1
|
Xu Z, Sha Y, Li M, Chen S, Li J, Ding B, Zhang Y, Li P, Yan K, Jin M. Adaptive evolution and mechanism elucidation for ethanol tolerant Saccharomyces cerevisiae used in starch based biorefinery. Int J Biol Macromol 2025; 284:138155. [PMID: 39613065 DOI: 10.1016/j.ijbiomac.2024.138155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/02/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024]
Abstract
Ethanol tolerant Saccharomyces cerevisiae is compulsory for ethanol production in starch based biorefinery, especially during high-gravity fermentation. In this study, adaptive evolution with increased initial ethanol concentrations as a driving force was harnessed for achieving ethanol tolerant S. cerevisiae. After evolution, an outstanding ethanol tolerant strain was screened, which contributed to significant improvements in glucose consumption and ethanol production in scenarios of 300 g/L initial glucose, high solid loadings (30 wt%, 33 wt%, 35 wt% and 40 wt%) of corn, and high solid loadings (30 wt% and 33 wt%) of cassava, compared with the original strain. Genome re-sequencing was applied for the evolved strain, and 504 sense mutations in 205 genes were detected, among which PAM1 gene was demonstrated related to the elevated ethanol tolerance. In sum, this study provided a practical approach for obtaining ethanol tolerant strain and the identified PAM1 gene enhanced our understanding on ethanol tolerant mechanism, as well as provided a target basis for rational metabolic engineering.
Collapse
Affiliation(s)
- Zhaoxian Xu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yuanyuan Sha
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Muzi Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Sitong Chen
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jie Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Boning Ding
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yuwei Zhang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Pingping Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Kang Yan
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Mingjie Jin
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
2
|
Yoo SJ, Kim HJ, Moon HY, Jeon MS, Cho YU, Jeon CO, Eyun SI, Kang HA. Genome-Wide Identification and Biochemical Characterization of Alcohol Acyltransferases for Aroma Generation in Wickerhamomyces subpelliculosus Isolates from Fermented Food. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:28194-28208. [PMID: 39648807 DOI: 10.1021/acs.jafc.4c08103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
The importance of nonconventional yeasts has increasingly been highlighted, particularly for aroma formation in fermented foods. Here, we performed de novo whole-genome sequencing of Wickerhamomyces subpelliculosus, which produces a variety of volatile flavor compounds, leading to the identification of the alcohol acyltransferase (AATase) family of genes. The genome of W. subpelliculosus contains seven AATase genes, encoding alcohol-O-acetyltransferases (ATFs) and ethanol acetyltransferase 1 (EAT1) for acetate ester formation, along with ethanol hexanoyl transferase 1 (EHT1) for ethyl ester formation. Among five ATF homologues, only WsATF5 showed acetyltransferase activity toward myriocin, a structural analogue of sphingosine. In contrast, heterologous expression of WsEHT1 and WsEAT1 in Saccharomyces cerevisiae promoted the production of ethyl decanoate and ethyl acetate, respectively, supporting their AATase activity. The enzymatic activity analyses revealed the additional alcoholysis activity of WsEAT1 and the thioesterase activity of WsEHT1. Subcellular localization analysis indicated that WsEAT1 was localized in the mitochondria, WsEHT1 in the endoplasmic reticulum and lipid droplets (LDs), and WsATF5 in the LDs. The novel W. subpelliculosus AATases could be usefully applied to produce flavor components in various food industries.
Collapse
Affiliation(s)
- Su Jin Yoo
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| | - Hyeon Jin Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| | - Hye Yun Moon
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| | - Min-Seung Jeon
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| | - Yong Uk Cho
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| | - Seong-Il Eyun
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| | - Hyun Ah Kang
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| |
Collapse
|
3
|
Tsegaye KN, Alemnew M, Berhane N. Saccharomyces cerevisiae for lignocellulosic ethanol production: a look at key attributes and genome shuffling. Front Bioeng Biotechnol 2024; 12:1466644. [PMID: 39386039 PMCID: PMC11461319 DOI: 10.3389/fbioe.2024.1466644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024] Open
Abstract
These days, bioethanol research is looking at using non-edible plant materials, called lignocellulosic feedstocks, because they are cheap, plentiful, and renewable. However, these materials are complex and require pretreatment to release fermentable sugars. Saccharomyces cerevisiae, the industrial workhorse for bioethanol production, thrives in sugary environments and can handle high levels of ethanol. However, during lignocellulose fermentation, S. cerevisiae faces challenges like high sugar and ethanol concentrations, elevated temperatures, and even some toxic substances present in the pretreated feedstocks. Also, S. cerevisiae struggles to efficiently convert all the sugars (hexose and pentose) present in lignocellulosic hydrolysates. That's why scientists are exploring the natural variations within Saccharomyces strains and even figuring out ways to improve them. This review highlights why Saccharomyces cerevisiae remains a crucial player for large-scale bioethanol production from lignocellulose and discusses the potential of genome shuffling to create even more efficient yeast strains.
Collapse
Affiliation(s)
- Kindu Nibret Tsegaye
- Department of Biology, Gondar College of Teachers Education, Gondar, Ethiopia
- Institute of Biotechnology, University of Gondar, Gondar, Ethiopia
| | - Marew Alemnew
- Institute of Biotechnology, University of Gondar, Gondar, Ethiopia
| | - Nega Berhane
- Institute of Biotechnology, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
4
|
García-Mogollón CA, Mendoza DF, Quintero-Díaz JC. Electrostatic ethanol fermentation: Experimental study and kinetic-based metabolic modeling. Heliyon 2024; 10:e36587. [PMID: 39281627 PMCID: PMC11401030 DOI: 10.1016/j.heliyon.2024.e36587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/18/2024] Open
Abstract
Due to the electrical nature of the cell, it is possible to modulate its behavior through the application of non-lethal external electric fields to improve fermentation processes. In this work, a microbial cell system with a chamber and two electrodes inside and connected to a voltage source was used. One of the electrodes was kept isolated to create an electric field without the flow of current. Cultures with two ethanol-producing microbial strains (Saccharomyces cerevisiae and Zymomonas mobilis) were conducted in this device. The application of voltages between 0 and 18 V was evaluated to determine the impact of the generated electric field on ethanol production. To analyze the possible effect of the field on the central carbon metabolism in each strain, biochemical-based kinetic models were formulated to describe the experimental fermentation kinetics obtained. It was found that low applied voltages did not have significant effects on growth rate in either strain, but all voltages evaluated increased substrate consumption and ethanol production rate in Z. mobilis, while only 18 V affected these rates in S. cerevisiae, indicating that Z. mobilis was the most sensitive to the electric field. At the end of the fermentation, significant increases in ethanol yields of 10.7% and 19.5% were detected for S. cerevisiae and Z. mobilis, respectively. The proposed mathematical models showed that substrate transport through the membrane catalyzed by the phosphotransferase system (PTS) for Z. mobilis and hexose transport proteins mechanism and hexokinase (HK) activity for S. cerevisiae and the transformation of pyruvate to ethanol, catalyzed by the decarboxylase (PDC) and alcohol dehydrogenase (ADH) enzymes, were the reactions most affected by the application of the external field.
Collapse
Affiliation(s)
| | - Diego F Mendoza
- Departamento de Ingeniería Química, Universidad de Antioquia, Calle 70 No. 52-21, Medellín, 050010, Antioquia, Colombia
| | - Juan Carlos Quintero-Díaz
- Departamento de Ingeniería Química, Universidad de Antioquia, Calle 70 No. 52-21, Medellín, 050010, Antioquia, Colombia
| |
Collapse
|
5
|
Sun M, Gao AX, Liu X, Bai Z, Wang P, Ledesma-Amaro R. Microbial conversion of ethanol to high-value products: progress and challenges. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:115. [PMID: 39160588 PMCID: PMC11334397 DOI: 10.1186/s13068-024-02546-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 07/03/2024] [Indexed: 08/21/2024]
Abstract
Industrial biotechnology heavily relies on the microbial conversion of carbohydrate substrates derived from sugar- or starch-rich crops. This dependency poses significant challenges in the face of a rising population and food scarcity. Consequently, exploring renewable, non-competing carbon sources for sustainable bioprocessing becomes increasingly important. Ethanol, a key C2 feedstock, presents a promising alternative, especially for producing acetyl-CoA derivatives. In this review, we offer an in-depth analysis of ethanol's potential as an alternative carbon source, summarizing its distinctive characteristics when utilized by microbes, microbial ethanol metabolism pathway, and microbial responses and tolerance mechanisms to ethanol stress. We provide an update on recent progress in ethanol-based biomanufacturing and ethanol biosynthesis, discuss current challenges, and outline potential research directions to guide future advancements in this field. The insights presented here could serve as valuable theoretical support for researchers and industry professionals seeking to harness ethanol's potential for the production of high-value products.
Collapse
Affiliation(s)
- Manman Sun
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Institute of Hefei Artificial Intelligence Breeding Accelerator, Hefei, 230000, China
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK
| | - Alex Xiong Gao
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, 999077, China
| | - Xiuxia Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214112, China
| | - Zhonghu Bai
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214112, China.
| | - Peng Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
- Institute of Hefei Artificial Intelligence Breeding Accelerator, Hefei, 230000, China.
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
6
|
Sincak M, Turker M, Derman ÜC, Erdem A, Jandacka P, Luptak M, Luptakova A, Sedlakova-Kadukova J. Exploring the impact of magnetic fields on biomass production efficiency under aerobic and anaerobic batch fermentation of Saccharomyces cerevisiae. Sci Rep 2024; 14:12869. [PMID: 38834614 DOI: 10.1038/s41598-024-63628-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024] Open
Abstract
In this work, the effect of moderate electromagnetic fields (2.5, 10, and 15 mT) was studied using an immersed coil inserted directly into a bioreactor on batch cultivation of yeast under both aerobic and anaerobic conditions. Throughout the cultivation, parameters, including CO2 levels, O2 saturation, nitrogen consumption, glucose uptake, ethanol production, and yeast growth (using OD 600 measurements at 1-h intervals), were analysed. The results showed that 10 and 15 mT magnetic fields not only statistically significantly boosted and sped up biomass production (by 38-70%), but also accelerated overall metabolism, accelerating glucose, oxygen, and nitrogen consumption, by 1-2 h. The carbon balance analysis revealed an acceleration in ethanol and glycerol production, albeit with final concentrations by 22-28% lower, with a more pronounced effect in aerobic cultivation. These findings suggest that magnetic fields shift the metabolic balance toward biomass formation rather than ethanol production, showcasing their potential to modulate yeast metabolism. Considering coil heating, opting for the 10 mT magnetic field is preferable due to its lower heat generation. In these terms, we propose that magnetic field can be used as novel tool to increase biomass yield and accelerate yeast metabolism.
Collapse
Affiliation(s)
- M Sincak
- Faculty of Natural Science, University of Ss. Cyril and Methodius in Trnava, Nam. J. Herdu 2, 917 01, Trnava, Slovakia
| | - M Turker
- Pak Gida Uretim Ve Paz. A.S., Kartepe, Kocaeli, Turkey
| | - Ü C Derman
- Pak Gida Uretim Ve Paz. A.S., Kartepe, Kocaeli, Turkey
| | - A Erdem
- Pak Gida Uretim Ve Paz. A.S., Kartepe, Kocaeli, Turkey
| | - P Jandacka
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamycka 129, 16500, Praha 6 - Suchdol, Czech Republic
| | - M Luptak
- Faculty of Materials, Metallurgy and Recycling, Technical University of Kosice, Letna 9, 04200, Kosice, Slovakia
| | - A Luptakova
- Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 04001, Kosice, Slovakia
| | - J Sedlakova-Kadukova
- Faculty of Natural Science, University of Ss. Cyril and Methodius in Trnava, Nam. J. Herdu 2, 917 01, Trnava, Slovakia.
- ALGAJAS s.r.o., Prazská 16, 04011, Kosice, Slovakia.
| |
Collapse
|
7
|
Liang J, Chen Q, Yong J, Suyama H, Biazik J, Njegic B, Rawal A, Liang K. Covalent-organic framework nanobionics for robust cytoprotection. Chem Sci 2024; 15:991-1002. [PMID: 38239683 PMCID: PMC10793206 DOI: 10.1039/d3sc04973f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/11/2023] [Indexed: 01/22/2024] Open
Abstract
We present a novel study introducing a durable and robust covalent-organic framework (COF) nanocoating, developed in situ on living cells. This COF nanocoating demonstrates remarkable resistance against a diverse range of lethal stressors, including high temperature, extreme pH, ultraviolet radiation, toxic metal ions, organic pollutants, and strong oxidative stress. Notably, the nanocoating exhibits exceptional cell survival enhancement under high temperature and strongly acidic conditions, an aspect yet unexplored in the case of metal-organic framework nanocoatings and other nanomaterials. Moreover, functionalization of the nanocoating with an exogenous enzyme catalase enables yeast fermentation and ethanol production even under strong oxidative stress. Our findings establish the durable and robust COF nanocoating as a reliable platform for safeguarding vulnerable microorganisms to allow their utilisation in a wide range of adverse environments.
Collapse
Affiliation(s)
- Jieying Liang
- School of Chemical Engineering and Australian Centre for NanoMedicine, The University of New South Wales Sydney NSW 2052 Australia
| | - Qianfan Chen
- Graduate School of Biomedical Engineering, The University of New South Wales Sydney NSW 2052 Australia
| | - Joel Yong
- School of Chemical Engineering and Australian Centre for NanoMedicine, The University of New South Wales Sydney NSW 2052 Australia
| | - Hiroki Suyama
- UNSW RNA Institute, The University of New South Wales Sydney NSW 2052 Australia
| | - Joanna Biazik
- Electron Microscope Unit, Mark Wainwright Analytical Centre, The University of New South Wales Sydney NSW 2052 Australia
| | - Bosiljka Njegic
- Nuclear Magnetic Resonance Facility, Mark Wainwright Analytical Centre, University of New South Wales Sydney NSW 2052 Australia
| | - Aditya Rawal
- Nuclear Magnetic Resonance Facility, Mark Wainwright Analytical Centre, University of New South Wales Sydney NSW 2052 Australia
| | - Kang Liang
- School of Chemical Engineering and Australian Centre for NanoMedicine, The University of New South Wales Sydney NSW 2052 Australia
- Graduate School of Biomedical Engineering, The University of New South Wales Sydney NSW 2052 Australia
| |
Collapse
|
8
|
Rojo MC, Talia PM, Lerena MC, Ponsone ML, Gonzalez ML, Becerra LM, Mercado LA, Martín-Arranz V, Rodríguez-Gómez F, Arroyo-López FN, Combina M. Evaluation of different nitrogen sources on growth and fermentation performance for enhancing ethanol production by wine yeasts. Heliyon 2023; 9:e22608. [PMID: 38213578 PMCID: PMC10782155 DOI: 10.1016/j.heliyon.2023.e22608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/06/2023] [Accepted: 11/15/2023] [Indexed: 01/13/2024] Open
Abstract
The utilization of grape juice from low oenological value grape varieties for bioethanol production represent an alternative for diversification and value addition in viticulture. Optimizing Very High Gravity (VHG) fermentation can significantly increase ethanol productivity while reducing water and energy consumption. In this study, the impact of different nitrogen sources on growth and fermentative performance of locally selected yeast strains was investigated. Five yeast strains of species Saccharomyces cerevisiae and Zygosaccharomyces rouxii were cultured in both synthetic culture media and natural grape juice supplemented with ammonium sulfate (NH), yeast extract (YE), Fermaid K (FERM), and urea (U) at varying concentrations. Due to the very low fermentation rate, the Z. rouxii strain was excluded from the selection. The results obtained in synthetic medium showed that nitrogen sources that promoted growth (NH and YE) had minimal effects on fermentative performance and were highly dependent on the specific yeast strain. However, the combination of urea and ammonium favored the rate of sugar consumption. When validated in natural grape juice, urea combined with ammonium (U + NH 300 + 75 mg/L) improved both growth parameters and ethanol yield. Doubling the concentration (U + NH 600 + 150 mg/L) further enhanced sugar consumption and ethanol production while reducing unwanted by-products. The combined use of urea and ammonium exhibited a synergistic effect, making it a cost-effective nitrogen supplement for VHG fermentations.
Collapse
Affiliation(s)
- María Cecilia Rojo
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, Ciudad Autónoma de Buenos Aires C1033AAJ, Argentina
| | - Paola Mónica Talia
- Instituto de Agrobiotecnología y Biología Molecular IABIMO, UEDD INTA-CONICET, Dr. N. Repetto y Los Reseros s/n, (1686) Hurlingham, provincia de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María Cecilia Lerena
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, Ciudad Autónoma de Buenos Aires C1033AAJ, Argentina
| | - María Lorena Ponsone
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, Ciudad Autónoma de Buenos Aires C1033AAJ, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo (FCEN-UNCuyo) Padre Jorge Contreras 1300, Parque Gral San Martin (M5502JMA), Mendoza, Argentina
| | - Magalí Lucía Gonzalez
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, Ciudad Autónoma de Buenos Aires C1033AAJ, Argentina
| | - Lucía Maribel Becerra
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, Ciudad Autónoma de Buenos Aires C1033AAJ, Argentina
| | - Laura Analía Mercado
- Wine Research Center, Estación Experimental Agropecuaria Mendoza, Instituto Nacional de Tecnología Agropecuaria (EEA Mza INTA), San Martín 3853, Luján de Cuyo, Mendoza 5507, Argentina
| | - Virginia Martín-Arranz
- Food Biotechnology Department, Instituto de la Grasa (CSIC), Carretera de Utrera Km 1. Campus Universitario Pablo de Olavide, Building 46. 41013, Sevilla, Spain
| | - Francisco Rodríguez-Gómez
- Food Biotechnology Department, Instituto de la Grasa (CSIC), Carretera de Utrera Km 1. Campus Universitario Pablo de Olavide, Building 46. 41013, Sevilla, Spain
| | - Francisco Noé Arroyo-López
- Food Biotechnology Department, Instituto de la Grasa (CSIC), Carretera de Utrera Km 1. Campus Universitario Pablo de Olavide, Building 46. 41013, Sevilla, Spain
| | - Mariana Combina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, Ciudad Autónoma de Buenos Aires C1033AAJ, Argentina
- Instituto de Agrobiotecnología y Biología Molecular IABIMO, UEDD INTA-CONICET, Dr. N. Repetto y Los Reseros s/n, (1686) Hurlingham, provincia de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
9
|
Shen D, He X, Weng P, Liu Y, Wu Z. A review of yeast: High cell-density culture, molecular mechanisms of stress response and tolerance during fermentation. FEMS Yeast Res 2022; 22:6775076. [PMID: 36288242 DOI: 10.1093/femsyr/foac050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/21/2022] [Accepted: 10/22/2022] [Indexed: 01/07/2023] Open
Abstract
Yeast is widely used in the fermentation industry, and the major challenges in fermentation production system are high capital cost and low reaction rate. High cell-density culture is an effective method to increase the volumetric productivity of the fermentation process, thus making the fermentation process faster and more robust. During fermentation, yeast is subjected to various environmental stresses, including osmotic, ethanol, oxidation, and heat stress. To cope with these stresses, yeast cells need appropriate adaptive responses to acquire stress tolerances to prevent stress-induced cell damage. Since a single stressor can trigger multiple effects, both specific and nonspecific effects, general and specific stress responses are required to achieve comprehensive protection of cells. Since all these stresses disrupt protein structure, the upregulation of heat shock proteins and trehalose genes is induced when yeast cells are exposed to stress. A better understanding of the research status of yeast HCDC and its underlying response mechanism to various stresses during fermentation is essential for designing effective culture control strategies and improving the fermentation efficiency and stress resistance of yeast.
Collapse
Affiliation(s)
- Dongxu Shen
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P.R. China
| | - Xiaoli He
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P.R. China
| | - Peifang Weng
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P.R. China
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P.R. China
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P.R. China
| |
Collapse
|
10
|
Corn Stover Pretreatment with Na2CO3 Solution from Absorption of Recovered CO2. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8110600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Renewable resources such as lignocellulosic biomass are effective at producing fermentable sugars during enzymatic hydrolysis when pretreated. Optimizing pretreatment methods for delignification while maintaining sustainability and low processing costs requires innovative strategies such as reusing greenhouse gas emissions for materials processing. Corn stover, an agricultural waste residue, was pretreated with 2.2 M Na2CO3 produced from CO2 captured via absorption in a 5 M NaOH solution. Composition analysis of the pretreated corn stover exhibited higher cellulose content (40.96%) and less lignin (16.50%) than the untreated biomass. Changes in the chemical structures are visible in the FTIR-ATR spectra, particularly in the cellulose and lignin-related absorption bands. The sugar release from hydrolysis was evaluated at different time intervals and by varying two enzyme ratios of CTec2-to-HTec2 (2:1 and 3:1). Enzymatic hydrolysis produced higher and more stable glucose yields for the pretreated biomass, surpassing 90% after 24 h using the 3:1 enzyme ratio. Sugar concentrations notably increased after pretreatment and even more when using the cellulase-rich enzyme solution. The maximum glucose, xylose, and arabinose recovered were 44, 19, and 2.3 g L−1. These results demonstrate the viability of capturing CO2 and converting it into an efficient Na2CO3 pretreatment for corn stover biomass. Additional processing optimizations depend on the combination of physicochemical parameters selected.
Collapse
|
11
|
Jeong CH, Lee SH, Kim HY. Microbiological Composition and Sensory Characterization Analysis of Fermented Sausage Using Strains Isolated from Korean Fermented Foods. Food Sci Anim Resour 2022; 42:928-941. [PMID: 36415576 PMCID: PMC9647183 DOI: 10.5851/kosfa.2022.e56] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/07/2022] [Accepted: 09/19/2022] [Indexed: 09/14/2023] Open
Abstract
This study aimed to analyze the microbiological composition and sensory characterization of fermented sausage using strains isolated from Kimchi (GK1, Pediococcus pentosaceus SMFM2016-GK1; NK3, P. pentosaceus SMFM2016-NK3), Doenjang (D1, Debaryomyces hansenii SMFM2021-D1), and spontaneously fermented sausage (S8, D. hansenii SMFM2021-S8; S6, Penicillium nalgiovense SMFM2021-S6). The control was commercial starter culture. Nine treatments were applied [GD (GK1+D1), GS (GK1+S8), GDS (GK1+D1+S8), ND (NK3+D1), NS (NK3+S8), NDS (NK3+D1+S8), GND (GK1+NK3+D1), GNS (GK1+NK3+S8), and GNDS (GK1+NK3+D1+S8)] by mixing lactic acid bacteria and yeast, and S6 was sprayed. The microbial composition of fermented sausage was analyzed [aerobic bacteria (AC), Lactobacillus spp. (LABC), Staphylococcus spp. (STPC), and yeast and mold (YMC)], and pH and electronic nose and tongue measurements were taken. The AC, LABC, STPC, and YMC values of the control and treatment groups tended to increase during fermentation (p>0.05). The STPC values of the GD, GS, ND, and GDS groups were similar to that of the control on day 3. The pH of the control on day 3 was significantly lower than that of the GD, ND, and GND groups (p<0.05). Higher levels of 4-methylpentanol, 2-furanmethanol, and propyl nonanoate, which provide a "fermented" flavor, were detected in the GD group compared to in the control and other treatment groups. GD and ND groups showed higher umami values than the control and other treatment groups. Therefore, it is expected that GD can be valuable as a starter culture unique to Korea when manufacturing fermented sausage.
Collapse
Affiliation(s)
- Chang-Hwan Jeong
- Department of Animal Resources Science,
Kongju National University, Yesan 32439, Korea
| | - Sol-Hee Lee
- Department of Animal Resources Science,
Kongju National University, Yesan 32439, Korea
| | - Hack-Youn Kim
- Department of Animal Resources Science,
Kongju National University, Yesan 32439, Korea
| |
Collapse
|
12
|
Huang R, Zhang F, Zhou H, Yu H, Shen L, Jiang J, Qin Y, Liu Y, Song Y. Characterization of Trichoderma reesei endoglucanase displayed on the Saccharomyces cerevisiae cell surface and its effect on wine flavor in combination with β-glucosidase. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Increasing Ethanol Tolerance and Ethanol Production in an Industrial Fuel Ethanol Saccharomyces cerevisiae Strain. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8100470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The stress imposed by ethanol to Saccharomyces cerevisiae cells are one of the most challenging limiting factors in industrial fuel ethanol production. Consequently, the toxicity and tolerance to high ethanol concentrations has been the subject of extensive research, allowing the identification of several genes important for increasing the tolerance to this stress factor. However, most studies were performed with well-characterized laboratory strains, and how the results obtained with these strains work in industrial strains remains unknown. In the present work, we have tested three different strategies known to increase ethanol tolerance by laboratory strains in an industrial fuel–ethanol producing strain: the overexpression of the TRP1 or MSN2 genes, or the overexpression of a truncated version of the MSN2 gene. Our results show that the industrial CAT-1 strain tolerates up to 14% ethanol, and indeed the three strategies increased its tolerance to ethanol. When these strains were subjected to fermentations with high sugar content and cell recycle, simulating the industrial conditions used in Brazilian distilleries, only the strain with overexpression of the truncated MSN2 gene showed improved fermentation performance, allowing the production of 16% ethanol from 33% of total reducing sugars present in sugarcane molasses. Our results highlight the importance of testing genetic modifications in industrial yeast strains under industrial conditions in order to improve the production of industrial fuel ethanol by S. cerevisiae.
Collapse
|
14
|
Davidovic LM, Cumic J, Dugalic S, Vicentic S, Sevarac Z, Petroianu G, Corridon P, Pantic I. Gray-Level Co-occurrence Matrix Analysis for the Detection of Discrete, Ethanol-Induced, Structural Changes in Cell Nuclei: An Artificial Intelligence Approach. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2022; 28:265-271. [PMID: 34937605 DOI: 10.1017/s1431927621013878] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Gray-level co-occurrence matrix (GLCM) analysis is a contemporary and innovative computational method for the assessment of textural patterns, applicable in almost any area of microscopy. The aim of our research was to perform the GLCM analysis of cell nuclei in Saccharomyces cerevisiae yeast cells after the induction of sublethal cell damage with ethyl alcohol, and to evaluate the performance of various machine learning (ML) models regarding their ability to separate damaged from intact cells. For each cell nucleus, five GLCM parameters were calculated: angular second moment, inverse difference moment, GLCM contrast, GLCM correlation, and textural variance. Based on the obtained GLCM data, we applied three ML approaches: neural network, random trees, and binomial logistic regression. Statistically significant differences in GLCM features were observed between treated and untreated cells. The multilayer perceptron neural network had the highest classification accuracy. The model also showed a relatively high level of sensitivity and specificity, as well as an excellent discriminatory power in the separation of treated from untreated cells. To the best of our knowledge, this is the first study to demonstrate that it is possible to create a relatively sensitive GLCM-based ML model for the detection of alcohol-induced damage in Saccharomyces cerevisiae cell nuclei.
Collapse
Affiliation(s)
| | - Jelena Cumic
- University of Belgrade, Faculty of Medicine, University Clinical Center of Serbia, Dr. Koste Todorovica 8, RS-11129 Belgrade, Serbia
| | - Stefan Dugalic
- University of Belgrade, Faculty of Medicine, University Clinical Center of Serbia, Dr. Koste Todorovica 8, RS-11129 Belgrade, Serbia
| | - Sreten Vicentic
- University of Belgrade, Faculty of Medicine, University Clinical Center of Serbia, Clinic of Psychiatry, Pasterova 2, RS-11000 Belgrade, Serbia
| | - Zoran Sevarac
- University of Belgrade, Faculty of Organizational Sciences, Jove Ilica 154, RS-11000 Belgrade, Serbia
| | - Georg Petroianu
- Department of Pharmacology & Therapeutics, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, UAE
| | - Peter Corridon
- Department of Immunology and Physiology, College of Medicine and Health Sciences; Biomedical Engineering, Healthcare Engineering Innovation Center; Center for Biotechnology; Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, UAE
| | - Igor Pantic
- University of Belgrade, Faculty of Medicine, Department of Medical Physiology, Laboratory for Cellular Physiology, Visegradska 26/II, RS-11129 Belgrade, Serbia
- University of Haifa, 199 Abba Hushi Blvd. Mount Carmel, HaifaIL-3498838, Israel
| |
Collapse
|
15
|
de Moura Ferreira MA, da Silveira FA, da Silveira WB. Ethanol stress responses in Kluyveromyces marxianus: current knowledge and perspectives. Appl Microbiol Biotechnol 2022; 106:1341-1353. [DOI: 10.1007/s00253-022-11799-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 11/02/2022]
|
16
|
Sunyer-Figueres M, Mas A, Beltran G, Torija MJ. Protective Effects of Melatonin on Saccharomyces cerevisiae under Ethanol Stress. Antioxidants (Basel) 2021; 10:antiox10111735. [PMID: 34829606 PMCID: PMC8615028 DOI: 10.3390/antiox10111735] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/21/2021] [Accepted: 10/28/2021] [Indexed: 01/15/2023] Open
Abstract
During alcoholic fermentation, Saccharomyces cerevisiae is subjected to several stresses, among which ethanol is of capital importance. Melatonin, a bioactive molecule synthesized by yeast during alcoholic fermentation, has an antioxidant role and is proposed to contribute to counteracting fermentation-associated stresses. The aim of this study was to unravel the protective effect of melatonin on yeast cells subjected to ethanol stress. For that purpose, the effect of ethanol concentrations (6 to 12%) on a wine strain and a lab strain of S. cerevisiae was evaluated, monitoring the viability, growth capacity, mortality, and several indicators of oxidative stress over time, such as reactive oxygen species (ROS) accumulation, lipid peroxidation, and the activity of catalase and superoxide dismutase enzymes. In general, ethanol exposure reduced the cell growth of S. cerevisiae and increased mortality, ROS accumulation, lipid peroxidation and antioxidant enzyme activity. Melatonin supplementation softened the effect of ethanol, enhancing cell growth and decreasing oxidative damage by lowering ROS accumulation, lipid peroxidation, and antioxidant enzyme activities. However, the effects of melatonin were dependent on strain, melatonin concentration, and growth phase. The results of this study indicate that melatonin has a protective role against mild ethanol stress, mainly by reducing the oxidative stress triggered by this alcohol.
Collapse
|
17
|
Díaz-Muñoz C, De Vuyst L. Functional yeast starter cultures for cocoa fermentation. J Appl Microbiol 2021; 133:39-66. [PMID: 34599633 PMCID: PMC9542016 DOI: 10.1111/jam.15312] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/02/2021] [Accepted: 09/17/2021] [Indexed: 01/04/2023]
Abstract
The quest to develop a performant starter culture mixture to be applied in cocoa fermentation processes started in the 20th century, aiming at achieving high‐quality, reproducible chocolates with improved organoleptic properties. Since then, different yeasts have been proposed as candidate starter cultures, as this microbial group plays a key role during fermentation of the cocoa pulp‐bean mass. Yeast starter culture‐initiated fermentation trials have been performed worldwide through the equatorial zone and the effects of yeast inoculation have been analysed as a function of the cocoa variety (Forastero, Trinitario and hybrids) and fermentation method (farm‐, small‐ and micro‐scale) through the application of physicochemical, microbiological and chemical techniques. A thorough screening of candidate yeast starter culture strains is sometimes done to obtain the best performing strains to steer the cocoa fermentation process and/or to enhance specific features, such as pectinolysis, ethanol production, citrate assimilation and flavour production. Besides their effects during cocoa fermentation, a significant influence of the starter culture mixture applied is often found on the cocoa liquors and/or chocolates produced thereof. Thus, starter culture‐initiated cocoa fermentation processes constitute a suitable strategy to elaborate improved flavourful chocolate products.
Collapse
Affiliation(s)
- Cristian Díaz-Muñoz
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
18
|
Influence of Temperature during Pre-Fermentative Maceration and Alcoholic Fermentation on the Phenolic Composition of 'Cabernet Sauvignon' Wines. Foods 2021; 10:foods10051053. [PMID: 34064824 PMCID: PMC8150270 DOI: 10.3390/foods10051053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/30/2021] [Accepted: 05/06/2021] [Indexed: 11/17/2022] Open
Abstract
This study presents the effects of different working temperatures on the transfer of compounds during the pre-fermentative and fermentative stages of the wine making process with ‘Cabernet Sauvignon’ grapes. Two different procedures have been evaluated. Firstly, the pre-fermentative maceration of the crushed grapes at two different temperatures (20 °C and 10 °C). Then, the alcoholic fermentation under two different sets of conditions, the fermentation at a constant temperature of 20 °C and the fermentation under a positive temperature gradient from 10 to 20 °C. According to the experimental results, the phenolic contents (total phenolics, total anthocyanins, and total tannins) were mainly conditioned by the fermentation temperature, however the pre-fermentative conditions also affected the content levels of these compounds. Furthermore, the use of a fermentation temperature gradient improved the organoleptic characteristics of the wines. However, the color was not as stable as that of wines produced through fermentation at a higher constant temperature. Consequently, the implementation of a temperature gradient during the alcoholic fermentation process is recommended and a longer period at high temperature over the last phase of the process would be desirable to obtain aromatic wines with the desirable color stability.
Collapse
|
19
|
Huang R, Zhang F, Yan X, Qin Y, Jiang J, Liu Y, Song Y. Characterization of the β-Glucosidase activity in indigenous yeast isolated from wine regions in China. J Food Sci 2021; 86:2327-2345. [PMID: 33929752 DOI: 10.1111/1750-3841.15741] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/15/2021] [Accepted: 03/28/2021] [Indexed: 11/25/2022]
Abstract
β-glucosidase is a pivotal enzyme that hydrolyzes bound volatile aromatic compounds. However, the activity of β-glucosidase in winemaking and the mechanism by which it affects the flavor and taste of wines have not been fully investigated. In this study, we profiled the characteristics of β-glucosidase derived from wine-related yeasts isolated from different wine-making regions in China, and analyzed the enzyme activity from different parts of the cells under aerobic and anaerobic conditions. A total of 56 strains of wine-related yeasts producing β-glucosidases were screened using the YNB-C medium (YNB 6.7 g L-1 , cellobiose 5 g L-1 , pH 5.0). We found that strain Clavispora lusitaniae C117 produced the highest enzyme activity (152.39 µmol pNP ml-1 h-1 ). In most strains, β-glucosidase were located in whole cells (periplasmic space) and permeabilized cells (intracellular). The non-Saccharomyces species had the highest enzymatic activity in a strain-dependent manner. Under aerobic conditions, C. lusitaniae C117, Hanseniaspora guilliermondii A27-3-4, Metschnikowia pulcherrima F-1-6, and Pichia anomala C84 had the highest β-glucosidase activity. We further investigated the β-glucosidase activity during the wine fermentation and the effects of sugar, pH, temperature, and ethanol on the enzyme activities of P. anomala C84 and commercial Saccharomyces yeast strains RC212 and VL1. The presence of fructose, glucose, and sucrose strongly inhibited enzyme activity. Similarly, low pH and low temperature inhibited the activity of β-glucosidase, whereas ethanol promoted enzyme activity. Our findings provide a theoretical basis on understanding the different yeast characteristics of β-glucosidase and their potential application for further improving wine aroma complexity.
Collapse
Affiliation(s)
- Rong Huang
- College of Enology, Northwest A&F University, Yangling, Shaanxi, China
| | - Fangfang Zhang
- College of Enology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xingmin Yan
- College of Enology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yi Qin
- College of Enology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jiao Jiang
- College of Enology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yanlin Liu
- College of Enology, Northwest A&F University, Yangling, Shaanxi, China.,Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, Shaanxi, China
| | - Yuyang Song
- College of Enology, Northwest A&F University, Yangling, Shaanxi, China.,Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, Shaanxi, China
| |
Collapse
|
20
|
Biotechnological Processes in Fruit Vinegar Production. Foods 2021; 10:foods10050945. [PMID: 33925896 PMCID: PMC8145929 DOI: 10.3390/foods10050945] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/20/2021] [Accepted: 04/24/2021] [Indexed: 11/16/2022] Open
Abstract
The production of fruit vinegars as a way of making use of fruit by-products is an option widely used by the food industry, since surplus or second quality fruit can be used without compromising the quality of the final product. The acetic nature of vinegars and its subsequent impact on the organoleptic properties of the final product allows almost any type of fruit to be used for its elaboration. A growing number of scientific research studies are being carried out on this matrix, and they are revealing the importance of controlling the processes involved in vinegar elaboration. Thus, in this review, we will deal with the incidence of technological and biotechnological processes on the elaboration of fruit vinegars other than grapes. The preparation and production of the juice for the elaboration of the vinegar by means of different procedures is an essential step for the final quality of the product, among which crushing or pressing are the most employed. The different conditions and processing methods of both alcoholic and acetic fermentation also affect significantly the final characteristics of the vinegar produced. For the alcoholic fermentation, the choice between spontaneous or inoculated procedure, together with the microorganisms present in the process, have special relevance. For the acetic fermentation, the type of acetification system employed (surface or submerged) is one of the most influential factors for the final physicochemical properties of fruit vinegars. Some promising research lines regarding fruit vinegar production are the use of commercial initiators to start the acetic fermentation, the use of thermotolerant bacteria that would allow acetic fermentation to be carried out at higher temperatures, or the use of innovative technologies such as high hydrostatic pressure, ultrasound, microwaves, pulsed electric fields, and so on, to obtain high-quality fruit vinegars.
Collapse
|