciencias Biológicas , Santa Fe, Argentina
| | - Héctor Manuel Álvarez
- Instituto de Biociencias de la Patagonia (INBIOP), 28226 Universidad Nacional de la Patagonia San Juan Bosco y CONICET , Km 4-Ciudad Universitaria 9000, Comodoro Rivadavia, Chubut, Argentina
| | - Matías Damian Asencion Diez
- Laboratorio de Enzimología Molecular, 603337 Instituto de Agrobiotecnología del Litoral (UNL-CONICET) & Facultad de Bioquímica y Ciencias Biológicas , Santa Fe, Argentina
| |
Collapse
|
2
|
Tan X, Wang Z, Cheung U, Hu Z, Liu Q, Wang L, Sullivan MA, Cozzolino D, Gilbert RG. Liver glycogen fragility in the presence of hydrogen-bond breakers. Int J Biol Macromol 2024; 268:131741. [PMID: 38649083 DOI: 10.1016/j.ijbiomac.2024.131741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
Glycogen, a complex branched glucose polymer, is responsible for sugar storage in blood glucose homeostasis. It comprises small β particles bound together into composite α particles. In diabetic livers, α particles are fragile, breaking apart into smaller particles in dimethyl sulfoxide, DMSO; they are however stable in glycogen from healthy animals. We postulate that the bond between β particles in α particles involves hydrogen bonding. Liver-glycogen fragility in normal and db/db mice (an animal model for diabetes) is compared using various hydrogen-bond breakers (DMSO, guanidine and urea) at different temperatures. The results showed different degrees of α-particle disruption. Disrupted glycogen showed changes in the mid-infra-red spectrum that are related to hydrogen bonds. While glycogen α-particles are only fragile under harsh, non-physiological conditions, these results nevertheless imply that the bonding between β particles in α particles is different in diabetic livers compared to healthy, and is probably associated with hydrogen bonding.
Collapse
Affiliation(s)
- Xinle Tan
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Ziyi Wang
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Ut Cheung
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Zhenxia Hu
- Department of Pharmacy, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.
| | - Qinghua Liu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau SAR 999078, China
| | - Liang Wang
- Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Mitchell A Sullivan
- Glycation and Diabetes Group, Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland, 4012, Australia.
| | - Daniel Cozzolino
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Robert G Gilbert
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland 4072, Australia; Jiangsu Key Laboratory of Crop Genetics and Physiology/State Key Laboratory of Hybrid Rice, College of Agriculture, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
3
|
Miksch S, Orellana LH, Oggerin de Orube M, Vidal-Melgosa S, Solanki V, Hehemann JH, Amann R, Knittel K. Taxonomic and functional stability overrules seasonality in polar benthic microbiomes. THE ISME JOURNAL 2024; 18:wrad005. [PMID: 38365229 PMCID: PMC10811738 DOI: 10.1093/ismejo/wrad005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 02/18/2024]
Abstract
Coastal shelf sediments are hot spots of organic matter mineralization. They receive up to 50% of primary production, which, in higher latitudes, is strongly seasonal. Polar and temperate benthic bacterial communities, however, show a stable composition based on comparative 16S rRNA gene sequencing despite different microbial activity levels. Here, we aimed to resolve this contradiction by identifying seasonal changes at the functional level, in particular with respect to algal polysaccharide degradation genes, by combining metagenomics, metatranscriptomics, and glycan analysis in sandy surface sediments from Isfjorden, Svalbard. Gene expressions of diverse carbohydrate-active enzymes changed between winter and spring. For example, β-1,3-glucosidases (e.g. GH30, GH17, GH16) degrading laminarin, an energy storage molecule of algae, were elevated in spring, while enzymes related to α-glucan degradation were expressed in both seasons with maxima in winter (e.g. GH63, GH13_18, and GH15). Also, the expression of GH23 involved in peptidoglycan degradation was prevalent, which is in line with recycling of bacterial biomass. Sugar extractions from bulk sediments were low in concentrations during winter but higher in spring samples, with glucose constituting the largest fraction of measured monosaccharides (84% ± 14%). In porewater, glycan concentrations were ~18-fold higher than in overlying seawater (1107 ± 484 vs. 62 ± 101 μg C l-1) and were depleted in glucose. Our data indicate that microbial communities in sandy sediments digest and transform labile parts of photosynthesis-derived particulate organic matter and likely release more stable, glucose-depleted residual glycans of unknown structures, quantities, and residence times into the ocean, thus modulating the glycan composition of marine coastal waters.
Collapse
Affiliation(s)
- Sebastian Miksch
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
| | - Luis H Orellana
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
| | - Monike Oggerin de Orube
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
| | - Silvia Vidal-Melgosa
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
- MARUM MPG Bridge Group Marine Glycobiology, Center for Marine Environmental Sciences, University of Bremen, 28359 Bremen, Germany
| | - Vipul Solanki
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
| | - Jan-Hendrik Hehemann
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
- MARUM MPG Bridge Group Marine Glycobiology, Center for Marine Environmental Sciences, University of Bremen, 28359 Bremen, Germany
| | - Rudolf Amann
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
| | - Katrin Knittel
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
| |
Collapse
|
4
|
Zhang H, Hu W, Liu R, Bartlam M, Wang Y. Low and high nucleic acid content bacteria play discrepant roles in response to various carbon supply modes. Environ Microbiol 2023; 25:3703-3718. [PMID: 37964717 DOI: 10.1111/1462-2920.16539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 10/31/2023] [Indexed: 11/16/2023]
Abstract
Planktonic bacteria can be grouped into 'high nucleic acid content (HNA) bacteria' and 'low nucleic acid content (LNA) bacteria.' Nutrient input modes vary in environments, causing nutrient availability heterogeneity. We incubated them with equal amounts of total glucose added in a continuous/pulsed mode. The pulse-treated LNA bacteria exhibited twice the cell abundance and four times the viability of the continuous-treated LNA, while HNA did not show an adaptation to pulsed treatment. In structural equation modelling, LNA bacteria had higher path coefficients than HNA, between growth and carbon-saving metabolic pathways, intracellular ATP and the inorganic energy storage polymer, polyphosphate, indicating their low-cost growth, and flexible energy storage and utilisation. After incubation, the pulse-treated LNA bacteria contained more proteins and polysaccharides (0.00064, 0.0012 ng cell-1 ) than the continuous-treated LNA (0.00014, 0.00014 ng cell-1 ), conferring endurance and rapid response to pulses. Compared to LNA, HNA keystone taxa had stronger correlations with the primary glucose metabolism step, glycolysis, and occupied leading positions to explain the random forest model. They are essential to introduce glucose into the element cycling of the whole community under both treatments. Our work outlines a systematic bacterial response to carbon input.
Collapse
Affiliation(s)
- Hui Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, China
| | - Wei Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, China
| | - Ruidan Liu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, China
| | - Mark Bartlam
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, China
| | - Yingying Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, China
| |
Collapse
|
5
|
Bax HHM, van der Maarel MJEC, Jurak E. Alpha-1,4-transglycosylation Activity of GH57 Glycogen Branching Enzymes Is Higher in the Absence of a Flexible Loop with a Conserved Tyrosine Residue. Polymers (Basel) 2023; 15:2777. [PMID: 37447423 DOI: 10.3390/polym15132777] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Starch-like polymers can be created through the use of enzymatic modification with glycogen branching enzymes (GBEs). GBEs are categorized in the glycoside hydrolase (GH) family 13 and 57. Both GH13 and GH57 GBEs exhibit branching and hydrolytic activity. While GH13 GBEs are also capable of α-1,4-transglycosylation, it is yet unknown whether GH57 share this capability. Among the four crystal structures of GH57 GBEs that have been solved, a flexible loop with a conserved tyrosine was identified to play a role in the branching activity. However, it remains unclear whether this flexible loop is also involved in α-1,4-transglycosylation activity. We hypothesize that GH57 GBEs with the flexible loop and tyrosine are also capable of α-1,4-transglycosylation, similar to GH13 GBEs. The aim of the present study was to characterize the activity of GH57 GBEs to investigate a possible α-1,4-transglycosylation activity. Three GH57 GBEs were selected, one from Thermococcus kodakarensis with the flexible loop and two beta-strands; one from Thermotoga maritima, missing the flexible loop and beta-strands; and one from Meiothermus sp., missing the flexible loop but with the two beta-strands. The analysis of chain length distribution over time of modified maltooctadecaose, revealed, for the first time, that all three GH57 GBEs can generate chains longer than the substrate itself, showing that α-1,4-transglycosylation activity is generally present in GH57 GBEs.
Collapse
Affiliation(s)
- Hilda Hubertha Maria Bax
- Bioproduct Engineering, Engineering and Technology Institute Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | | - Edita Jurak
- Bioproduct Engineering, Engineering and Technology Institute Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
6
|
de Heer EC, Zois CE, Bridges E, van der Vegt B, Sheldon H, Veldman WA, Zwager MC, van der Sluis T, Haider S, Morita T, Baba O, Schröder CP, de Jong S, Harris AL, Jalving M. Glycogen synthase 1 targeting reveals a metabolic vulnerability in triple-negative breast cancer. J Exp Clin Cancer Res 2023; 42:143. [PMID: 37280675 PMCID: PMC10242793 DOI: 10.1186/s13046-023-02715-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/18/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND Hypoxia-induced glycogen turnover is implicated in cancer proliferation and therapy resistance. Triple-negative breast cancers (TNBCs), characterized by a hypoxic tumor microenvironment, respond poorly to therapy. We studied the expression of glycogen synthase 1 (GYS1), the key regulator of glycogenesis, and other glycogen-related enzymes in primary tumors of patients with breast cancer and evaluated the impact of GYS1 downregulation in preclinical models. METHODS mRNA expression of GYS1 and other glycogen-related enzymes in primary breast tumors and the correlation with patient survival were studied in the METABRIC dataset (n = 1904). Immunohistochemical staining of GYS1 and glycogen was performed on a tissue microarray of primary breast cancers (n = 337). In four breast cancer cell lines and a mouse xenograft model of triple-negative breast cancer, GYS1 was downregulated using small-interfering or stably expressed short-hairpin RNAs to study the effect of downregulation on breast cancer cell proliferation, glycogen content and sensitivity to various metabolically targeted drugs. RESULTS High GYS1 mRNA expression was associated with poor patient overall survival (HR 1.20, P = 0.009), especially in the TNBC subgroup (HR 1.52, P = 0.014). Immunohistochemical GYS1 expression in primary breast tumors was highest in TNBCs (median H-score 80, IQR 53-121) and other Ki67-high tumors (median H-score 85, IQR 57-124) (P < 0.0001). Knockdown of GYS1 impaired proliferation of breast cancer cells, depleted glycogen stores and delayed growth of MDA-MB-231 xenografts. Knockdown of GYS1 made breast cancer cells more vulnerable to inhibition of mitochondrial proteostasis. CONCLUSIONS Our findings highlight GYS1 as potential therapeutic target in breast cancer, especially in TNBC and other highly proliferative subsets.
Collapse
Affiliation(s)
- E C de Heer
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, PO Box 30.001, 9700 RB, Groningen, The Netherlands
| | - C E Zois
- Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, Hypoxia and Angiogenesis Group, Cancer Research UK Molecular Oncology Laboratories, Oxford, OX3 9DS, UK.
- Department of Radiotherapy and Oncology, School of Health, Democritus University of Thrace, Alexandroupolis, Greece.
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Molecular Oncology Laboratories, Oxford University, Oxford, OX3 9DS, UK.
| | - E Bridges
- Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, Hypoxia and Angiogenesis Group, Cancer Research UK Molecular Oncology Laboratories, Oxford, OX3 9DS, UK
| | - B van der Vegt
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - H Sheldon
- Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, Hypoxia and Angiogenesis Group, Cancer Research UK Molecular Oncology Laboratories, Oxford, OX3 9DS, UK
| | - W A Veldman
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, PO Box 30.001, 9700 RB, Groningen, The Netherlands
| | - M C Zwager
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - T van der Sluis
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - S Haider
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - T Morita
- Tokushima University Graduate School, 3-18-15, Kuramoto-Cho, Tokushima, 770-8504, Japan
| | - O Baba
- Tokushima University Graduate School, 3-18-15, Kuramoto-Cho, Tokushima, 770-8504, Japan
| | - C P Schröder
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, PO Box 30.001, 9700 RB, Groningen, The Netherlands
- Department of Medical Oncology, Antoni Van Leeuwenhoek-Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - S de Jong
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, PO Box 30.001, 9700 RB, Groningen, The Netherlands
| | - A L Harris
- Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, Hypoxia and Angiogenesis Group, Cancer Research UK Molecular Oncology Laboratories, Oxford, OX3 9DS, UK
| | - M Jalving
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, PO Box 30.001, 9700 RB, Groningen, The Netherlands.
| |
Collapse
|
7
|
Yamada R, Han SR, Park H, Oh TJ. Complete Genome Analysis of Subtercola sp. PAMC28395: Genomic Insights into Its Potential Role for Cold Adaptation and Biotechnological Applications. Microorganisms 2023; 11:1480. [PMID: 37374983 DOI: 10.3390/microorganisms11061480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
This study reports the complete genome sequence of Subtercola sp. PAMC28395, a strain isolated from cryoconite in Uganda. This strain possesses several active carbohydrate-active enzyme (CAZyme) genes involved in glycogen and trehalose metabolism. Additionally, two specific genes associated with α-galactosidase (GH36) and bacterial alpha-1,2-mannosidase (GH92) were identified in this strain. The presence of these genes indicates the likelihood that they can be expressed, enabling the strain to break down specific polysaccharides derived from plants or the shells of nearby crabs. The authors performed a comparative analysis of CAZyme patterns and biosynthetic gene clusters (BGCs) in several Subtercola strains and provided annotations describing the unique characteristics of these strains. The comparative analysis of BGCs revealed that four strains, including PAMC28395, have oligosaccharide BGCs, and we confirmed that the pentose phosphate pathway was configured perfectly in the genome of PAMC28395, which may be associated with adaptation to low temperatures. Additionally, all strains contained antibiotic resistance genes, indicating a complex self-resistance system. These results suggest that PAMC28395 can adapt quickly to the cold environment and produce energy autonomously. This study provides valuable information on novel functional enzymes, particularly CAZymes, that operate at low temperatures and can be used for biotechnological applications and fundamental research purposes.
Collapse
Affiliation(s)
- Ryoichi Yamada
- Department of Life Science and Biochemical Engineering, SunMoon University, Asan 31460, Republic of Korea
- Bio Big Data-Based Chungnam Smart Clean Research Leader Training Program, SunMoon University, Asan 31460, Republic of Korea
| | - So-Ra Han
- Department of Life Science and Biochemical Engineering, SunMoon University, Asan 31460, Republic of Korea
- Bio Big Data-Based Chungnam Smart Clean Research Leader Training Program, SunMoon University, Asan 31460, Republic of Korea
- Genome-Based BioIT Convergence Institute, Asan 31460, Republic of Korea
| | - Hyun Park
- Division of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Tae-Jin Oh
- Department of Life Science and Biochemical Engineering, SunMoon University, Asan 31460, Republic of Korea
- Bio Big Data-Based Chungnam Smart Clean Research Leader Training Program, SunMoon University, Asan 31460, Republic of Korea
- Genome-Based BioIT Convergence Institute, Asan 31460, Republic of Korea
- Department of Pharmaceutical Engineering and Biotechnology, SunMoon University, Asan 31460, Republic of Korea
| |
Collapse
|
8
|
Fawaz R, Bingham C, Nayebi H, Chiou J, Gilbert L, Park SH, Geiger JH. The Structure of Maltooctaose-Bound Escherichia coli Branching Enzyme Suggests a Mechanism for Donor Chain Specificity. Molecules 2023; 28:molecules28114377. [PMID: 37298853 DOI: 10.3390/molecules28114377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Glycogen is the primary storage polysaccharide in bacteria and animals. It is a glucose polymer linked by α-1,4 glucose linkages and branched via α-1,6-linkages, with the latter reaction catalyzed by branching enzymes. Both the length and dispensation of these branches are critical in defining the structure, density, and relative bioavailability of the storage polysaccharide. Key to this is the specificity of branching enzymes because they define branch length. Herein, we report the crystal structure of the maltooctaose-bound branching enzyme from the enterobacteria E. coli. The structure identifies three new malto-oligosaccharide binding sites and confirms oligosaccharide binding in seven others, bringing the total number of oligosaccharide binding sites to twelve. In addition, the structure shows distinctly different binding in previously identified site I, with a substantially longer glucan chain ordered in the binding site. Using the donor oligosaccharide chain-bound Cyanothece branching enzyme structure as a guide, binding site I was identified as the likely binding surface for the extended donor chains that the E. coli branching enzyme is known to transfer. Furthermore, the structure suggests that analogous loops in branching enzymes from a diversity of organisms are responsible for branch chain length specificity. Together, these results suggest a possible mechanism for transfer chain specificity involving some of these surface binding sites.
Collapse
Affiliation(s)
- Remie Fawaz
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Courtney Bingham
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Hadi Nayebi
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Janice Chiou
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Lindsey Gilbert
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Sung Hoon Park
- Department of Food Service Management and Nutrition, College of Natural Sciences, Sangmyung University, Hongjidong, Jongnogu, Seoul 03016, Republic of Korea
| | - James H Geiger
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
9
|
Liu QH, Zhang YD, Ma ZW, Qian ZM, Jiang ZH, Zhang W, Wang L. Fractional extraction and structural characterization of glycogen particles from the whole cultivated caterpillar fungus Ophiocordyceps sinensis. Int J Biol Macromol 2023; 229:507-514. [PMID: 36603712 DOI: 10.1016/j.ijbiomac.2022.12.319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023]
Abstract
Ophiocordyceps sinensis (syn. Cordyceps sinensis) is a valuable medicinal fungus in traditional Chinese medicine, and one or more polysaccharides are the key constituents with important medical effects. Glycogen as a functional polysaccharide is widely identified in eukaryotes including fungi. However, there is no definitive report of glycogen presence in O. sinensis. In this study, we carefully fractionated polysaccharides from cultivated caterpillar fungus O. sinensis, which were then characterized via methods for glycogen analysis. According to the results, 1.03 ± 0.43 % of polysaccharides were quantified via amyloglucosidase digestion in the whole cultivated caterpillar fungus, which had a typical spherical shape under transmission electron microscope with an average peak radius of 37.63 ± 0.57 nm via size exclusion chromatography and an average chain length of 12.47 ± 0.94 degree of polymerization via fluorophore-assisted capillary electrophoresis. Taken together, this study confirmed that the polysaccharides extracted form O. sinensis were mostly glycogen.
Collapse
Affiliation(s)
- Qing-Hua Liu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macao, Macau
| | - Yu-Dong Zhang
- Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Zhang-Wen Ma
- Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Zheng-Ming Qian
- Dongguan East Sunshine Cordyceps Sinensis Research and Development Company, Dongguan, Guangdong Province, China
| | - Zhi-Hong Jiang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macao, Macau
| | - Wei Zhang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macao, Macau.
| | - Liang Wang
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
10
|
Li F, Wang MM, Liu QH, Ma ZW, Wang JJ, Wang ZY, Tang JW, Lyu JW, Zhu ZB, Wang L. Molecular mechanisms of glycogen particle assembly in Escherichia coli. Carbohydr Polym 2023; 299:120200. [PMID: 36876811 DOI: 10.1016/j.carbpol.2022.120200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/02/2022] [Accepted: 10/05/2022] [Indexed: 11/09/2022]
Abstract
It has been reported that glycogen in Escherichia coli has two structural states, that is, fragility and stability, which alters dynamically. However, molecular mechanisms behind the structural alterations are not fully understood. In this study, we focused on the potential roles of two important glycogen degradation enzymes, glycogen phosphorylase (glgP) and glycogen debranching enzyme (glgX), in glycogen structural alterations. The fine molecular structure of glycogen particles in Escherichia coli and three mutants (ΔglgP, ΔglgX and ΔglgP/ΔglgX) were examined, which showed that glycogen in E. coli ΔglgP and E. coli ΔglgP/ΔglgX were consistently fragile while being consistently stable in E. coli ΔglgX, indicating the dominant role of GP in glycogen structural stability control. In sum, our study concludes that glycogen phosphorylase is essential in glycogen structural stability, leading to molecular insights into structural assembly of glycogen particles in E. coli.
Collapse
Affiliation(s)
- Fen Li
- Laboratory Medicine, The Fifth People's Hospital of Huai'an, Huai'an, Jiangsu Province, China
| | - Meng-Meng Wang
- Department of Pharmacy, Qingdao Eighth People's Hospital, Qingdao, Shandong Province, China; Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Qing-Hua Liu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Zhang-Wen Ma
- Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Jun-Jiao Wang
- Department of Intelligent Medical Engineering, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Zi-Yi Wang
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Jia-Wei Tang
- Department of Intelligent Medical Engineering, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Jing-Wen Lyu
- Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong Province, China
| | - Zuo-Bin Zhu
- Department of Genetics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu Province, China.
| | - Liang Wang
- Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong Province, China.
| |
Collapse
|
11
|
Tang JW, Qiao R, Xiong XS, Tang BX, He YW, Yang YY, Ju P, Wen PB, Zhang X, Wang L. Rapid discrimination of glycogen particles originated from different eukaryotic organisms. Int J Biol Macromol 2022; 222:1027-1036. [PMID: 36181881 DOI: 10.1016/j.ijbiomac.2022.09.233] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022]
Abstract
There are many commercially available glycogen particles in the market due to their bioactive functions as food additive, drug carrier and natural moisturizer, etc. It would be beneficial to rapidly determine the origins of commercially-available glycogen particles, which could facilitate the establishment of quality control methodology for glycogen-containing products. With its non-destructive, label-free and low-cost features, surface enhanced Raman spectroscopy (SERS) is an attractive technique with high potential to discriminate chemical compounds in a rapid mode. In this study, we applied the combination of SERS technique and machine leaning algorithms on glycogen analysis, which successfully predicted the origins of glycogen particles from a variety of organisms with convolutional neural network (CNN) algorithm plus attention mechanism having the best computational performance (5-fold cross validation accuracy = 96.97 %). In sum, this is the first study focusing on the discrimination of commercial glycogen particles originated from different organisms, which holds the application potential in quality control of glycogen-containing products.
Collapse
Affiliation(s)
- Jia-Wei Tang
- Department of Intelligent Medical Engineering, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Rui Qiao
- Deparment of Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Xue-Song Xiong
- Laboratory Medicine, The Fifth People's Hospital of Huai'an, Huai'an, Jiangsu Province, China
| | - Bing-Xin Tang
- Department of Laboratory Medicine, Medical Technology School, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - You-Wei He
- School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Ying-Ying Yang
- School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Pei Ju
- School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Peng-Bo Wen
- Department of Intelligent Medical Engineering, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu Province, China.
| | - Xiao Zhang
- Department of Intelligent Medical Engineering, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu Province, China.
| | - Liang Wang
- Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong Province, China.
| |
Collapse
|
12
|
Genomic analysis of intestinal flora and liver genes in mice with circadian rhythm disorders fed with flavonoids from Sedum aizoon L. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
13
|
Perez‐Molphe‐Montoya E, Küsel K, Overholt WA. Redefining the phylogenetic and metabolic diversity of phylum Omnitrophota. Environ Microbiol 2022; 24:5437-5449. [DOI: 10.1111/1462-2920.16170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022]
Affiliation(s)
| | - Kirsten Küsel
- Institute of Biodiversity Friedrich Schiller University Jena Germany
- The German Center for Integrative Biodiversity Research (iDiv) Halle‐Jena‐ Leipzig Germany
| | - Will A. Overholt
- Institute of Biodiversity Friedrich Schiller University Jena Germany
| |
Collapse
|
14
|
Chen K, Peng C, Chi F, Yu C, Yang Q, Li Z. Antibacterial and Antibiofilm Activities of Chlorogenic Acid Against Yersinia enterocolitica. Front Microbiol 2022; 13:885092. [PMID: 35602020 PMCID: PMC9117966 DOI: 10.3389/fmicb.2022.885092] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
Nowadays, developing new and natural compounds with antibacterial activities from plants has become a promising approach to solve antibiotic resistance of pathogenic bacteria. Chlorogenic acid (CA), as a kind of phenolic acid existing in many plants, has been found to process multifunctional activities including antibacterial activity. Herein, the antibacterial and antibiofilm activities of CA against Yersinia enterocolitica (Y. enterocolitica) were tested for the first time, and its mechanism of action was investigated. It was demonstrated that CA could exert outstanding antibacterial activity against Y. enterocolitica. Biofilm susceptibility assays further indicated that CA could inhibit biofilm formation and decrease the established biofilm biomass of Y. enterocolitica. It was deduced that through binding to Y. enterocolitica, CA destroyed the cell membrane, increased the membrane permeability, and led to bacterial cell damage. In addition, the transcriptomic analysis revealed that CA could disorder many physiological pathways, mainly including the ones of antagonizing biofilms and increasing cell membrane permeability. Finally, the spiked assay showed that the growth of Y. enterocolitica in milk was significantly inhibited by CA. Taken together, CA, as an effective bactericidal effector with application potential, exerts antagonistic activity against Y. enterocolitica by mainly intervening biofilm formation and membrane permeability-related physiological pathways.
Collapse
Affiliation(s)
- Kun Chen
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Chuantao Peng
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China.,Qingdao Special Food Research Institute, Qingdao, China
| | - Fang Chi
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Chundi Yu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Qingli Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Zhaojie Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China.,Qingdao Special Food Research Institute, Qingdao, China
| |
Collapse
|
15
|
Microbial storage and its implications for soil ecology. THE ISME JOURNAL 2022; 16:617-629. [PMID: 34593996 PMCID: PMC8857262 DOI: 10.1038/s41396-021-01110-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 08/31/2021] [Accepted: 09/07/2021] [Indexed: 02/08/2023]
Abstract
Organisms throughout the tree of life accumulate chemical resources, in particular forms or compartments, to secure their availability for future use. Here we review microbial storage and its ecological significance by assembling several rich but disconnected lines of research in microbiology, biogeochemistry, and the ecology of macroscopic organisms. Evidence is drawn from various systems, but we pay particular attention to soils, where microorganisms play crucial roles in global element cycles. An assembly of genus-level data demonstrates the likely prevalence of storage traits in soil. We provide a theoretical basis for microbial storage ecology by distinguishing a spectrum of storage strategies ranging from surplus storage (storage of abundant resources that are not immediately required) to reserve storage (storage of limited resources at the cost of other metabolic functions). This distinction highlights that microorganisms can invest in storage at times of surplus and under conditions of scarcity. We then align storage with trait-based microbial life-history strategies, leading to the hypothesis that ruderal species, which are adapted to disturbance, rely less on storage than microorganisms adapted to stress or high competition. We explore the implications of storage for soil biogeochemistry, microbial biomass, and element transformations and present a process-based model of intracellular carbon storage. Our model indicates that storage can mitigate against stoichiometric imbalances, thereby enhancing biomass growth and resource-use efficiency in the face of unbalanced resources. Given the central roles of microbes in biogeochemical cycles, we propose that microbial storage may be influential on macroscopic scales, from carbon cycling to ecosystem stability.
Collapse
|
16
|
Li F, Xiong XS, Yang YY, Wang JJ, Wang MM, Tang JW, Liu QH, Wang L, Gu B. Effects of NaCl Concentrations on Growth Patterns, Phenotypes Associated With Virulence, and Energy Metabolism in Escherichia coli BW25113. Front Microbiol 2021; 12:705326. [PMID: 34484145 PMCID: PMC8415458 DOI: 10.3389/fmicb.2021.705326] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/21/2021] [Indexed: 12/02/2022] Open
Abstract
According to the sit-and-wait hypothesis, long-term environmental survival is positively correlated with increased bacterial pathogenicity because high durability reduces the dependence of transmission on host mobility. Many indirectly transmitted bacterial pathogens, such as Mycobacterium tuberculosis and Burkhoderia pseudomallei, have high durability in the external environment and are highly virulent. It is possible that abiotic stresses may activate certain pathways or the expressions of certain genes, which might contribute to bacterial durability and virulence, synergistically. Therefore, exploring how bacterial phenotypes change in response to environmental stresses is important for understanding their potentials in host infections. In this study, we investigated the effects of different concentrations of salt (sodium chloride, NaCl), on survival ability, phenotypes associated with virulence, and energy metabolism of the lab strain Escherichia coli BW25113. In particular, we investigated how NaCl concentrations influenced growth patterns, biofilm formation, oxidative stress resistance, and motile ability. In terms of energy metabolism that is central to bacterial survival, glucose consumption, glycogen accumulation, and trehalose content were measured in order to understand their roles in dealing with the fluctuation of osmolarity. According to the results, trehalose is preferred than glycogen at high NaCl concentration. In order to dissect the molecular mechanisms of NaCl effects on trehalose metabolism, we further checked how the impairment of trehalose synthesis pathway (otsBA operon) via single-gene mutants influenced E. coli durability and virulence under salt stress. After that, we compared the transcriptomes of E. coli cultured at different NaCl concentrations, through which differentially expressed genes (DEGs) and differential pathways with statistical significance were identified, which provided molecular insights into E. coli responses to NaCl concentrations. In sum, this study explored the in vitro effects of NaCl concentrations on E. coli from a variety of aspects and aimed to facilitate our understanding of bacterial physiological changes under salt stress, which might help clarify the linkages between bacterial durability and virulence outside hosts under environmental stresses.
Collapse
Affiliation(s)
- Fen Li
- Medical Technology School of Xuzhou Medical University, Xuzhou, China
| | - Xue-Song Xiong
- Medical Technology School of Xuzhou Medical University, Xuzhou, China
| | - Ying-Ying Yang
- School of Life Sciences, Xuzhou Medical University, Xuzhou, China
| | - Jun-Jiao Wang
- Department of Bioinformatics, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, China
| | - Meng-Meng Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China.,Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Jia-Wei Tang
- Department of Bioinformatics, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, China
| | - Qing-Hua Liu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, China
| | - Liang Wang
- Department of Bioinformatics, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, China.,Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Bing Gu
- Medical Technology School of Xuzhou Medical University, Xuzhou, China.,Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
17
|
Liu QH, Tang JW, Wen PB, Wang MM, Zhang X, Wang L. From Prokaryotes to Eukaryotes: Insights Into the Molecular Structure of Glycogen Particles. Front Mol Biosci 2021; 8:673315. [PMID: 33996916 PMCID: PMC8116748 DOI: 10.3389/fmolb.2021.673315] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/07/2021] [Indexed: 12/25/2022] Open
Abstract
Glycogen is a highly-branched polysaccharide that is widely distributed across the three life domains. It has versatile functions in physiological activities such as energy reserve, osmotic regulation, blood glucose homeostasis, and pH maintenance. Recent research also confirms that glycogen plays important roles in longevity and cognition. Intrinsically, glycogen function is determined by its structure that has been intensively studied for many years. The recent association of glycogen α-particle fragility with diabetic conditions further strengthens the importance of glycogen structure in its function. By using improved glycogen extraction procedures and a series of advanced analytical techniques, the fine molecular structure of glycogen particles in human beings and several model organisms such as Escherichia coli, Caenorhabditis elegans, Mus musculus, and Rat rattus have been characterized. However, there are still many unknowns about the assembly mechanisms of glycogen particles, the dynamic changes of glycogen structures, and the composition of glycogen associated proteins (glycogen proteome). In this review, we explored the recent progresses in glycogen studies with a focus on the structure of glycogen particles, which may not only provide insights into glycogen functions, but also facilitate the discovery of novel drug targets for the treatment of diabetes mellitus.
Collapse
Affiliation(s)
- Qing-Hua Liu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China.,Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Jia-Wei Tang
- Department of Bioinformatics, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, China
| | - Peng-Bo Wen
- Department of Bioinformatics, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, China
| | - Meng-Meng Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Xiao Zhang
- Department of Bioinformatics, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, China
| | - Liang Wang
- Department of Bioinformatics, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
18
|
Wang M, Liu Q, Kang X, Zhu Z, Yang H, Xi X, Zhang X, Du Y, Guo M, Tang D, Wang L. Glycogen Metabolism Impairment via Single Gene Mutation in the glgBXCAP Operon Alters the Survival Rate of Escherichia coli Under Various Environmental Stresses. Front Microbiol 2020; 11:588099. [PMID: 33101261 PMCID: PMC7546213 DOI: 10.3389/fmicb.2020.588099] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022] Open
Abstract
Glycogen is a highly branched polysaccharide that is widely present in all life domains. It has been identified in many bacterial species and functions as an important energy storage compound. In addition, it plays important roles in bacterial transmission, pathogenicity, and environmental viability. There are five essential enzymes (coding genes) directly involved in bacterial glycogen metabolism, which forms a single operon glgBXCAP with a suboperonic promoter in glgC gene in Escherichia coli. Currently, there is no comparative study of how the disruptions of the five glycogen metabolism genes influence bacterial phenotypes, such as growth rate, biofilm formation, and environmental survival, etc. In this study, we systematically and comparatively studied five E. coli single-gene mutants (ΔglgC, ΔglgA, ΔglgB, ΔglgP, ΔglgX) in terms of glycogen metabolism and explored their phenotype changes with a focus on environmental stress endurance, such as nutrient deprivation, low temperature, desiccation, and oxidation, etc. Biofilm formation in wild-type and mutant strains was also compared. E. coli wild-type stores the highest glycogen content after around 20-h culture while disruption of degradation genes (glgP, glgX) leads to continuous accumulation of glycogen. However, glycogen primary structure was abnormally changed in ΔglgP and ΔglgX. Meanwhile, increased accumulation of glycogen facilitates the growth of E. coli mutants but reduces glucose consumption in liquid culture and vice versa. Glycogen metabolism disruption also significantly and consistently increases biofilm formation in all the mutants. As for environmental stress endurance, glycogen over-accumulating mutants have enhanced starvation viability and reduced desiccation viability while all mutants showed decreased survival rate at low temperature. No consistent results were found for oxidative stress resistance in terms of glycogen metabolism disruptions, though ΔglgA shows highest resistance toward oxidation with unknown mechanisms. In sum, single gene disruptions in glgBXCAP operon significantly influence bacterial growth and glucose consumption during culture. Accumulation and structure of intracellular glycogen were also significantly altered. In addition, we observed significant changes in E. coli environmental viabilities due to the deletions of certain genes in the operon. Further investigations shall be focused on the molecular mechanisms behind these phenotype changes.
Collapse
Affiliation(s)
- Mengmeng Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China.,Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Qinghua Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China.,Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Xingxing Kang
- Department of Bioinformatics, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, China
| | - Zuobin Zhu
- Department of Genetics, School of Life Sciences, Xuzhou Medical University, Xuzhou, China
| | - Huan Yang
- School of Laboratory Medicine, Xuzhou Medical University, Xuzhou, China
| | - Xiangyu Xi
- Xuzhou Infectious Disease Hospital, Xuzhou, China
| | - Xiao Zhang
- Department of Bioinformatics, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, China
| | - Yan Du
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China.,Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Mengzhe Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China.,Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Daoquan Tang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China.,Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Liang Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China.,Department of Bioinformatics, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
19
|
Liu Q, Zhu Z, Wang M, Wang Y, Zhang P, Wang H, Liang M, Li Y, Deng B, Tang D, Gilbert RG, Wang L. Characterization of glycogen molecular structure in the worm Caenorhabditis elegans. Carbohydr Polym 2020; 237:116181. [PMID: 32241425 DOI: 10.1016/j.carbpol.2020.116181] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 12/21/2022]
Abstract
Glycogen, a glucose homopolymer with many glucose chains, is the primary blood-sugar reservoir in many organisms. It comprises β particles (∼20 nm) which can bind together to form large α particles with a rosette morphology. When dimethyl sulfoxide (DMSO) is added to glycogen from diabetic livers, α particles break apart to β particles ('fragility'), possibly due to H-bond disruption; this is not seen in healthy livers. Glycogen α and β particles, and α-particle fragility, are observed in mammals and bacteria, and are examined here in the worm Caenorhabditis elegans, with glycogen from two C. elegans strains, cultured in normal and high-glucose conditions. There were mainly β particles, with some large α particles. Most particles were fragile in DMSO. Growing in a high-glucose medium results in more long chains and more fragility, consistent with previous observations in diabetic animal models. Why high glucose levels facilitate fragility is worthy of further investigation.
Collapse
Affiliation(s)
- Qinghua Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221000, China; Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221000, China
| | - Zuobin Zhu
- Department of Genetics, School of Life Science, Xuzhou Medical University, Xuzhou, Jiangsu, 221000, China
| | - Mengmeng Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221000, China; Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221000, China
| | - Yuechen Wang
- Department of Genetics, School of Life Science, Xuzhou Medical University, Xuzhou, Jiangsu, 221000, China
| | - Peng Zhang
- School of Electronic Information and Engineering, Yangtze Normal University, Chongqing, 408003, China
| | - Hao Wang
- School of The First Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, 221000, China
| | - Mengyu Liang
- School of The First Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, 221000, China
| | - Ying Li
- Department of Clinical Microbiology, School of Medical Laboratory, Xuzhou Medical University, Xuzhou, Jiangsu, 221000, China
| | - Bin Deng
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Daoquan Tang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221000, China; Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221000, China
| | - Robert G Gilbert
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, 4072, Australia; Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland, 4072, Australia; Joint International Research Laboratory of Agriculture and Agri-Product Safety, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| | - Liang Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221000, China; Department of Bioinformatics, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu, 221000, China.
| |
Collapse
|