1
|
Kabiraj A, Halder U, Bandopadhyay R. Isolation and Characterization of Arsenic-Tolerable Bacteria from Groundwater and Their Implementation on Rice Seedling's Shoot and Root Enhancement. Curr Microbiol 2024; 81:425. [PMID: 39448435 DOI: 10.1007/s00284-024-03951-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024]
Abstract
Arsenic exerts detrimental impacts on primary metabolism in plants, leading to reduced crop yield. Some arsenic-resistant plant growth-promoting bacteria (PGPB) help plants by providing some plant hormones to sustain their growth and development under arsenic stress. Here, seven different species of Bacillus were isolated from arsenic-contaminated groundwater of West Bengal, India. Those species were capable of growing in the presence of > 3.12 g/L arsenate (AsV) and > 0.65 g/L arsenite (AsIII) salts and also resist different heavy metals like Cu2+, Fe2+, Co2+, Zn2+, Pb2+, etc. They were susceptible to multiple groups of antibiotics like beta-lactam, aminoglycosides, etc. All species were capable of detoxifying arsenite and influenced rice seedlings' growth in the presence of arsenic salts by their capabilities like nitrogen-fixing ability, phosphate solubilization, indole 3-acetic acid (IAA), gibberellic acid (GA), proline production, etc. Most species helped enhance root and shoot lengths under arsenic stress. These primary findings suggest that those Bacillus spp. could be used as potential bio-fertilizers in arsenic-contaminated agricultural fields.
Collapse
Affiliation(s)
- Ashutosh Kabiraj
- Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, West Bengal, 713104, India
| | - Urmi Halder
- Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, West Bengal, 713104, India
| | - Rajib Bandopadhyay
- Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, West Bengal, 713104, India.
| |
Collapse
|
2
|
Huang T, Feng YX, Zhou L, Zhang SW. Enhanced Self-Cementation of Arsenic-Contaminated Soil via Activation of Non-Thermal Plasma-Irradiated Ferromanganese: A Mechanistic Investigation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124984. [PMID: 39303934 DOI: 10.1016/j.envpol.2024.124984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/16/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
The self-cementation characteristics of arsenic (As)-contaminated soil were comprehensively investigated in this study. Different non-thermal plasma-irradiated binary (hydro)oxides of polyvalent ferromanganese (poly-Fe-Mn) were synthesized and exploratorily dispersed to soil samples to activate solidification and stabilization during the self-cemented process. The maximum compressive strength of 56.35 MPa and the lowest leaching toxicity of 0.004 mg/L were obtained in the proof test under optimal conditions (i.e., the mass ratio of the poly-Fe-Mn to the soil sample of 0.05; the mass ratio of the composite alkali activator (NaOH + CaO) to the soil sample of 0.25; the mass ratio of CaO to NaOH of 1.5; the mass ratio of the DI water to the binder of 0.515). The composite alkaline activator primarily contributed to the strength formation of the self-cemented matrix while the poly-Fe-Mn significantly influenced the reduction of the As-leaching toxicities. The poly-Fe-Mn maintained diffusion-controlled polycondensation and strengthened the nucleation process during self-cementation. The amount of water and the dosage of poly-Fe-Mn caused an interactive influence on the self-cemented solidification of contaminated soils. The solidified samples with poly-Fe-Mn exhibited better thermal decomposition than their counterparts, reflecting the enhancement of poly-Fe-Mn to the matrix. Some minerals including C-S-H, kaolinite, gehlenite, diopside sodian, augite, and albite were matched in the samples, directly demonstrating the geopolymerization-steered self-cementation of the As soil. The employment of poly-Fe-Mn not only reinforced the immobilization of As pollutants in the matrix but also induced the self-cementation of soils by intensifying the composite alkaline-activated geopolymerization kinetics.
Collapse
Affiliation(s)
- Tao Huang
- School of Materials Engineering, Changshu Institute of Technology, 215500, China; Suzhou Key Laboratory of Functional Ceramic Materials, Changshu Institute of Technology, Changshu 215500, China.
| | - Yu-Xuan Feng
- School of Materials Engineering, Changshu Institute of Technology, 215500, China
| | - Lulu Zhou
- School of Environmental and Safety Engineering Changzhou University, No.1 Gehu Road, Wujing District, Changzhou, 213164, P.R. China
| | - Shu-Wen Zhang
- Nuclear Resources Engineering College, University of South China, 421001, China
| |
Collapse
|
3
|
Zhou Y, Zhao Y, Xiao P, Wang P, Li Y, Xiong S, Liu X, Wang Y, Cai X, Yin N, Cui Y. Different effects of vitamin supplementation on arsenic bioaccessibility in contaminated soils using multiple in vitro methods and their relevant mechanisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116808. [PMID: 39083865 DOI: 10.1016/j.ecoenv.2024.116808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Abstract
Exposure to arsenic (As) induces adverse effects on human health. Vitamins B1, B6, and C, as indispensable micronutrients for humans, have been proven to influence the metabolism and toxicity of ingested As. To determine the effect of vitamins on health risks associated with soil exposure, As bioaccessibility in 14 soil samples using four in vitro methods of IVG, PBET, SBRC, and UBM was measured with the addition of vitamins B1, B6, and C. With vitamins B1 and B6 addition, the gastric As bioaccessibility in 14 soil samples was reduced by 1.14-3.52 and 1.14-5.02 fold, respectively, and instead an increase in the intestinal bioaccessibility was presented in some cases. Vitamin C supplementation yielded higher As bioaccessibility in the gastric (1.13-13.02 fold) and small intestinal (1.21-33.35 fold) phases, respectively. As evidenced by the X-ray absorption near-edge spectroscopy (XANES) and Fourier transform infrared spectroscopy (FTIR) analysis, arsenic dissolution was promoted by Fe-As and hindered by the formation of Al-As fractions. Soil As dissolution in the simulated gastrointestinal tract was strongly influenced by soil minerals and ingested vitamins, due to the chelation of arsenic with vitamins and soil minerals such as Fe (hydr)oxides, and Fe(III) reductive dissolution to enhance As release by vitamin C as an iron reducer. These findings will expand the knowledge of health risks of exposure to As-contaminated soils and nutritional interventions aiming at the mitigation of As toxicity.
Collapse
Affiliation(s)
- Yi Zhou
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, PR China; Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Yongli Zhao
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, PR China; Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Peng Xiao
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, PR China; Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Pengfei Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, PR China; Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Yunpeng Li
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, PR China; Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Shimao Xiong
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, PR China; Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Xiaotong Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, PR China; Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Yiting Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, PR China; Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Xiaolin Cai
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, PR China; Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Naiyi Yin
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, PR China; Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| | - Yanshan Cui
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, PR China; Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| |
Collapse
|
4
|
Naiel MAE, Taher ES, Rashed F, Ghazanfar S, Shehata AM, Mohammed NA, Pascalau R, Smuleac L, Ibrahim AM, Abdeen A, Shukry M. The arsenic bioremediation using genetically engineered microbial strains on aquatic environments: An updated overview. Heliyon 2024; 10:e36314. [PMID: 39286167 PMCID: PMC11402758 DOI: 10.1016/j.heliyon.2024.e36314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/01/2024] [Accepted: 08/13/2024] [Indexed: 09/19/2024] Open
Abstract
Heavy metal contamination threatens the aquatic environment and human health. Different physical and chemical procedures have been adopted in many regions; however, their adoption is usually limited since they take longer time, are more expensive, and are ineffective in polluted areas with high heavy metal contents. Thus, biological remediation is considered a suitable applicable method for treating contaminates due to its aquatic-friendly features. Bacteria possess an active metabolism that enables them to thrive and develop in highly contaminated water bodies with arsenic (As). They achieve this by utilizing their genetic structure to selectively target As and deactivate its toxic influences. Therefore, this review extensively inspects the bacterial reactions and interactions with As. In addition, this literature demonstrated the potential of certain genetically engineered bacterial strains to upregulate the expression and activity of specific genes associated with As detoxification. The As resistant mechanisms in bacteria exhibit significant variation depending on the genetics and type of the bacterium, which is strongly affected by the physical water criteria of their surrounding aquatic environment. Moreover, this literature has attempted to establish scientific connections between existing knowledge and suggested sustainable methods for removing As from aquatic bodies by utilizing genetically engineered bacterial strains. We shall outline the primary techniques employed by bacteria to bioremediate As from aquatic environments. Additionally, we will define the primary obstacles that face the wide application of genetically modified bacterial strains for As bioremediation in open water bodies. This review can serve as a target for future studies aiming to implement real-time bioremediation techniques. In addition, potential synergies between the bioremediation technology and other techniques are suggested, which can be employed for As bioremediation.
Collapse
Affiliation(s)
- Mohammed A E Naiel
- Animal Production Department, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt
| | - Ehab S Taher
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa, 13110, Jordan
| | - Fatema Rashed
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa, 13110, Jordan
| | - Shakira Ghazanfar
- National Institute for Genomics Advanced Biotechnology, National Agricultural Research Centre, Park Road, Islamabad, 45500, Pakistan
| | - Abdelrazeq M Shehata
- Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Nourelhuda A Mohammed
- Department of Physiology and Biochemistry, Faculty of Medicine, Mutah University, Mutah, 61710, Al-Karak, Jordan
| | - Raul Pascalau
- Department of Agricultural Technologies, Faculty of Agriculture, University of Life Sciences "King Mihai I" from Timisoara, Romania
| | - Laura Smuleac
- Department of Sustainable Development and Environmental Engineering Faculty of Agriculture, University of Life Sciences "King Mihai I" from Timisoara, Timisoara, Roman, Romania
| | - Ateya Megahed Ibrahim
- Department of Administration and Nursing Education, College of Nursing, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
- Department of Family and Community Health Nursing, Faculty of Nursing, Port-Said University, Egypt
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, 13736, Egypt
- Department of Biochemistry, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| |
Collapse
|
5
|
Labulo AH, David OA, Hassan I, Oseghale CO, Terna AD, Olawuni I, Ndamadu DT, Ajewole TO. Mobility inhibition of arsenic in the soil: the role of green synthesized silica nanoparticles. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1683-1690. [PMID: 38712857 DOI: 10.1080/15226514.2024.2348044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The studies showed the effectiveness of green-synthesized SiO2NPs in mitigating the toxicity of Arsenic. Density Functional Theory (DFT) is a computational method used to determine electronic structure, energy gap, and toxicity prediction. Experimentally, silicon nanoparticles of 0 (S0) and 100% v/v (S100) were applied to the surface of the soil. 150 mL of Arsenic trioxide was applied twice at a rate of 0 (As0) and 3.2 g/mL (As3.2) at an interval of three weeks. Green synthesized SiO2NPs possessed a higher chemical potential (µ) and electrophilicity index; consequently, charges could be transferred and easily polarized. The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) levels of the green synthesized SiO2NPs enable them to donate electrons and complex with arsenic, reducing their bioavailability and toxicity. Evidence from the studies further showed that SiO2NPs had buffered the soil acidity and electric conductivity, posing a high binding site and reactivity with exchangeable cations and micronutrients due to their smaller energy gap. Furthermore, the catalytic activities of the soil enzymes dehydrogenase (DHA) and peroxidase (POD) were greatly increased, which enhanced the electrostatic interaction between the SiO2NPs and As.
Collapse
Affiliation(s)
- Ayomide H Labulo
- Department of Chemistry, Federal University of Lafia, Lafia, Nigeria
| | - Oyinade A David
- Department of Plant Science and Biotechnology, Federal University Oye-Ekiti, Oye-Ekiti, Nigeria
- Plant Environmental Signalling and Development, Faculty of Biology, University of Freiburg, Freiburg, Germany
- CIBSS (Centre for Integrative Biological Signalling Studies), University of Freiburg, Freiburg, Germany
| | - Ibrahim Hassan
- Department of Chemistry, Federal University of Lafia, Lafia, Nigeria
| | | | - Augustine D Terna
- Department of Chemistry, Federal University of Technology Owerri, Owerri, Nigeria
| | - Idowu Olawuni
- Department of Biochemistry, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Divine T Ndamadu
- Department of Plant Science and Biotechnology, Federal University Oye-Ekiti, Oye-Ekiti, Nigeria
| | - Tolulope O Ajewole
- Department of Plant Science and Biotechnology, Federal University Oye-Ekiti, Oye-Ekiti, Nigeria
| |
Collapse
|
6
|
Hui CY, Liu MQ, Guo Y. Synthetic bacteria designed using ars operons: a promising solution for arsenic biosensing and bioremediation. World J Microbiol Biotechnol 2024; 40:192. [PMID: 38709285 DOI: 10.1007/s11274-024-04001-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/22/2024] [Indexed: 05/07/2024]
Abstract
The global concern over arsenic contamination in water due to its natural occurrence and human activities has led to the development of innovative solutions for its detection and remediation. Microbial metabolism and mobilization play crucial roles in the global cycle of arsenic. Many microbial arsenic-resistance systems, especially the ars operons, prevalent in bacterial plasmids and genomes, play vital roles in arsenic resistance and are utilized as templates for designing synthetic bacteria. This review novelty focuses on the use of these tailored bacteria, engineered with ars operons, for arsenic biosensing and bioremediation. We discuss the advantages and disadvantages of using synthetic bacteria in arsenic pollution treatment. We highlight the importance of genetic circuit design, reporter development, and chassis cell optimization to improve biosensors' performance. Bacterial arsenic resistances involving several processes, such as uptake, transformation, and methylation, engineered in customized bacteria have been summarized for arsenic bioaccumulation, detoxification, and biosorption. In this review, we present recent insights on the use of synthetic bacteria designed with ars operons for developing tailored bacteria for controlling arsenic pollution, offering a promising avenue for future research and application in environmental protection.
Collapse
Affiliation(s)
- Chang-Ye Hui
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China.
| | - Ming-Qi Liu
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
- School of Public Health, Guangdong Medical University, Dongguan, China
| | - Yan Guo
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| |
Collapse
|
7
|
Kaya C, Uğurlar F, Ashraf M, Hou D, Kirkham MB, Bolan N. Microbial consortia-mediated arsenic bioremediation in agricultural soils: Current status, challenges, and solutions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170297. [PMID: 38272079 DOI: 10.1016/j.scitotenv.2024.170297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/01/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
Arsenic poisoning in agricultural soil is caused by both natural and man-made processes, and it poses a major risk to crop production and human health. Soil quality, agricultural production, runoff, ingestion, leaching, and absorption by plants are all influenced by these processes. Microbial consortia have become a feasible bioremediation technique in response to the urgent need for appropriate remediation solutions. These diverse microbial populations collaborate to combat arsenic poisoning in soil by facilitating mechanisms including oxidation-reduction, methylation-demethylation, volatilization, immobilization, and arsenic mobilization. The current state, problems, and remedies for employing microbial consortia in arsenic bioremediation in agricultural soils are examined in this review. Among the elements affecting their success include diversity, activity, community organization, and environmental conditions. Also, we emphasize the sensitivity and accuracy limits of existing assessment techniques. While earlier reviews have addressed a variety of arsenic remediation options, this study stands out by concentrating on microbial consortia as a viable strategy for arsenic removal and presents performance evaluation and technical problems. This work gives vital insights for tackling the major issue of arsenic pollution in agricultural soils by explaining the potential methods and components involved in microbial consortium-mediated arsenic bioremediation.
Collapse
Affiliation(s)
- Cengiz Kaya
- Soil Science and Plant Nutrition Department, Harran University, Sanliurfa, Turkey.
| | - Ferhat Uğurlar
- Soil Science and Plant Nutrition Department, Harran University, Sanliurfa, Turkey
| | - Muhammed Ashraf
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Pakistan
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, People's Republic of China
| | - Mary Beth Kirkham
- Department of Agronomy, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS, United States
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia 6009, Australia
| |
Collapse
|
8
|
Laha A, Sengupta S, Bhattacharyya S, Bhattacharyya K, GuhaRoy S. Isolation and characterization of rhizobacteria from lentil for arsenic resistance and plant growth promotion. 3 Biotech 2024; 14:30. [PMID: 38178896 PMCID: PMC10761649 DOI: 10.1007/s13205-023-03873-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/03/2023] [Indexed: 01/06/2024] Open
Abstract
Low-cost microbial remediation strategies serve as a viable and potent weapon for curbing the arsenic menace. In the present study, two arsenic-resistant bacteria were isolated from the contaminated lentil rhizosphere in Gangetic plain of eastern India. LAR-21 (Burkholderia cepacia, MW356875) and LAR-25 (Burkholderia cenocepacia, MW356894) could remove 87.6% and 85.9% of arsenite (10 mM) from the liquid culture medium in laboratory condition. They were highly resistant to arsenate and arsenite and also had a high arsenite oxidase activity. LAR-21 showed the highest level of minimum inhibitory concentration value of 390 mM for arsenate and 31 mM for arsenite. The same strain was found to show highest arsenite oxidase activity, i.e., 5.2 nM min-1 mg-1of protein. These two strains further possess potential plant growth-promoting characteristics like indole acetic acid production (5-15 mM IAA mL-1), 1-aminocyclopropane-1-carboxylate deaminase (8-21 nM α-keto butyrate mg protein-1 h-1), nitrogenase activity (3-8.99 nM ethylene mg cell protein-1 h-1), siderophore production (17-22.1 µM deferoxamine mesylate mL-1), phosphate solubilization (261-453 µg mL-1) under arsenic stress condition. The plant growth promotion of the strains was further validated by pot study of lentil by assessing their agronomic and growth-related traits, and potential to recover from arsenic stress (17.2-21.2% arsenic reduction in root and shoot, 16-19.2% in leaf and pod, and 15-23% reduction in seeds). The LAR-21 strain, thus, emerged as the most suited candidate for bioremediation and plant (lentil) growth promotion in arsenic polluted environment.
Collapse
Affiliation(s)
- Aritri Laha
- Department of Microbiology, School of Life Sciences, Swami Vivekananda University, Barrackpore, Kolkata, West Bengal 700121 India
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal 741252 India
| | - Sudip Sengupta
- Department of Agricultural Chemistry and Soil Science, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal 741252 India
- School of Agriculture, Swami Vivekananda University, Barrackpore, Kolkata, West Bengal 700121 India
| | - Somnath Bhattacharyya
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal 741252 India
| | - Kallol Bhattacharyya
- Department of Agricultural Chemistry and Soil Science, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal 741252 India
| | - Sanjoy GuhaRoy
- Department of Botany, West Bengal State University, Barasat, Kolkata, West Bengal 700126 India
| |
Collapse
|
9
|
Sher S, Tahir Ishaq M, Abbas Bukhari D, Rehman A. Brevibacterium sp. strain CS2: A potential candidate for arsenic bioremediation from industrial wastewater. Saudi J Biol Sci 2023; 30:103781. [PMID: 37680980 PMCID: PMC10480674 DOI: 10.1016/j.sjbs.2023.103781] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 09/09/2023] Open
Abstract
A multiple metal-resistant Brevibacterium sp. strain CS2, isolated from an industrial wastewater, resisted arsenate and arsenate upto 280 and 40 mM. The order of resistance against multiple metals was Arsenate > Arsenite > Selenium = Cobalt > Lead = Nickel > Cadmium = Chromium = Mercury. The bacterium was characterized as per morphological and biochemical characteristics at optimum conditions (37 ℃ and 7 pH). The appearance of brownish color precipitation was due to the interaction of silver nitrate confirming its oxidizing ability against arsenic. The strain showed arsenic processing ability at different temperatures, pH, and initial arsenic concentration which was 37% after 72 h and 48% after 96 h of incubation at optimum conditions with arsenite 250 mM/L (initial arsenic concentration). The maximum arsenic removal ability of strain CS2 was determined for 8 days, which was 32 and 46% in wastewater and distilled water, respectively. The heat-inactivated cells of the isolated strain showed a bioremediation efficiency (E) of 96% after 10 h. Genes cluster (9.6 kb) related to arsenite oxidation was found in Brevibacterium sp. strain CS2 after the genome analysis of isolated bacteria through illumine and nanopore sequencing technology. The arsenite oxidizing gene smaller subunit (aioB) on chromosomal DNA locus (Prokka_01508) was identified which plays a role in arsenite oxidation for energy metabolism. The presence of arsenic oxidizing genes and an efficient arsenic oxidizing potential of Brevibacterium sp. strain CS2 make it a potential candidate for green chemistry to eradicate arsenic from arsenic-contaminated wastewater.
Collapse
Affiliation(s)
- Shahid Sher
- University Institute of Medical Laboratory Technology (UIMLT), Faculty of Allied Health Sciences (FAHS), The University of Lahore, Lahore, Pakistan
- Florida A&M University, School of Environment, Tallahassee, FL, USA
| | - Muhammad Tahir Ishaq
- University Institute of Medical Laboratory Technology (UIMLT), Faculty of Allied Health Sciences (FAHS), The University of Lahore, Lahore, Pakistan
| | | | - Abdul Rehman
- Institute of Microbiology and Molecular Genetics, University of the Punjab, New Campus, Lahore 54590, Pakistan
| |
Collapse
|
10
|
Engrola F, Correia MAS, Watson C, Romão CC, Veiros LF, Romão MJ, Santos-Silva T, Santini JM. Arsenite oxidase in complex with antimonite and arsenite oxyanions: Insights into the catalytic mechanism. J Biol Chem 2023; 299:105036. [PMID: 37442232 PMCID: PMC10448176 DOI: 10.1016/j.jbc.2023.105036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/27/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Arsenic contamination of groundwater is among one of the biggest health threats affecting millions of people in the world. There is an urgent need for efficient arsenic biosensors where the use of arsenic metabolizing enzymes can be explored. In this work, we have solved four crystal structures of arsenite oxidase (Aio) in complex with arsenic and antimony oxyanions and the structures determined correspond to intermediate states of the enzymatic mechanism. These structural data were complemented with density-functional theory calculations providing a unique view of the molybdenum active site at different time points that, together with mutagenesis data, enabled to clarify the enzymatic mechanism and the molecular determinants for the oxidation of As(III) to the less toxic As(V) species.
Collapse
Affiliation(s)
- Filipa Engrola
- UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Márcia A S Correia
- UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Cameron Watson
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, London, United Kingdom
| | | | - Luis F Veiros
- Centro de Química Estrutural, Institute of Molecular Sciences, Lisboa, Portugal; Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Maria João Romão
- UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal.
| | - Teresa Santos-Silva
- UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal.
| | - Joanne M Santini
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, London, United Kingdom.
| |
Collapse
|
11
|
Huang T, Song D, Zhou L, Pan L, Zhang SW. Self-alkali-activated self-cementation achievement and mechanism exploration for the synergistic treatment of the municipal solid waste incineration fly ashes and the arsenic-contaminated soils. CHEMOSPHERE 2023; 325:138397. [PMID: 36925014 DOI: 10.1016/j.chemosphere.2023.138397] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/25/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
The feasibility and potential mechanisms of the self-alkali activation brought by municipal solid waste incineration (MSWI) fly ashes to the self-cementation of arsenic-contaminated soils were quantitatively evaluated and comprehensively analyzed to avoid the additional application of the alkali activators and binder materials traditionally. The employment of the two kinds of precursor materials achieved the self-alkali-activated self-cementation ('double self') under ambient conditions. The largest compressive strength (MPa) of 25.64 and lowest leaching toxicities (mg/L) of 21.05, 2.86, 0.08, 0.02, 2.05, and 0.34 for Zn, Cu, Cr, Cd, Pb, and As were obtained in the solidified matrix. Geopolymerization kinetics of the 'double self' cementation can be mathematically fitted by the Johnson-Mehl-Avrami-Kolmogorov model. CaClOH and halite in the MSWI fly ashes set up the self-alkali activation by reacting with the kaolinite and quartz in soils contaminated with arsenic by forming layered hydration and three-dimensional geopolymerization products to push for self-cementation.
Collapse
Affiliation(s)
- Tao Huang
- School of Materials Engineering, Changshu Institute of Technology, 215500, China; Suzhou Key Laboratory of Functional Ceramic Materials, Changshu Institute of Technology, Changshu, 215500, China; School of Chemical Engineering & Technology, China University of Mining and Technology, Xuzhou, Jiangsu, 221116, China.
| | - Dongping Song
- School of Materials Engineering, Changshu Institute of Technology, 215500, China; Suzhou Key Laboratory of Functional Ceramic Materials, Changshu Institute of Technology, Changshu, 215500, China
| | - Lulu Zhou
- School of Materials Engineering, Changshu Institute of Technology, 215500, China
| | - Longwei Pan
- School of Materials Engineering, Changshu Institute of Technology, 215500, China
| | - Shu-Wen Zhang
- Nuclear Resources Engineering College, University of South China, 421001, China
| |
Collapse
|