1
|
Li Z, Yang Z, Li Y. Effects of Fruit Sizes of Two Camellia Trees on the Larval Sizes of Curculio styracis (Roelofs, 1875): Testing the Endoparasitoid Body Size Hypothesis. INSECTS 2022; 13:insects13030246. [PMID: 35323545 PMCID: PMC8955991 DOI: 10.3390/insects13030246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary In endoparasitoids that feed within small discrete resource patches, such as seeds or fruits, body size could be subject to a trade-off: larger size could lead to increased overall fitness but could simultaneously increase the risk of resource depletion and starvation, resulting in a body size just below the host holding capacity. We analyzed the relationship of the larval size of the within-fruits-developing curculionid beetle Curculio styracis (Roelofs, 1875) and the size of the fruits of its two congeneric host species of Camellia to test this hypothesis. A logistic model can most accurately describe larval size in association with host-fruit size after a series of models were tested. Based on the characteristics of the optimal model, the hypothesis seemed to be confirmed because larvae that developed in host plant with larger fruits had a larger size, and larval size in both host species remained only a little below the host-fruit capacity. The novelty of the study is that this hypothesis is being tested in a more formal way using appropriate mathematical models. Abstract The endoparasitoid body size hypothesis suggests that the size of larvae that develop in a single host should be subject to a trade-off: larger size could lead to increase overall fitness but could simultaneously increase the risk of resource depletion and starvation, resulting in a body size just below the host holding capacity. However, this hypothesis has not been rigorously tested using mathematical models thus far. The camellia weevil, C.styracis (Coleoptera: Curculionidae), is a notorious pest attacking fruits of Camellia oleifera Abel. and C. meiocarpa Hu., in which the larvae develop within a single fruit and larval development is limited by the available food resources. We developed a feasible method to test this hypothesis. First, five models were used to describe the relationship between larval mass and host size. Then, the minimum fruit threshold that had to be met for ad libitum larval development and the corresponding larval size (Wa) of this threshold were calculated based on the characteristics of the optimal model. Finally, the difference between the measured larval size and the predicted larval size (Wa) was determined. The results showed that (1) the data were better described by a logistic function than any other equation; (2) larval size in both host plants increased with increasing fruit size until leveling off when the fruits were large enough to allow unconstrained larval development; (3) larval size remained just below the host-fruit holding capacity, as there was no difference between the measured and predicted larval sizes (Wa); and (4) larvae developed in host plant with larger fruits had a larger size. These results confirmed the endoparasitoid body size hypothesis.
Collapse
|
2
|
Dwyer G, Mihaljevic JR, Dukic V. Can Eco-Evo Theory Explain Population Cycles in the Field? Am Nat 2022; 199:108-125. [DOI: 10.1086/717178] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
3
|
Goto T, Osada N. Geographic variation in shoot structure in association with fruit size in an evergreen woody species. AOB PLANTS 2021; 13:plab023. [PMID: 34194689 PMCID: PMC8237846 DOI: 10.1093/aobpla/plab023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 05/06/2021] [Indexed: 06/13/2023]
Abstract
The generality of scaling relationships between multiple shoot traits, known as Corner's rules, has been considered to reflect the biomechanical limits to trees and tree organs among the species of different leaf sizes. Variation in fruit size within species would also be expected to affect shoot structure by changing the mechanical and hydraulic stresses caused by the mass and water requirement of fruits. We investigated the differences in shoot structure and their relationship with fruit size in Camellia japonica from 12 sites in a wide geographic range in Japan. This species is known to produce larger fruits with thicker pericarps in more southern populations because warmer climates induce more intensive arms race between the fruit size and the rostrum length of its obligate seed predator. We found that, in association with the change in fruit size, the diameter and mass of 1-year-old stems were negatively associated with latitude, but the total mass and area of 1-year-old leaves did not change with latitude. Consequently, the length of 1-year-old stems and the total mass and area of 1-year-old leaves at a given stem diameter were positively associated with latitude in the allometric relationships. In contrast, the allometric relationships between stem diameter and total mass of the 1-year-old shoot complex (the leaves, stems and fruits that were supported by a 1-year-old stem) did not differ across the trees of different latitudes. Thus, natural selection on fruit size is considered to influence the other traits of Corner's rules in C. japonica, but all of the traits of Corner's rules do not necessarily change in a similar manner across latitudinal gradients.
Collapse
Affiliation(s)
- Takuma Goto
- Laboratory of Plant Conservation Science, Faculty of Agriculture, Meijo University, Nagoya 468-8502, Japan
| | - Noriyuki Osada
- Laboratory of Plant Conservation Science, Faculty of Agriculture, Meijo University, Nagoya 468-8502, Japan
| |
Collapse
|
4
|
Hui C, Richardson DM, Landi P, Minoarivelo HO, Roy HE, Latombe G, Jing X, CaraDonna PJ, Gravel D, Beckage B, Molofsky J. Trait positions for elevated invasiveness in adaptive ecological networks. Biol Invasions 2021. [DOI: 10.1007/s10530-021-02484-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
AbstractOur ability to predict the outcome of invasion declines rapidly as non-native species progress through intertwined ecological barriers to establish and spread in recipient ecosystems. This is largely due to the lack of systemic knowledge on key processes at play as species establish self-sustaining populations within the invaded range. To address this knowledge gap, we present a mathematical model that captures the eco-evolutionary dynamics of native and non-native species interacting within an ecological network. The model is derived from continuous-trait evolutionary game theory (i.e., Adaptive Dynamics) and its associated concept of invasion fitness which depicts dynamic demographic performance that is both trait mediated and density dependent. Our approach allows us to explore how multiple resident and non-native species coevolve to reshape invasion performance, or more precisely invasiveness, over trait space. The model clarifies the role of specific traits in enabling non-native species to occupy realised opportunistic niches. It also elucidates the direction and speed of both ecological and evolutionary dynamics of residing species (natives or non-natives) in the recipient network under different levels of propagule pressure. The versatility of the model is demonstrated using four examples that correspond to the invasion of (i) a horizontal competitive community; (ii) a bipartite mutualistic network; (iii) a bipartite antagonistic network; and (iv) a multi-trophic food web. We identified a cohesive trait strategy that enables the success and establishment of non-native species to possess high invasiveness. Specifically, we find that a non-native species can achieve high levels of invasiveness by possessing traits that overlap with those of its facilitators (and mutualists), which enhances the benefits accrued from positive interactions, and by possessing traits outside the range of those of antagonists, which mitigates the costs accrued from negative interactions. This ‘central-to-reap, edge-to-elude’ trait strategy therefore describes the strategic trait positions of non-native species to invade an ecological network. This model provides a theoretical platform for exploring invasion strategies in complex adaptive ecological networks.
Collapse
|
5
|
Craig TP, Livingston‐Anderson A, Itami JK. A small‐tiled geographic mosaic of coevolution between
Eurosta solidaginis
and its natural enemies and host plant. Ecosphere 2020. [DOI: 10.1002/ecs2.3182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Timothy P. Craig
- Department of Biology University of Minnesota Duluth Duluth Minnesota55812USA
| | | | - Joanne K. Itami
- Department of Biology University of Minnesota Duluth Duluth Minnesota55812USA
| |
Collapse
|
6
|
de Andreazzi CS, Astegiano J, Guimarães PR. Coevolution by different functional mechanisms modulates the structure and dynamics of antagonistic and mutualistic networks. OIKOS 2019. [DOI: 10.1111/oik.06737] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Cecilia Siliansky de Andreazzi
- Depto de Ecologia, Univ. de São Paulo (USP), Rua do Matão, 321 – Trav. 14 Cid. Universitária São Paulo CEP 05508‐090 Brazil
- Laboratório de Biologia e Parasitologia de Mamíferos Silvestres Reservatórios, Instituto Oswaldo Cruz, FIOCRUZ Rio de Janeiro Brazil
| | - Julia Astegiano
- Depto de Ecologia, Univ. de São Paulo (USP), Rua do Matão, 321 – Trav. 14 Cid. Universitária São Paulo CEP 05508‐090 Brazil
- Grupo de Interacciones Ecológicas y Conservación, Instituto Multidisciplinario de Biología Vegetal (IMBIV), Facultad de Ciencias Exactas, Físicas y Naturales, Univ. Nacional de Córdoba, Consejo Nacional de Investigaciones Científicas y Técnicas Córdoba Argentina
| | - Paulo R. Guimarães
- Depto de Ecologia, Univ. de São Paulo (USP), Rua do Matão, 321 – Trav. 14 Cid. Universitária São Paulo CEP 05508‐090 Brazil
| |
Collapse
|
7
|
Approximate Bayesian estimation of coevolutionary arms races. PLoS Comput Biol 2019; 15:e1006988. [PMID: 30986245 PMCID: PMC6483265 DOI: 10.1371/journal.pcbi.1006988] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 04/25/2019] [Accepted: 03/29/2019] [Indexed: 11/19/2022] Open
Abstract
Exaggerated traits involved in species interactions have long captivated the imagination of evolutionary biologists and inspired the durable metaphor of the coevolutionary arms race. Despite decades of research, however, we have only a handful of examples where reciprocal coevolutionary change has been rigorously established as the cause of trait exaggeration. Support for a coevolutionary mechanism remains elusive because we lack generally applicable tools for quantifying the intensity of coevolutionary selection. Here we develop an approximate Bayesian computation (ABC) approach for estimating the intensity of coevolutionary selection using population mean phenotypes of traits mediating interspecific interactions. Our approach relaxes important assumptions of a previous maximum likelihood approach by allowing gene flow among populations, variable abiotic environments, and strong coevolutionary selection. Using simulated data, we show that our ABC method accurately infers the strength of coevolutionary selection if reliable estimates are available for key background parameters and ten or more populations are sampled. Applying our approach to the putative arms race between the plant Camellia japonica and its seed predatory weevil, Curculio camelliae, provides support for a coevolutionary hypothesis but fails to preclude the possibility of unilateral evolution. Comparing independently estimated selection gradients acting on Camellia pericarp thickness with values simulated by our model reveals a correlation between predicted and observed selection gradients of 0.941. The strong agreement between predicted and observed selection gradients validates our method.
Collapse
|
8
|
Week B, Nuismer SL. The measurement of coevolution in the wild. Ecol Lett 2019; 22:717-725. [PMID: 30775838 DOI: 10.1111/ele.13231] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/14/2018] [Accepted: 01/11/2019] [Indexed: 11/27/2022]
Abstract
Coevolution has long been thought to drive the exaggeration of traits, promote major evolutionary transitions such as the evolution of sexual reproduction and influence epidemiological dynamics. Despite coevolution's long suspected importance, we have yet to develop a quantitative understanding of its strength and prevalence because we lack generally applicable statistical methods that yield numerical estimates for coevolution's strength and significance in the wild. Here, we develop a novel method that derives maximum likelihood estimates for the strength of direct pairwise coevolution by coupling a well-established coevolutionary model to spatially structured phenotypic data. Applying our method to two well-studied interactions reveals evidence for coevolution in both systems. Broad application of this approach has the potential to further resolve long-standing evolutionary debates such as the role species interactions play in the evolution of sexual reproduction and the organisation of ecological communities.
Collapse
Affiliation(s)
- Bob Week
- Department of Biological Sciences, University of Idaho, Idaho, NW, USA
| | - Scott L Nuismer
- Department of Biological Sciences, University of Idaho, Idaho, NW, USA
| |
Collapse
|
9
|
Rivas-Ubach A, Peñuelas J, Hódar JA, Oravec M, Paša-Tolić L, Urban O, Sardans J. We Are What We Eat: A Stoichiometric and Ecometabolomic Study of Caterpillars Feeding on Two Pine Subspecies of Pinus sylvestris. Int J Mol Sci 2018; 20:E59. [PMID: 30586850 PMCID: PMC6337320 DOI: 10.3390/ijms20010059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/17/2018] [Accepted: 12/20/2018] [Indexed: 11/28/2022] Open
Abstract
Many studies have addressed several plant-insect interaction topics at nutritional, molecular, physiological, and evolutionary levels. However, it is still unknown how flexible the metabolism and the nutritional content of specialist insect herbivores feeding on different closely related plants can be. We performed elemental, stoichiometric, and metabolomics analyses on leaves of two coexisting Pinus sylvestris subspecies and on their main insect herbivore; the caterpillar of the processionary moth (Thaumetopoea pityocampa). Caterpillars feeding on different pine subspecies had distinct overall metabolome structure, accounting for over 10% of the total variability. Although plants and insects have very divergent metabolomes, caterpillars showed certain resemblance to their plant-host metabolome. In addition, few plant-related secondary metabolites were found accumulated in caterpillar tissues which could potentially be used for self-defense. Caterpillars feeding on N and P richer needles had lower N and P tissue concentration and higher C:N and C:P ratios, suggesting that nutrient transfer is not necessarily linear through trophic levels and other plant-metabolic factors could be interfering. This exploratory study showed that little chemical differences between plant food sources can impact the overall metabolome of specialist insect herbivores. Significant nutritional shifts in herbivore tissues could lead to larger changes of the trophic web structure.
Collapse
Affiliation(s)
- Albert Rivas-Ubach
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA.
- CREAF, Center for Ecological and Forestry Applications, Cerdanyola del Vallès, 08913 Catalonia, Spain.
| | - Josep Peñuelas
- CREAF, Center for Ecological and Forestry Applications, Cerdanyola del Vallès, 08913 Catalonia, Spain.
- CSIC, Global Ecology Unit CREAF-CEAB-CSIC-UAB, Cerdanyola del Vallès, 08913 Catalonia, Spain.
| | - José Antonio Hódar
- Grupo de Ecología Terrestre, Departamento de Biología Animal y Ecología, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain.
| | - Michal Oravec
- Global Change Research Institute, Czech Academy of Sciences, Bĕlidla 4a, CZ-603 00 Brno, Czech Republic.
| | - Ljiljana Paša-Tolić
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA.
| | - Otmar Urban
- Global Change Research Institute, Czech Academy of Sciences, Bĕlidla 4a, CZ-603 00 Brno, Czech Republic.
| | - Jordi Sardans
- CREAF, Center for Ecological and Forestry Applications, Cerdanyola del Vallès, 08913 Catalonia, Spain.
- CSIC, Global Ecology Unit CREAF-CEAB-CSIC-UAB, Cerdanyola del Vallès, 08913 Catalonia, Spain.
| |
Collapse
|
10
|
Andreazzi CS, Thompson JN, Guimarães PR. Network Structure and Selection Asymmetry Drive Coevolution in Species-Rich Antagonistic Interactions. Am Nat 2017; 190:99-115. [DOI: 10.1086/692110] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Paudel BR, Shrestha M, Burd M, Adhikari S, Sun YS, Li QJ. Coevolutionary elaboration of pollination-related traits in an alpine ginger (Roscoea purpurea) and a tabanid fly in the Nepalese Himalayas. THE NEW PHYTOLOGIST 2016; 211:1402-11. [PMID: 27112321 DOI: 10.1111/nph.13974] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 03/17/2016] [Indexed: 05/27/2023]
Abstract
Geographical variation in the interacting traits of plant-pollinator mutualism can lead to local adaptive differentiation. We tested Darwin's hypothesis of reciprocal selection as a key driving force for the evolution of floral traits of an alpine ginger (Roscoea purpurea) and proboscis length of a tabanid fly (Philoliche longirostris). We documented the pattern of trait variation in R. purpurea and P. longirostris across five populations. At each site, we quantified pollinator-mediated selection on floral display area, inflorescence height and corolla length of R. purpurea by comparing selection gradients for flowers exposed to natural pollination and to supplemental hand pollination. Reciprocal selection between plant and fly was examined at two sites via the relationship between proboscis length and nectar consumption (fly benefit) and corolla length and pollen deposition (plant benefit). Local corolla tube length was correlated with local fly proboscis length among the five sites. We found strong linear selection imposed by pollinators on corolla tube length at all sites, but there was no consistent relationship of fitness to inflorescence height or floral display area. Selection between corolla length and proboscis length was reciprocal at the two experimental sites examined. The geographical pattern of trait variation and the evidence of selection is consistent with a mosaic of local, species-specific reciprocal selection acting as the major driving force for the evolution of corolla length of R. purpurea and proboscis length of P. longirostris.
Collapse
Affiliation(s)
- Babu Ram Paudel
- Plant Evolutionary Ecology Research Group, Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun Town, Mengla County, Yunnan, 666303, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
- Tribhuvan University, Department of Botany, Prithvi Narayan Campus, Pokhara, Nepal
| | - Mani Shrestha
- School of Media and Communication, RMIT University, Melbourne, Victoria, 3001, Australia
- Faculty of Information Technology, Monash University, Melbourne, Victoria, 3800, Australia
| | - Martin Burd
- School of Biological Sciences, Monash University, Melbourne, Victoria, 3800, Australia
| | - Subodh Adhikari
- Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, 59715, USA
| | - Yong-Shuai Sun
- Plant Evolutionary Ecology Research Group, Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun Town, Mengla County, Yunnan, 666303, China
| | - Qing-Jun Li
- Laboratory of Ecology and Evolutionary Biology, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, Yunnan, 650091, China
| |
Collapse
|
12
|
Testing for coevolutionary diversification: linking pattern with process. Trends Ecol Evol 2013; 29:82-9. [PMID: 24314843 DOI: 10.1016/j.tree.2013.11.003] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 11/05/2013] [Accepted: 11/07/2013] [Indexed: 11/24/2022]
Abstract
Coevolutionary diversification is cited as a major mechanism driving the evolution of diversity, particularly in plants and insects. However, tests of coevolutionary diversification have focused on elucidating macroevolutionary patterns rather than the processes giving rise to such patterns. Hence, there is weak evidence that coevolution promotes diversification. This is in part due to a lack of understanding about the mechanisms by which coevolution can cause speciation and the difficulty of integrating results across micro- and macroevolutionary scales. In this review, we highlight potential mechanisms of coevolutionary diversification, outline approaches to examine this process across temporal scales, and propose a set of minimal requirements for demonstrating coevolutionary diversification. Our aim is to stimulate research that tests more rigorously for coevolutionary diversification.
Collapse
|
13
|
Singer MC, McBride CS. Geographic mosaics of species' association: a definition and an example driven by plant–insect phenological synchrony. Ecology 2012; 93:2658-73. [DOI: 10.1890/11-2078.1] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Zhang F, Hui C, Pauw A. Adaptive divergence in Darwin's race: how coevolution can generate trait diversity in a pollination system. Evolution 2012; 67:548-60. [PMID: 23356625 DOI: 10.1111/j.1558-5646.2012.01796.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Understanding how reciprocal selection shapes interacting species in Darwin's coevolutionary race is a captivating pursuit in evolutionary ecology. Coevolving traits can potentially display following three patterns: (1) geographical variation in matched traits, (2) bias in trait matching, and (3) bimodal distribution of a trait in certain populations. Based on the framework of adaptive dynamics, we present an evolutionary model for a coevolving pollination system involving the long-proboscid fly (Moegistorhynchus longirostris) and the long-tubed iris (Lapeirousia anceps). The model successfully demonstrates that Darwin's hypothesis can lead to all three patterns if costs are involved. Geographical variation in matched traits could be driven by geographical variation in environmental factors that affect the cost rate of trait escalation. Unequal benefits derived from the interaction by the fly and the flower could potentially cause the bias in trait matching of the system. Different cost rates to trait elongation incurred by the two species and weak assortative interactions in the coevolutionary race can drive divergent selection (i.e., an evolutionary branching) that leads to the bimodal distribution of traits. Overall, the model highlights the importance of assortative interactions and the balance of costs incurred by coevolving species as factors determining the eventual phenotypic outcome of coevolutionary interactions.
Collapse
Affiliation(s)
- Feng Zhang
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | | | | |
Collapse
|