1
|
Nayak A, Harshitha M, Dubey S, Munang'andu HM, Chakraborty A, Karunasagar I, Maiti B. Evaluation of Probiotic Efficacy of Bacillus subtilis RODK28110C3 Against Pathogenic Aeromonas hydrophila and Edwardsiella tarda Using In Vitro Studies and In Vivo Gnotobiotic Zebrafish Gut Model System. Probiotics Antimicrob Proteins 2024; 16:1623-1637. [PMID: 37486455 DOI: 10.1007/s12602-023-10127-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2023] [Indexed: 07/25/2023]
Abstract
The indiscriminate use of antibiotics in aquaculture has led to the emergence of resistance; hence, eco-friendly, host-specific alternatives to mitigate bacterial infections have become imminent. In this study, bacteria that could possibly serve as probiotics were isolated and evaluated for their efficacy with in vitro experiments and in vivo zebrafish gut model. One isolate from each of the 23 rohu fish (Labeo rohita) was shortlisted after preliminary screening of several isolates and tested for their ability to inhibit two important warm water bacterial fish pathogens, Aeromonas hydrophila, and Edwardsiella tarda. An isolate (RODK28110C3) that showed broad-spectrum inhibitory activity against a battery of different isolates of the two fish pathogens included in this study and maintained in our repository was selected for further characterization. The culture was identified phenotypically as Bacillus subtilis and confirmed by 16S rDNA sequencing. The isolate was able to hydrolyze fish feed constituents that include starch, protein, and cellulose. Further in vitro tests ensured that the potential isolate with probiotic attributes could tolerate different gut conditions, which included a range of pH, salinity, and varying concentrations of bile salt. Exposure of 4 days post fertilization zebrafish embryos to the RFP-tagged isolate confirmed the colonization of B. subtilis in the gut of the zebrafish embryo, which is an important attribute of a probiotic. The isolate was able to inhibit both A. hydrophila and E. tarda in gnotobiotic zebrafish embryo in triplicate. The study demonstrates the probiotic characteristics of the B. subtilis isolated from L. rohita and its ability to inhibit A. hydrophila and E. tarda using in vitro conditions and in the zebrafish gut and could serve as an effective alternative to antibiotics in aquaculture.
Collapse
Affiliation(s)
- Ashwath Nayak
- Division of Infectious Diseases, Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Paneer Campus, Deralakatte, Mangaluru, 575018, India
| | - Mave Harshitha
- Division of Infectious Diseases, Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Paneer Campus, Deralakatte, Mangaluru, 575018, India
| | - Saurabh Dubey
- Faculty of Veterinary Medicine, Department of Production Animal Clinical Sciences, Section of Experimental Biomedicine, Norwegian University of Life Sciences, Ås, Norway
| | | | - Anirban Chakraborty
- Division of Molecular Genetics and Cancer, Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Paneer Campus, Deralakatte, Mangaluru, 575018, India
| | - Indrani Karunasagar
- Nitte (Deemed to be University), DST Technology Enabling Centre, Paneer Campus, Deralakatte, Mangaluru, 575018, India
| | - Biswajit Maiti
- Division of Infectious Diseases, Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Paneer Campus, Deralakatte, Mangaluru, 575018, India.
| |
Collapse
|
2
|
Wang C, Sun S, Wang P, Zhao H, Li W. Nanotechnology-based analytical techniques for the detection of contaminants in aquatic products. Talanta 2024; 269:125462. [PMID: 38039671 DOI: 10.1016/j.talanta.2023.125462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/26/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023]
Abstract
Food safety of aquatic products has attracted considerable attention worldwide. Although a series of conventional bioassays and instrumental methods have been developed for the detection of pathogenic bacteria, heavy metal residues, marine toxins, and biogenic amines during the production and storage of fish, shrimp, crabs et al., the nanotechnology-based analyses still have their advantages and are promising since they are cost-efficient, highly sensitive and selective, easy to conduct, facial design, often require no sophisticated instruments but with excellent detection performance. This review aims to summarize the advances of various biosensing strategies for bacteria, metal ions, and small molecule contaminants in aquatic products during the last five years, The review highlights the development in nanotechnologies applied for biorecognition process, signal transduction and amplification methods in each novel approach, the nuclease-mediated DNA amplification, nanomaterials (noble metal nanoparticle, metal-organic frameworks, carbon dots), lateral flow-based biosensor, surface-enhanced Raman scattering, microfluidic chip, and molecular imprinting technologies were especially emphasized. Moreover, this study provides a view of current accomplishments, challenges, and future development directions of nanotechnology in aquatic product safety evaluation.
Collapse
Affiliation(s)
- Chengke Wang
- College of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Green Food Processing and Quality Control, Ludong University, Yantai, 264025, PR China; Institute of Bio-Nanotechnology, Ludong University, Yantai, 264025, PR China.
| | - Shuyang Sun
- College of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Green Food Processing and Quality Control, Ludong University, Yantai, 264025, PR China; Institute of Bio-Nanotechnology, Ludong University, Yantai, 264025, PR China.
| | - Ping Wang
- College of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Green Food Processing and Quality Control, Ludong University, Yantai, 264025, PR China; Institute of Bio-Nanotechnology, Ludong University, Yantai, 264025, PR China
| | - Huawei Zhao
- College of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Green Food Processing and Quality Control, Ludong University, Yantai, 264025, PR China; Institute of Bio-Nanotechnology, Ludong University, Yantai, 264025, PR China
| | - Wenling Li
- College of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Green Food Processing and Quality Control, Ludong University, Yantai, 264025, PR China
| |
Collapse
|
3
|
Hamer M, Watanabe O, Saraullo V, Ortega F, Sánchez C, Martínez M, Brihuega B, Grune Loffler S. Optimization and comparative analysis of LAMP and PCR techniques for the detection of leptospiral DNA in Golden Syrian hamsters. Vet Res Commun 2024; 48:103-111. [PMID: 37540477 DOI: 10.1007/s11259-023-10183-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/20/2023] [Indexed: 08/05/2023]
Abstract
Leptospirosis is a zoonotic disease with significant public health and economic impact worldwide. Rapid and accurate diagnosis is essential for effective prevention and treatment. This study optimized a loop-mediated isothermal amplification (LAMP) assay using BFo isothermal DNA polymerase with different colorimetric indicators. LAMP was able to detect DNA from pathogenic and intermediate leptospires, while non-pathogenic leptospires and other non-leptospiral microorganisms were negative. LAMP assay combined with calcein showed a tenfold higher limit of detection (1 ng of leptospiral DNA per reaction) than LAMP combined with hydroxynaphthol blue or end-point PCR lipL32 (10 ng of DNA per reaction). Animal samples were collected from infected and non-infected Golden Syrian hamsters (Mesocricetus auratus) to evaluate and compare the performance of LAMP and PCR. These techniques showed a substantial agreement according to Cohen's kappa statistic, being both useful techniques for detecting leptospiral DNA in clinical samples. Overall, this study demonstrates that the LAMP assay is a sensitive, specific, rapid, and simple tool for the detection of leptospiral DNA. It has the potential to facilitate the diagnosis of leptospirosis, particularly in low-income regions with limited diagnosis resources.
Collapse
Affiliation(s)
- Micaela Hamer
- Laboratory of Leptospirosis (WOAH Reference Laboratory), Institute of Veterinary Pathobiology- UEDD IPVET, National Institute of Agricultural Technology (INTA) - National Research Council of Argentina (CONICET), Buenos Aires, Argentina.
| | - Olivia Watanabe
- Laboratory of Leptospirosis (WOAH Reference Laboratory), Institute of Veterinary Pathobiology- UEDD IPVET, National Institute of Agricultural Technology (INTA) - National Research Council of Argentina (CONICET), Buenos Aires, Argentina
| | - Vanina Saraullo
- Laboratory of Leptospirosis (WOAH Reference Laboratory), Institute of Veterinary Pathobiology- UEDD IPVET, National Institute of Agricultural Technology (INTA) - National Research Council of Argentina (CONICET), Buenos Aires, Argentina
| | - Facundo Ortega
- Laboratory of Leptospirosis (WOAH Reference Laboratory), Institute of Veterinary Pathobiology- UEDD IPVET, National Institute of Agricultural Technology (INTA) - National Research Council of Argentina (CONICET), Buenos Aires, Argentina
| | - Cristina Sánchez
- Laboratory of Leptospirosis (WOAH Reference Laboratory), Institute of Veterinary Pathobiology- UEDD IPVET, National Institute of Agricultural Technology (INTA) - National Research Council of Argentina (CONICET), Buenos Aires, Argentina
| | - Mara Martínez
- Laboratory of Leptospirosis (WOAH Reference Laboratory), Institute of Veterinary Pathobiology- UEDD IPVET, National Institute of Agricultural Technology (INTA) - National Research Council of Argentina (CONICET), Buenos Aires, Argentina
| | - Bibiana Brihuega
- Laboratory of Leptospirosis (WOAH Reference Laboratory), Institute of Veterinary Pathobiology- UEDD IPVET, National Institute of Agricultural Technology (INTA) - National Research Council of Argentina (CONICET), Buenos Aires, Argentina
- Veterinary School, University of El Salvador, Buenos Aires, Argentina
| | - Sylvia Grune Loffler
- Centre of Human and Animal Virology (CEVHAN), Interamerican Open University (UAI) - National Research Council of Argentina (CONICET), Buenos Aires, Argentina
| |
Collapse
|
4
|
Abusheraida NSA, AlBaker AAH, Aljabri ASA, Abdelrahman HA, Al-Mana H, Wilson GJ, Anan KA, Eltai NO. Rapid Visual Detection of Methicillin-Resistant Staphylococcus aureus in Human Clinical Samples via Closed LAMP Assay Targeting mecA and spa Genes. Microorganisms 2024; 12:157. [PMID: 38257983 PMCID: PMC10819026 DOI: 10.3390/microorganisms12010157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
The emergence of antimicrobial resistance (AMR), particularly methicillin-resistant Staphylococcus aureus (MRSA), poses a significant global health threat as these bacteria increasingly become resistant to the most available therapeutic options. Thus, developing an efficient approach to rapidly screen MRSA directly from clinical specimens has become vital. In this study, we establish a closed-tube loop-mediated isothermal amplification (LAMP) method incorporating hydroxy-naphthol blue (HNB) colorimetric dye assay to directly detect MRSA from clinical samples based on the presence of mecA and spa genes. In total, 125 preidentified S. aureus isolates and 93 clinical samples containing S. aureus were sourced from the microbiology laboratory at Hamad General Hospital (HGH). The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were computed based on conventional PCR. The assay demonstrated 100% specificity, 91.23% sensitivity, 0.90 Cohen Kappa (CK), 100% PPV, and 87.8% NPV for the clinical samples, while clinical isolates exhibited 100% specificity, 97% sensitivity, 0.926 CK, 100% PPV, and 88.89% NPV. Compared to cefoxitin disk diffusion, LAMP provided 100% specificity and sensitivity, 1.00 CK, and 100% for PPV and NPV. The study revealed that the closed-tube LAMP incorporating (HNB) dye is a rapid technique with a turnaround time of less than 1 h and high specificity and sensitivity.
Collapse
Affiliation(s)
- Noora S. A. Abusheraida
- College of Health Science, Qatar University, Doha P.O. Box 2713, Qatar; (N.S.A.A.); (A.A.H.A.); (A.S.A.A.)
| | - Asraa A. H. AlBaker
- College of Health Science, Qatar University, Doha P.O. Box 2713, Qatar; (N.S.A.A.); (A.A.H.A.); (A.S.A.A.)
| | - Asmaa S. A. Aljabri
- College of Health Science, Qatar University, Doha P.O. Box 2713, Qatar; (N.S.A.A.); (A.A.H.A.); (A.S.A.A.)
| | - Hana A. Abdelrahman
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar; (H.A.A.); (H.A.-M.)
| | - Hassan Al-Mana
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar; (H.A.A.); (H.A.-M.)
| | - Godwin J. Wilson
- Laboratory Medicine and Pathology, Hamad General Hospital, Doha P.O. Box 3050, Qatar;
| | | | - Nahla O. Eltai
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar; (H.A.A.); (H.A.-M.)
| |
Collapse
|
5
|
Maizatul-Suriza M, Dickinson M, Al-Jaf B, Madihah AZ. Cross-pathogenicity of Phytophthora palmivora associated with bud rot disease of oil palm and development of biomarkers for detection. World J Microbiol Biotechnol 2024; 40:55. [PMID: 38165501 DOI: 10.1007/s11274-023-03860-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024]
Abstract
Phytophthora palmivora has caused disease in many crops including oil palm in the South America region. The pathogen has had a significant economic impact on oil palm cultivation in Colombia, and therefore poses a threat to oil palm cultivation in other regions of the World, especially in Southeast Asia, the largest producer of the crop. This study aimed to look at the ability of isolates from Malaysia, Colombia, and other regions to cross-infect Malaysian oil palm, durian, and cocoa and to develop specific biomarkers and assays for identification, detection, and diagnosis of P. palmivora as a key component for the oil palm biosecurity continuum in order to contain the disease especially at the ports of entry. We have developed specific molecular biomarkers to identify and detect Phytophthora palmivora using polymerase chain reaction (PCR) and real-time loop mediated isothermal amplification (rt-LAMP) in various sample types such as soil and plants. The limit of detection (DNA template, pure culture assay) for the PCR assay is 5.94 × 10-2 ng µl-1 and for rt-LAMP is 9.28 × 10-4 ng µl-1. Diagnosis using rt-LAMP can be achieved within 30 min of incubation. In addition, PCR primer pair AV3F/AV3R developed successfully distinguished the Colombian and Malaysian P. palmivora isolates.
Collapse
Affiliation(s)
- Mohamed Maizatul-Suriza
- Malaysian Palm Oil Board, 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia.
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, Leicestershire, UK.
| | - Matthew Dickinson
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, Leicestershire, UK
| | - Bryar Al-Jaf
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, Leicestershire, UK
- Horticulture Department, College of Agricultural Engineering Sciences, University of Sulaimani, Sulaimani, Iraq
| | - Ahmad Zairun Madihah
- Malaysian Palm Oil Board, 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| |
Collapse
|
6
|
Nayak A, Harshitha M, Disha S, Dubey S, Munang'andu HM, Evensen Ø, Karunasagar I, Chakraborty A, Maiti B. In vitro determination of probiotic efficacy of Bacillus subtilis TLDK301120C24 isolated from tilapia against warm water fish pathogens and in vivo validation using gnotobiotic zebrafish model. Microb Pathog 2023; 185:106429. [PMID: 37940062 DOI: 10.1016/j.micpath.2023.106429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/07/2023] [Accepted: 10/28/2023] [Indexed: 11/10/2023]
Abstract
Eco-friendly alternatives such as probiotics are needed to prevent economically relevant infectious diseases for a successful disease-free harvest in aquaculture. The use of antibiotics has been the favored practice, but its empirical and indiscriminate use has led to antibiotic resistance in the aquatic environment and residues in the food fish. With this rationale, a probiotic was isolated from tilapia, a commercially important cultured fish worldwide. The characteristics of the probiotic were checked against common bacterial pathogens affecting aquaculture. In vitro tests demonstrated the inhibitory effects of the isolated probiotic on the growth of Aeromonas hydrophila, Edwardsiella tarda, Vibrio anguillarum, and V. alginolyticus. The candidate probiotic, referred to as TLDK301120C24, was identified as Bacillus subtilis by a battery of biochemical tests and genotypic confirmation by 16S rDNA sequencing. The in vitro results revealed the ability of the probiotic to withstand the gut conditions that included pH range of 3-9, salt concentration of 0.5-6%, and bile salt concentration of up to 6%. The isolate could hydrolyze starch (12-14 mm clearance zone), protein (20-22 mm clearance zone), and cellulose (22-24 mm clearance zone). Further, the inhibitory ability of the probiotic against aquatic pathogens was determined in vivo using gnotobiotic zebrafish by employing a novel approach that involved tagging the probiotic with a red fluorescent protein and the pathogens with a green fluorescent protein, respectively. The colonizing ability of probiotics and its inhibitory effects against the pathogens were evaluated by fluorescence microscopy, PCR, and estimation of viable counts in LBA + Amp plates. Finally, the competitive inhibition and exclusion of fish pathogens A. hydrophila and E. tarda by B. subtilis was confirmed semi-quantitatively, through challenge experiments. This study shows the potential of B. subtilis as a probiotic and its excellent ability to inhibit major fish pathogens in vivo and in vitro. It also shows promise as a potent substitute for antibiotics.
Collapse
Affiliation(s)
- Ashwath Nayak
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Department of Bio & Nano Technology, Paneer Campus, Deralakatte, Mangaluru, 575018, India
| | - Mave Harshitha
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Department of Bio & Nano Technology, Paneer Campus, Deralakatte, Mangaluru, 575018, India
| | - Somanath Disha
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Department of Bio & Nano Technology, Paneer Campus, Deralakatte, Mangaluru, 575018, India
| | - Saurabh Dubey
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine, Department of Production Animal Clinical Sciences, Section of Experimental Biomedicine, Ås, Norway
| | | | - Øystein Evensen
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine, Department of Paraclinical Sciences, PO Box 5003, N-1432, Ås, Norway
| | - Indrani Karunasagar
- Nitte (Deemed to be University), DST Technology Enabling Centre, Paneer Campus, Deralakatte, Mangaluru, 575018, India
| | - Anirban Chakraborty
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Department of Molecular Genetics & Cancer, Paneer Campus, Deralakatte, Mangaluru, 575018, India
| | - Biswajit Maiti
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Department of Bio & Nano Technology, Paneer Campus, Deralakatte, Mangaluru, 575018, India.
| |
Collapse
|
7
|
Shan J, Wu T, Wei W, Huang J, Li Y, Zou B, Ma Y, Cui L, Wu H, Zhou G. Visualized RNA detection of SARS-CoV-2 in a closed tube by coupling RT-PCR with nested invasive reaction. Analyst 2023; 148:995-1004. [PMID: 36723063 DOI: 10.1039/d2an01679f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A simple, cost-effective and reliable diagnosis of pathogen nucleic acids assay is much required for controlling a pandemic of a virus disease, such as COVID-19. Our previously developed visualized detection of pathogen DNA in a single closed tube is very suitable for POCT. However, virus RNA could not be detected directly and should be reverse-transcribed into cDNA in advance. To enable this visualized assay to detect virus RNA directly, various types of reverse transcriptase were investigated, and finally we found that HiScript II reverse transcriptase could keep active and be well adapted to the one-pot visualized assay in optimized conditions. Reverse transcription, template amplification and amplicon identification by PCR coupled with invasive reaction, as well as visualization by self-assembling of AuNP probes could be automatically and sequentially performed in a closed tube under different temperature conditions, achieving "sample (RNA)-in-result (red color)-out" only by a simple PCR engine plus the naked eye. The visualized RT-PCR is sensitive to unambiguous detection of 5 copies of the N and ORFlab genes of SARS-CoV-2 RNA comparing favourably with qPCR methods (commercialized kit), is specific to genotype 3 variants (Alpha, Beta and Omicron) of SARS-CoV-2, and is very accurate for picking up 0.01% Omicron variant from a large amount of sequence-similar backgrounds. The method is employed in detecting 50 clinical samples, and 10 of them were detected as SARS-CoV-2 positive samples, identical to those by conventional RT-PCR, indicating that the method is cost-effective and labor-saving for pathogen RNA screening in resource-limited regions.
Collapse
Affiliation(s)
- Jingwen Shan
- Department of Clinical Pharmacy, Jinling Hospital, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Tao Wu
- NHC Key laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China.
| | - Wei Wei
- Department of Clinical Pharmacy, Jinling Hospital, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Jinling Huang
- Department of Clinical Pharmacy, Jinling Hospital, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Yijun Li
- Department of Clinical Pharmacy, Jinling Hospital, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Bingjie Zou
- Department of Clinical Pharmacy, Jinling Hospital, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China. .,School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Yi Ma
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210023, China
| | - Lunbiao Cui
- NHC Key laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China.
| | - Haiping Wu
- Department of Clinical Pharmacy, Jinling Hospital, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China. .,School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Guohua Zhou
- Department of Clinical Pharmacy, Jinling Hospital, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China. .,School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China.,State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210023, China.,School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| |
Collapse
|
8
|
Sun R, Chen J, Wang Y, Zhang Z, Li Y, Li F, Ma C, Han Q, Shi Y. Rapid, specific and sensitive detection of Vibrio parahaemolyticus in seafood by accelerated strand exchange amplification. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:655-662. [PMID: 36655424 DOI: 10.1039/d2ay01889f] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Vibrio parahaemolyticus infectious diseases caused by seafood contamination may be life-threatening to people with weak immunity. The detection of the Vibrio parahaemolyticus pathogen in aquatic foods is critical for reducing the outbreak of human Vibrio parahaemolyticus-associated diseases. In this study, a highly sensitive, specific, and time-saving real-time narrow thermal-cycling amplification detection method was developed based on accelerated strand exchange amplification (ASEA). It can detect cultured Vibrio parahaemolyticus at concentrations as low as 25 CFU mL-1. In addition, for artificially spiked scallop meat, the detection limit was 1.8 × 103 CFU g-1 without pre-culture and 18 CFU g-1 of initial inoculum after 3 h enrichment. The whole assay, starting from DNA extraction, can be completed within 20 min. The ASEA detection method established in this study is an effective tool for the rapid detection of Vibrio parahaemolyticus strains in a large number of seafood samples.
Collapse
Affiliation(s)
- Ritong Sun
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Jiao Chen
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Yingeng Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, PR China
| | - Zheng Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, PR China
| | - Yong Li
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Fengmei Li
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Cuiping Ma
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Qingxia Han
- Bin Zhou Polytechnic, Qingdao, 256600, PR China
| | - Yanjing Shi
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| |
Collapse
|
9
|
Ma JY, Zhu XK, Hu RG, Qi ZZ, Sun WC, Hao ZP, Cong W, Kang YH. A systematic review, meta-analysis and meta-regression of the global prevalence of foodborne Vibrio spp. infection in fishes: A persistent public health concern. MARINE POLLUTION BULLETIN 2023; 187:114521. [PMID: 36621299 DOI: 10.1016/j.marpolbul.2022.114521] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 12/14/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Human vibriosis, caused by pathogenic Vibrio spp., such as Vibrio parahaemolyticus, Vibrio cholerae and Vibrio vulnificus, has been increasing worldwide, mediated by increasing consumption of seafood. The present study was conducted to examine the global prevalence of V. vulnificus, V. parahaemolyticus and V. cholerae in fishes. We searched PubMed, Web of Science, Scopus, and CNKI for peer-reviewed articles and dissertations prior to December 31, 2021. A total of 24,831 articles were retrieved, and 82 articles contained 61 fish families were included. The global pooled prevalence of V. cholerae, V. parahaemolyticus and V. vulnificus in fishes was 9.56 % (95 % CI: 2.12-20.92), 24.77 % (95 % CI: 17.40-32.93) and 5.29 % (95 % CI: 0.38-13.61), respectively. Subgroup and meta-regression analyses showed that study-level covariates, including temperature, country, continent, origin and detection methods partly explained the between-study heterogeneity. These heterogeneities were underpinned by differences of the three Vibrio spp. in fishes at geographical and climatic scales. These results reveal a high global prevalence of pathogenic Vibrio spp. in fishes and highlight the need for implementation of more effective prevention and control measures to reduce food-borne infection in humans.
Collapse
Affiliation(s)
- Jun-Yang Ma
- Marine College, Shandong University, Weihai, Shandong 264209, PR China
| | - Xin-Kun Zhu
- Marine College, Shandong University, Weihai, Shandong 264209, PR China
| | - Ren-Ge Hu
- Marine College, Shandong University, Weihai, Shandong 264209, PR China
| | - Ze-Zheng Qi
- Marine College, Shandong University, Weihai, Shandong 264209, PR China
| | - Wen-Chao Sun
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 32503, PR China
| | - Zhi-Peng Hao
- Marine College, Shandong University, Weihai, Shandong 264209, PR China
| | - Wei Cong
- Marine College, Shandong University, Weihai, Shandong 264209, PR China.
| | - Yuan-Huan Kang
- Marine College, Shandong University, Weihai, Shandong 264209, PR China.
| |
Collapse
|
10
|
Prerana S, Ashwini P, Anupama KP, Prajna VS, Prithvisagar KS, Nayak A, Rai P, Rohit A, Karunasagar I, Karunasagar I, Maiti B. Evaluation of reverse transcriptase-polymerase spiral reaction assay for rapid and sensitive detection of severe acute respiratory syndrome coronavirus 2. Clin Chim Acta 2023; 539:144-150. [PMID: 36528050 PMCID: PMC9750508 DOI: 10.1016/j.cca.2022.12.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND AIM Existing real-time reverse transcriptase PCR (RT-qPCR) has certain limitations for the point-of-care detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) since it requires sophisticated instruments, reagents and skilled laboratory personnel. In this study, we evaluated an assay termed the reverse transcriptase-polymerase spiral reaction (RT-PSR) for rapid and visual detection of SARS-CoV-2. METHODS The RT-PSR assay was optimized using RdRp gene and evaluated for the detection of SARS-CoV-2. The time of 60min and a temperature of 63°C was optimized for targeting the RNA-dependent RNA polymerase gene of SARS-CoV-2. The sensitivity of the assay was evaluated by diluting the in-vitro transcribed RNA, which amplifies as low as ten copies. RESULTS The specific primers designed for this assay showed 100% specificity and did not react when tested with other lung infection-causing viruses and bacteria. The optimized assay was validated with 190 clinical samples in two phases, using automated RTPCR based TrueNat test, and the results were comparable. CONCLUSIONS The RT-PSR assay can be considered for rapid and sensitive detection of SARS-CoV-2, particularly in resource-limited settings. To our knowledge, there is as yet no RT-PSR-based kit developed for SARS-CoV-2.
Collapse
Affiliation(s)
- Sharan Prerana
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Infectious Diseases, Paneer Campus, Deralakatte, Mangalore 575018, India
| | - Pai Ashwini
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Infectious Diseases, Paneer Campus, Deralakatte, Mangalore 575018, India
| | - Karanth Padyana Anupama
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Infectious Diseases, Paneer Campus, Deralakatte, Mangalore 575018, India
| | - Valakkunja Shankaranarayana Prajna
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Infectious Diseases, Paneer Campus, Deralakatte, Mangalore 575018, India
| | - Kattapuni Suresh Prithvisagar
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Infectious Diseases, Paneer Campus, Deralakatte, Mangalore 575018, India
| | - Ashwath Nayak
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Infectious Diseases, Paneer Campus, Deralakatte, Mangalore 575018, India
| | - Praveen Rai
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Infectious Diseases, Paneer Campus, Deralakatte, Mangalore 575018, India.
| | - Anusha Rohit
- Madras Medical Mission, Department of Microbiology, Dr. J. J. Nagar, Mogappair, Chennai 600037, India
| | - Indrani Karunasagar
- Nitte (Deemed to be University), University Enclave, Medical Sciences Complex, Deralakatte, Mangalore 575018, India
| | - Iddya Karunasagar
- Nitte (Deemed to be University), University Enclave, Medical Sciences Complex, Deralakatte, Mangalore 575018, India
| | - Biswajit Maiti
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Infectious Diseases, Paneer Campus, Deralakatte, Mangalore 575018, India.
| |
Collapse
|
11
|
Li X, Zhang X, Shi X, Shi H, Wang Z, Peng C. Review in isothermal amplification technology in food microbiological detection. Food Sci Biotechnol 2022; 31:1501-1511. [PMID: 36119387 PMCID: PMC9469833 DOI: 10.1007/s10068-022-01160-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/16/2022] [Accepted: 08/21/2022] [Indexed: 11/04/2022] Open
Abstract
Food-borne diseases caused by microbial contamination have always been a matter of great concern to human beings. Hence, the research on these problems has never stopped. With the development of microorganism amplification technology, more and more detection methods have come into our vision. However, traditional detection technologies presents more or less drawbacks, such as complicated operation, low accuracy, low sensitivity, long-time detection, and so on. Therefore, more convenient, accurate, and sensitive measurement for the microorganism are needed. Isothermal amplification technology is one of the alternative approach containing the above mentioned advantages. This work mainly summarizes the principles of loop-mediated isothermal amplification (LAMP) and rolling circle amplification (RCA) which belong to isothermal amplification. Meanwhile, the application of LAMP and RCA in food microorganism detection is introduced.
Collapse
|
12
|
Zhang X, Zhao Y, Ma C, Wu W, Dong M, You J, Liu J, Yun S. An Optimized Visual Loop Mediated Isothermal Amplification Assay for Efficient Detection of Minute Virus of Mice With Hydroxynaphthol Blue Dye. J Virol Methods 2022; 308:114575. [DOI: 10.1016/j.jviromet.2022.114575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/26/2022] [Accepted: 07/02/2022] [Indexed: 11/16/2022]
|
13
|
Hu A, Kong L, Lu Z, Qiao J, Lv F, Meng F, Bie X. Research on nanogold-assisted HRM-qPCR technology for highly sensitive and accurate detection of Vibrio parahaemolyticus. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Garrido-Maestu A, Prado M. Naked-eye detection strategies coupled with isothermal nucleic acid amplification techniques for the detection of human pathogens. Compr Rev Food Sci Food Saf 2022; 21:1913-1939. [PMID: 35122372 DOI: 10.1111/1541-4337.12902] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/26/2022]
Abstract
Nucleic acid amplification-based techniques have gained acceptance by the scientific, and general, community as reference methodologies for many different applications. Since the development of the gold standard of these techniques, polymerase chain reaction (PCR), back in the 1980s many improvements have been made, and alternative techniques emerged reporting improvements over PCR. Among these, isothermal amplification approaches resulted of particular interest as could overcome the need of specialized equipment to accurately control temperature changes, but it was after year 2000 that these techniques have flourished in a huge number of novel alternatives with many different degrees of complexities and requirements. An added value is their possibility to be combined with many different naked-eye detection strategies, simplifying the resources needed, allowing to reduce cost, and serving as the basis for novel developments of lab-on-chip systems, and miniaturized devices, for point-of-care testing. In this review, we will go over different types of naked-eye detection strategies, combined with isothermal amplification. This will provide the readers up-to-date information for them to select the most appropriate strategies depending on the particular needs and resources for their experimental setup.
Collapse
Affiliation(s)
- Alejandro Garrido-Maestu
- Food Quality and Safety Research Group, International Iberian Nanotechnology Laboratory, Braga, Portugal
| | - Marta Prado
- Food Quality and Safety Research Group, International Iberian Nanotechnology Laboratory, Braga, Portugal
| |
Collapse
|
15
|
Moon YJ, Lee SY, Oh SW. A Review of Isothermal Amplification Methods and Food-Origin Inhibitors against Detecting Food-Borne Pathogens. Foods 2022; 11:322. [PMID: 35159473 PMCID: PMC8833899 DOI: 10.3390/foods11030322] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/06/2023] Open
Abstract
The isothermal amplification method, a molecular-based diagnostic technology, such as loop-mediated isothermal amplification (LAMP) and recombinase polymerase amplification (RPA), is widely used as an alternative to the time-consuming and labor-intensive culture-based detection method. However, food matrices or other compounds can inhibit molecular-based diagnostic technologies, causing reduced detection efficiencies, and false-negative results. These inhibitors originating from food are polysaccharides and polyphenolic compounds in berries, seafood, and vegetables. Additionally, magnesium ions needed for amplification reactions can also inhibit molecular-based diagnostics. The successful removal of inhibitors originating from food and molecular amplification reaction is therefore proposed to enhance the efficiency of molecular-based diagnostics and allow accurate detection of food-borne pathogens. Among molecular-based diagnostics, PCR inhibitors have been reported. Nevertheless, reports on the mechanism and removal of isothermal amplification method inhibitors are insufficient. Therefore, this review describes inhibitors originating from food and some compounds inhibiting the detection of food-borne pathogens during isothermal amplification.
Collapse
Affiliation(s)
| | | | - Se-Wook Oh
- Department of Food and Nutrition, Kookmin University, Seoul 136-702, Korea; (Y.-J.M.); (S.-Y.L.)
| |
Collapse
|
16
|
Feng ZS, Li JY, Zhang JY, Li FY, Guan HX, Zhang RQ, Liu H, Guo Q, Shen XX, Kan B, Ma XJ. Development and evaluation of a sensitive recombinase aided amplification assay for rapid detection of Vibrio parahaemolyticus. J Microbiol Methods 2022; 193:106404. [PMID: 34990645 DOI: 10.1016/j.mimet.2021.106404] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/29/2021] [Accepted: 12/29/2021] [Indexed: 12/27/2022]
Abstract
Vibrio parahaemolyticus (V. parahaemolyticus) is a widely distributed pathogen in the coastal areas, which causes food poisoning and leads to gastroenteritis and sepsis. Therefore, developing a simple, sensitive, and rapid detection method for V. parahaemolyticus is a major concern globally. This study established a sensitive and rapid technique based on recombinase aided amplification (RAA) to detect V. parahaemolyticus. The RAA reaction was carried out successfully at 39 °C within 30 min. The sensitivity of the RAA assay was 101 copies/μL using the recombinant plasmid and 10-3 ng/μL using the V. parahaemolyticus strain. In addition, RAA directly detected 7 × 103 CFU/mL of simulated fecal samples and 0.1 CFU/mL after enrichment for 4 h. The sensitivity and specificity of the RAA assay using fecal and fish samples were 100% similar to that of the real-time PCR. We conclude that the RAA assay is an ideal screening method for detecting V. parahaemolyticus due to its rapidity, high accuracy, and simplicity in operation.
Collapse
Affiliation(s)
- Zhi-Shan Feng
- Hebei Medical University, Shijiazhuang 050031, Hebei, China; Hebei General Hospital, Shijiazhuang 050070, Hebei, China
| | - Jing-Yi Li
- Hebei Medical University, Shijiazhuang 050031, Hebei, China; Hebei General Hospital, Shijiazhuang 050070, Hebei, China; NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Jing-Yun Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute forCommunicable DiseaseControl and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| | - Feng-Yu Li
- Hebei Medical University, Shijiazhuang 050031, Hebei, China; Hebei General Hospital, Shijiazhuang 050070, Hebei, China; NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Hong-Xia Guan
- Wuxi Center for Disease Control and Prevention, Wuxi 214023, Jiangsu, China
| | - Rui-Qing Zhang
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| | - Hong Liu
- Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences and Medicine, Shandong University of Technology, Zibo255049, Shandong, China
| | - Qi Guo
- Laboratory of Virology, Beijing Key Laboratory ofEtiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing 100020, China
| | - Xin-Xin Shen
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| | - Biao Kan
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute forCommunicable DiseaseControl and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| | - Xue-Jun Ma
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| |
Collapse
|
17
|
Zhou S, Huang Q, Yu M, Li Y, Zheng X, Xiu Y. Rapid visual detection of Aeromonas salmonicida by loop-mediated isothermal amplification with hydroxynaphthol blue dye. JOURNAL OF FISH DISEASES 2021; 44:1993-2001. [PMID: 34411329 DOI: 10.1111/jfd.13513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
To make crucial prevention, reduce fish losses and minimize the economic damage of diseases on the fish farm owners, a rapid detection of fish pathogens is mandatory. In this study, a loop-mediated isothermal amplification assay combined with hydroxynaphthol blue dye (LAMP-HNB) was developed and used for the rapid detection of Aeromonas salmonicida that caused significant economic losses in fish farming. Firstly, a pair of outer and inner primers specific for conserved fragment of vapA gene in A. salmonicida were designed and synthesized. Secondly, by optimizing the reaction conditions including reaction temperature, time, Mg2+ concentration, dNTP concentration and primer ratio, a LAMP-HNB assay was successfully established for the detection of A. salmoncida. Thirdly, the assay showed good specificity with no false-positive and false-negative results, and good sensitivity with the detection limit of 3.077 × 10-6 ng/μl, which was 102 times more sensitive than the conventional PCR. Finally, the LAMP-HNB assay was validated by the fish samples inoculated with different concentrations of A. salmoncida. This is the first development of rapid visual detection of A. salmonicida based on LAMP-HNB assay, which has great application prospect and market for diagnostic testing, health certification and active surveillance programmers.
Collapse
Affiliation(s)
- Shun Zhou
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Qing Huang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Mingming Yu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Ying Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Xujia Zheng
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Yunji Xiu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
18
|
Prasitporn T, Senapin S, Vaniksampanna A, Longyant S, Chaivisuthangkura P. Development of cross-priming amplification (CPA) combined with colorimetric and lateral flow dipstick visualization for scale drop disease virus (SDDV) detection. JOURNAL OF FISH DISEASES 2021; 44:1411-1422. [PMID: 34041757 DOI: 10.1111/jfd.13448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
Scale drop disease virus (SDDV) is one of the most important pathogens that causes scale drop disease (SDD) in Asian sea bass (Lates calcarifer). The outbreaks of this disease are one of the factors causing substantial losses in Asian sea bass aquaculture. In this study, the uracil-DNA glycosylase (UDG)-supplemented cross-priming amplification (UCPA) combined with a colorimetric detection method using the hydroxynaphthol blue (HNB) and lateral flow dipstick (LFD) for detection of SDDV was developed. The UDG was utilized to prevent carryover contamination, and the CPA reactions can be readily observed by HNB and LFD. The CPA primers and probe were designed to target the major capsid protein (MCP) gene of the SDDV. The optimized UCPA conditions were performed at the temperature of 61°C for 60 min. The UCPA assays demonstrated specificity to SDDV without cross-reaction to other tested viruses including red-spotted grouper nervous necrosis virus (RGNNV), infectious spleen and kidney necrosis virus (ISKNV) and Lates calcarifer herpes virus (LCHV), and other bacterial species commonly found in aquatic animals. The sensitivity of the UCPA-HNB and UCPA-LFD was 100 viral copies/µl and 10 pg of extracted total DNA, which was 10-fold more sensitive than that of conventional PCR. The UCPA-HNB and UCPA-LFD assays could be used to detect the SDDV infection in all 25 confirmed SDDV-infected fish samples. Therefore, the UCPA coupled with HNB and LFD was rapid, simple and effective and might be applied for diagnosis of SDDV infection.
Collapse
Affiliation(s)
- Terawut Prasitporn
- Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok, Thailand
- Center of Excellence in Animal, Plant and Parasite Biotechnology, Srinakharinwirot University, Bangkok, Thailand
| | - Saengchan Senapin
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | | | - Siwaporn Longyant
- Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok, Thailand
- Center of Excellence in Animal, Plant and Parasite Biotechnology, Srinakharinwirot University, Bangkok, Thailand
| | - Parin Chaivisuthangkura
- Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok, Thailand
- Center of Excellence in Animal, Plant and Parasite Biotechnology, Srinakharinwirot University, Bangkok, Thailand
| |
Collapse
|
19
|
Development of a novel visual detection technique for Campylobacter jejuni in chicken meat and caecum using polymerase spiral reaction (PSR) with pre-added dye. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Maiti B, Anupama KP, Rai P, Karunasagar I, Karunasagar I. Isothermal amplification-based assays for rapid and sensitive detection of severe acute respiratory syndrome coronavirus 2: Opportunities and recent developments. Rev Med Virol 2021; 32:e2274. [PMID: 34216498 PMCID: PMC8420443 DOI: 10.1002/rmv.2274] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/27/2021] [Indexed: 12/21/2022]
Abstract
The coronavirus disease 2019 (COVID‐19) is a global pandemic caused by a novel coronavirus called severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2). To date, the virus has been detected in 219 countries of the world. Therefore, managing the disease becomes the priority, in which detecting the presence of the virus is a crucial step. Presently, real‐time RT polymerase chain reaction (RT‐qPCR) is considered a gold standard nucleic acid amplification test (NAAT). The test protocol of RT‐qPCR is complicated, places high demands on equipment, testing reagents, research personnel skills and is expensive. Therefore, simpler point‐of‐care (POC) tests are needed to accelerate clinical decision‐making and take some of the workload from centralized test laboratories. Various isothermal amplification‐based assays have been developed for the sensitive detection of different microorganisms, and recently some of them have been applied for detection of SARS‐CoV‐2. These do not require any programable thermocycler, can produce the results in a single temperature, and therefore, are considered simple. Unlike RT‐qPCR, these methods are highly sensitive, specific, less time‐consuming, simple and affordable, and can be used as POC diagnostic kit for COVID‐19. In this review, we have discussed the potential of isothermal amplification‐based assays as an alternative to RT‐qPCR for the detection of SARS‐CoV‐2.
Collapse
Affiliation(s)
- Biswajit Maiti
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Infectious Diseases, Paneer Campus, Mangaluru, Karnataka, India
| | - Karanth Padyana Anupama
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Infectious Diseases, Paneer Campus, Mangaluru, Karnataka, India
| | - Praveen Rai
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Infectious Diseases, Paneer Campus, Mangaluru, Karnataka, India
| | - Indrani Karunasagar
- Nitte (Deemed to be University), University Enclave, Medical Sciences Complex, Mangaluru, Karnataka, India
| | - Iddya Karunasagar
- Nitte (Deemed to be University), University Enclave, Medical Sciences Complex, Mangaluru, Karnataka, India
| |
Collapse
|