1
|
Poblano-Pérez LI, Monroy-García A, Fragoso-González G, Mora-García MDL, Castell-Rodríguez A, Mayani H, Álvarez-Pérez MA, Pérez-Tapia SM, Macías-Palacios Z, Vallejo-Castillo L, Montesinos JJ. Mesenchymal Stem/Stromal Cells Derived from Dental Tissues Mediate the Immunoregulation of T Cells through the Purinergic Pathway. Int J Mol Sci 2024; 25:9578. [PMID: 39273524 PMCID: PMC11395442 DOI: 10.3390/ijms25179578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Human dental tissue mesenchymal stem cells (DT-MSCs) constitute an attractive alternative to bone marrow-derived mesenchymal stem cells (BM-MSCs) for potential clinical applications because of their accessibility and anti-inflammatory capacity. We previously demonstrated that DT-MSCs from dental pulp (DP-MSCs), periodontal ligaments (PDL-MSCs), and gingival tissue (G-MSCs) show immunosuppressive effects similar to those of BM, but to date, the DT-MSC-mediated immunoregulation of T lymphocytes through the purinergic pathway remains unknown. In the present study, we compared DP-MSCs, PDL-MSCs, and G-MSCs in terms of CD26, CD39, and CD73 expression; their ability to generate adenosine (ADO) from ATP and AMP; and whether the concentrations of ADO that they generate induce an immunomodulatory effect on T lymphocytes. BM-MSCs were included as the gold standard. Our results show that DT-MSCs present similar characteristics among the different sources analyzed in terms of the properties evaluated; however, interestingly, they express more CD39 than BM-MSCs; therefore, they generate more ADO from ATP. In contrast to those produced by BM-MSCs, the concentrations of ADO produced by DT-MSCs from ATP inhibited the proliferation of CD3+ T cells and promoted the generation of CD4+CD25+FoxP3+CD39+CD73+ Tregs and Th17+CD39+ lymphocytes. Our data suggest that DT-MSCs utilize the adenosinergic pathway as an immunomodulatory mechanism and that this mechanism is more efficient than that of BM-MSCs.
Collapse
Affiliation(s)
- Luis Ignacio Poblano-Pérez
- Mesenchymal Stem Cell Laboratory, Oncology Research Unit, Oncology Hospital, Centro Médico Nacional SXXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Alberto Monroy-García
- Immunology and Cancer Laboratory, Oncology Research Unit, Oncology Hospital, Centro Médico Nacional SXXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Gladis Fragoso-González
- Institute of Biomedical Research, Department of Immunology, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - María de Lourdes Mora-García
- Immunobiology Laboratory, Cell Differentiation and Cancer Unit, Facultad de Estudios Superiores-Zaragoza, Universidad Nacional Autónoma de México, Mexico City 09230, Mexico
| | - Andrés Castell-Rodríguez
- Department of Cellular and Tissue Biology, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Héctor Mayani
- Hematopoietic Stem Cell Laboratory, Oncology Research Unit, Oncology Hospital, Centro Médico Nacional SXXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Marco Antonio Álvarez-Pérez
- Tissue Bioengineering Laboratory, Postgraduate Studies, Research Division, Faculty of Dentistry, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Sonia Mayra Pérez-Tapia
- Research and Development in Biotherapeutic Unit (UDIBI), National School of Biological Sciences, Instituto Politécnico Nacional, Mexico City 11340, Mexico
- National Laboratory for Specialized Services of Investigation, Development and Innovation (I+D+i) for Pharma Chemicals and Biotechnological Products (LANSEIDI-FarBiotec-CONACyT), Instituto Politécnico Nacional, Mexico City 11340, Mexico
- Department of Immunology, National School of Biological Sciences, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Zaira Macías-Palacios
- Research and Development in Biotherapeutic Unit (UDIBI), National School of Biological Sciences, Instituto Politécnico Nacional, Mexico City 11340, Mexico
- National Laboratory for Specialized Services of Investigation, Development and Innovation (I+D+i) for Pharma Chemicals and Biotechnological Products (LANSEIDI-FarBiotec-CONACyT), Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Luis Vallejo-Castillo
- Research and Development in Biotherapeutic Unit (UDIBI), National School of Biological Sciences, Instituto Politécnico Nacional, Mexico City 11340, Mexico
- National Laboratory for Specialized Services of Investigation, Development and Innovation (I+D+i) for Pharma Chemicals and Biotechnological Products (LANSEIDI-FarBiotec-CONACyT), Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Juan José Montesinos
- Mesenchymal Stem Cell Laboratory, Oncology Research Unit, Oncology Hospital, Centro Médico Nacional SXXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| |
Collapse
|
2
|
Wikarska A, Roszak K, Roszek K. Mesenchymal Stem Cells and Purinergic Signaling in Autism Spectrum Disorder: Bridging the Gap between Cell-Based Strategies and Neuro-Immune Modulation. Biomedicines 2024; 12:1310. [PMID: 38927517 PMCID: PMC11201695 DOI: 10.3390/biomedicines12061310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/26/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The prevalence of autism spectrum disorder (ASD) is still increasing, which means that this neurodevelopmental lifelong pathology requires special scientific attention and efforts focused on developing novel therapeutic approaches. It has become increasingly evident that neuroinflammation and dysregulation of neuro-immune cross-talk are specific hallmarks of ASD, offering the possibility to treat these disorders by factors modulating neuro-immunological interactions. Mesenchymal stem cell-based therapy has already been postulated as one of the therapeutic approaches for ASD; however, less is known about the molecular mechanisms of stem cell influence. One of the possibilities, although still underestimated, is the paracrine purinergic activity of MSCs, by which stem cells ameliorate inflammatory reactions. Modulation of adenosine signaling may help restore neurotransmitter balance, reduce neuroinflammation, and improve overall brain function in individuals with ASD. In our review article, we present a novel insight into purinergic signaling, including but not limited to the adenosinergic pathway and its role in neuroinflammation and neuro-immune cross-talk modulation. We anticipate that by achieving a greater understanding of the purinergic signaling contribution to ASD and related disorders, novel therapeutic strategies may be devised for patients with autism in the near future.
Collapse
Affiliation(s)
| | | | - Katarzyna Roszek
- Department of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100 Torun, Poland; (A.W.); (K.R.)
| |
Collapse
|
3
|
Duan Y, Chen X, Shao H, Li Y, Zhang Z, Li H, Zhao C, Xiao H, Wang J, Zhang X. Enhanced immunosuppressive capability of mesenchymal stem cell-derived small extracellular vesicles with high expression of CD73 in experimental autoimmune uveitis. Stem Cell Res Ther 2024; 15:149. [PMID: 38783393 PMCID: PMC11118760 DOI: 10.1186/s13287-024-03764-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Autoimmune uveitis is an inflammatory disease triggered by an aberrant immune response. Mesenchymal stem cell-derived small extracellular vesicles (MSC-sEVs) are emerging as potential therapeutic agents for this condition. CD73, an ectoenzyme present on MSC-sEVs, is involved in mitigating inflammation by converting extracellular adenosine monophosphate into adenosine. We hypothesize that the inhibitory effect of MSC-sEVs on experimental autoimmune uveitis (EAU) could be partially attributed to the surface expression of CD73. METHODS To investigate novel therapeutic approaches for autoimmune uveitis, we performed lentiviral transduction to overexpress CD73 on the surface of MSC-sEVs, yielding CD73-enriched MSC-sEVs (sEVs-CD73). Mice with interphotoreceptor retinoid-binding protein (IRBP)-induced EAU were grouped randomly and treated with 50 µg MSC-sEVs, vector infected MSC-sEVs, sEVs-CD73 or PBS via single tail vein injection. We evaluated the clinical and histological features of the induced mice and analyzed the proportion and functional capabilities of T helper cells. Furthermore, T-cells were co-cultured with various MSC-sEVs in vitro, and we quantified the resulting inflammatory response to assess the potential therapeutic benefits of sEVs-CD73. RESULTS Compared to MSC-sEVs, sEVs-CD73 significantly alleviates EAU, leading to reduced inflammation and diminished tissue damage. Treatment with sEVs-CD73 results in a decreased proportion of Th1 cells in the spleen, draining lymph nodes, and eyes, accompanied by an increased proportion of regulatory T-cells (Treg cells). In vitro assays further reveal that sEVs-CD73 inhibits T-cell proliferation, suppresses Th1 cells differentiation, and enhances Treg cells proportion. CONCLUSION Over-expression of CD73 on MSC-sEVs enhances their immunosuppressive effects in EAU, indicating that sEVs-CD73 has the potential as an efficient immunotherapeutic agent for autoimmune uveitis.
Collapse
Affiliation(s)
- Yanan Duan
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Xiteng Chen
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Hui Shao
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Yongtao Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Zhihui Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Huan Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Chuan Zhao
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Hong Xiao
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Jiawei Wang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Xiaomin Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China.
| |
Collapse
|
4
|
Hazrati A, Malekpour K, Khorramdelazad H, Rajaei S, Hashemi SM. Therapeutic and immunomodulatory potentials of mesenchymal stromal/stem cells and immune checkpoints related molecules. Biomark Res 2024; 12:35. [PMID: 38515166 PMCID: PMC10958918 DOI: 10.1186/s40364-024-00580-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/07/2024] [Indexed: 03/23/2024] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) are used in many studies due to their therapeutic potential, including their differentiative ability and immunomodulatory properties. These cells perform their therapeutic functions by using various mechanisms, such as the production of anti-inflammatory cytokines, growth factors, direct cell-to-cell contact, extracellular vesicles (EVs) production, and mitochondrial transfer. However, mechanisms related to immune checkpoints (ICPs) and their effect on the immunomodulatory ability of MSCs are less discussed. The main function of ICPs is to prevent the initiation of unwanted responses and to regulate the immune system responses to maintain the homeostasis of these responses. ICPs are produced by various types of immune system regulatory cells, and defects in their expression and function may be associated with excessive responses that can ultimately lead to autoimmunity. Also, by expressing different types of ICPs and their ligands (ICPLs), tumor cells prevent the formation and durability of immune responses, which leads to tumors' immune escape. ICPs and ICPLs can be produced by MSCs and affect immune cell responses both through their secretion into the microenvironment or direct cell-to-cell interaction. Pre-treatment of MSCs in inflammatory conditions leads to an increase in their therapeutic potential. In addition to the effect that inflammatory environments have on the production of anti-inflammatory cytokines by MSCs, they can increase the expression of various types of ICPLs. In this review, we discuss different types of ICPLs and ICPs expressed by MSCs and their effect on their immunomodulatory and therapeutic potential.
Collapse
Affiliation(s)
- Ali Hazrati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kosar Malekpour
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Samira Rajaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Zhang H, Han K, Li H, Zhang J, Zhao Y, Wu Y, Wang B, Ma J, Luan X. hPMSCs Regulate the Level of TNF-α and IL-10 in Th1 Cells and Improve Hepatic Injury in a GVHD Mouse Model via CD73/ADO/Fyn/Nrf2 Axis. Inflammation 2024; 47:244-263. [PMID: 37833615 DOI: 10.1007/s10753-023-01907-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/18/2023] [Accepted: 09/13/2023] [Indexed: 10/15/2023]
Abstract
Mesenchymal stem cells (MSCs) ameliorate graft-versus-host disease (GVHD)-induced tissue damage by exerting immunosuppressive effects. However, the related mechanism remains unclear. Here, we explored the therapeutic effect and mechanism of action of human placental-derived MSCs (hPMSCs) on GVHD-induced mouse liver tissue damage, which shows association with inflammatory responses, fibrosis accompanied by hepatocyte tight junction protein loss, the upregulation of Bax, and the downregulation of Bcl-2. It was observed in GVHD mice and Th1 cell differentiation system that hPMSCs treatment increased IL-10 levels and decreased TNF-α levels in the Th1 subsets via CD73. Moreover, hPMSCs treatment reduced tight junction proteins loss and inhibited hepatocyte apoptosis in the livers of GVHD mice via CD73. ADO level analysis in GVHD mice and the Th1 cell differentiation system showed that hPMSCs could also upregulate ADO levels via CD73. Moreover, hPMSCs enhanced Nrf2 expression and diminished Fyn expression via the CD73/ADO pathway in Th1, TNF-α+, and IL-10+ cells. These results indicated that hPMSCs promoted and inhibited the secretion of IL-10 and TNF-α, respectively, during Th1 cell differentiation through the CD73/ADO/Fyn/Nrf2 axis signaling pathway, thereby alleviating liver tissue injury in GVHD mice.
Collapse
Affiliation(s)
- Hengchao Zhang
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong Province, China
| | - Kaiyue Han
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong Province, China
| | - Heng Li
- Traditional Chinese Medicine Hospital of Muping District of Yantai City, Yantai, 264100, Shandong Province, China
| | - Jiashen Zhang
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong Province, China
| | - Yaxuan Zhao
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong Province, China
| | - Yunhua Wu
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong Province, China
| | - Bin Wang
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong Province, China
| | - Junjie Ma
- Yuhuangding Hospital Affiliated to Qingdao University, Yantai, 264000, Shandong Province, China.
| | - Xiying Luan
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong Province, China.
| |
Collapse
|
6
|
Beckenkamp LR, da Fontoura DMS, Korb VG, de Campos RP, Onzi GR, Iser IC, Bertoni APS, Sévigny J, Lenz G, Wink MR. Immortalization of Mesenchymal Stromal Cells by TERT Affects Adenosine Metabolism and Impairs their Immunosuppressive Capacity. Stem Cell Rev Rep 2021; 16:776-791. [PMID: 32556945 DOI: 10.1007/s12015-020-09986-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mesenchymal stromal cells (MSCs) are promising candidates for cell-based therapies, mainly due to their unique biological properties such as multipotency, self-renewal and trophic/immunomodulatory effects. However, clinical use has proven complex due to limitations such as high variability of MSCs preparations and high number of cells required for therapies. These challenges could be circumvented with cell immortalization through genetic manipulation, and although many studies show that such approaches are safe, little is known about changes in other biological properties and functions of MSCs. In this study, we evaluated the impact of MSCs immortalization with the TERT gene on the purinergic system, which has emerged as a key modulator in a wide variety of pathophysiological conditions. After cell immortalization, MSCs-TERT displayed similar immunophenotypic profile and differentiation potential to primary MSCs. However, analysis of gene and protein expression exposed important alterations in the purinergic signaling of in vitro cultured MSCs-TERT. Immortalized cells upregulated the CD39/NTPDase1 enzyme and downregulated CD73/NT5E and adenosine deaminase (ADA), which had a direct impact on their nucleotide/nucleoside metabolism profile. Despite these alterations, adenosine did not accumulate in the extracellular space, due to increased uptake. MSCs-TERT cells presented an impaired in vitro immunosuppressive potential, as observed in an assay of co-culture with lymphocytes. Therefore, our data suggest that MSCs-TERT have altered expression of key enzymes of the extracellular nucleotides/nucleoside control, which altered key characteristics of these cells and can potentially change their therapeutic effects in tissue engineering in regenerative medicine.
Collapse
Affiliation(s)
- L R Beckenkamp
- Laboratory of Cell Biology, Universidade Federal de Ciências da Saúde de Porto Alegre- UFCSPA, Rua Sarmento Leite, 245, Porto Alegre, RS, CEP 90050-170, Brazil
| | - D M S da Fontoura
- Laboratory of Cell Biology, Universidade Federal de Ciências da Saúde de Porto Alegre- UFCSPA, Rua Sarmento Leite, 245, Porto Alegre, RS, CEP 90050-170, Brazil
| | - V G Korb
- Laboratory of Cell Biology, Universidade Federal de Ciências da Saúde de Porto Alegre- UFCSPA, Rua Sarmento Leite, 245, Porto Alegre, RS, CEP 90050-170, Brazil
| | - R P de Campos
- Department of Biophysics and Center of Biotechnology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - G R Onzi
- Department of Biophysics and Center of Biotechnology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - I C Iser
- Laboratory of Cell Biology, Universidade Federal de Ciências da Saúde de Porto Alegre- UFCSPA, Rua Sarmento Leite, 245, Porto Alegre, RS, CEP 90050-170, Brazil
| | - A P S Bertoni
- Laboratory of Cell Biology, Universidade Federal de Ciências da Saúde de Porto Alegre- UFCSPA, Rua Sarmento Leite, 245, Porto Alegre, RS, CEP 90050-170, Brazil
| | - J Sévigny
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Québec city, QC, G1V 0A6, Canada.,Centre de recherche du CHU de Québec, Université Laval, Québec city, QC, G1V 4G2, Canada
| | - G Lenz
- Department of Biophysics and Center of Biotechnology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Márcia Rosângela Wink
- Laboratory of Cell Biology, Universidade Federal de Ciências da Saúde de Porto Alegre- UFCSPA, Rua Sarmento Leite, 245, Porto Alegre, RS, CEP 90050-170, Brazil.
| |
Collapse
|
7
|
Galgaro BC, Beckenkamp LR, van den M Nunnenkamp M, Korb VG, Naasani LIS, Roszek K, Wink MR. The adenosinergic pathway in mesenchymal stem cell fate and functions. Med Res Rev 2021; 41:2316-2349. [PMID: 33645857 DOI: 10.1002/med.21796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/02/2021] [Accepted: 02/17/2021] [Indexed: 12/18/2022]
Abstract
Mesenchymal stem cells (MSCs) play an important role in tissue homeostasis and damage repair through their ability to differentiate into cells of different tissues, trophic support, and immunomodulation. These properties made them attractive for clinical applications in regenerative medicine, immune disorders, and cell transplantation. However, despite multiple preclinical and clinical studies demonstrating beneficial effects of MSCs, their native identity and mechanisms of action remain inconclusive. Since its discovery, the CD73/ecto-5'-nucleotidase is known as a classic marker for MSCs, but its role goes far beyond a phenotypic characterization antigen. CD73 contributes to adenosine production, therefore, is an essential component of purinergic signaling, a pathway composed of different nucleotides and nucleosides, which concentrations are finely regulated by the ectoenzymes and receptors. Thus, purinergic signaling controls pathophysiological functions such as proliferation, migration, cell fate, and immune responses. Despite the remarkable progress already achieved in considering adenosinergic pathway as a therapeutic target in different pathologies, its role is not fully explored in the context of the therapeutic functions of MSCs. Therefore, in this review, we provide an overview of the role of CD73 and adenosine-mediated signaling in the functions ascribed to MSCs, such as homing and proliferation, cell differentiation, and immunomodulation. Additionally, we will discuss the pathophysiological role of MSCs, via CD73 and adenosine, in different diseases, as well as in tumor development and progression. A better understanding of the adenosinergic pathway in the regulation of MSCs functions will help to provide improved therapeutic strategies applicable in regenerative medicine.
Collapse
Affiliation(s)
- Bruna C Galgaro
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Liziane R Beckenkamp
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Martha van den M Nunnenkamp
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Vitória G Korb
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Liliana I S Naasani
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Katarzyna Roszek
- Department of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Márcia R Wink
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
8
|
Yoon CH, Choi SH, Choi HJ, Lee HJ, Kang HJ, Kim JM, Park CG, Choi K, Kim H, Ahn C, Kim MK. Long-term survival of full-thickness corneal xenografts from α1,3-galactosyltransferase gene-knockout miniature pigs in non-human primates. Xenotransplantation 2019; 27:e12559. [PMID: 31566261 DOI: 10.1111/xen.12559] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/22/2019] [Accepted: 09/13/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND We aimed to investigate (a) the long-term survival of corneal grafts from α1,3-galactosyltransferase gene-knockout miniature (GTKOm) pigs in non-human primates as a primary outcome and (b) the effect of anti-CD20 antibody on the survival of corneal grafts from GTKOm pigs as a secondary outcome. METHODS Nine rhesus macaques undergoing full-thickness corneal xenotransplantation using GTKOm pigs were systemically administered steroid, basiliximab, intravenous immunoglobulin, and tacrolimus with (CD20 group) or without (control group) anti-CD20 antibody. RESULTS Graft survival was significantly longer (P = .008) in the CD20 group (>375, >187, >187, >83 days) than control group (165, 91, 72, 55, 37 days). When we compared the graft survival time between older (>7- month-old) and younger (≤7-month-old) aged donor recipients, there was no significant difference. Activated B cells were lower in the CD20 group than control group (P = .026). Aqueous humor complement C3a was increased in the control group at last examination (P = .043) and was higher than that in the CD20 group (P = .014). Anti-αGal IgG/M levels were unchanged in both groups. At last examination, anti-non-Gal IgG was increased in the control group alone (P = .013). CONCLUSIONS The GTKOm pig corneal graft achieved long-term survival when combined with anti-CD20 antibody treatment. Inhibition of activated B cells and complement is imperative even when using GTKO pig corneas.
Collapse
Affiliation(s)
- Chang Ho Yoon
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea.,Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea.,Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea
| | - Se Hyun Choi
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea.,Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea.,Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea
| | - Hyuk Jin Choi
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea.,Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea.,Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea
| | - Hyun Ju Lee
- Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea
| | - Hee Jung Kang
- Department of Laboratory Medicine, Hallym University College of Medicine, Seoul, Korea
| | - Jong Min Kim
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea
| | - Chung-Gyu Park
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea.,Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea
| | | | | | - Curie Ahn
- Department of Internal medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Mee Kum Kim
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea.,Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea.,Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
9
|
Burr A, Parekkadan B. Kinetics of MSC-based enzyme therapy for immunoregulation. J Transl Med 2019; 17:263. [PMID: 31409424 PMCID: PMC6693124 DOI: 10.1186/s12967-019-2000-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 07/23/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Mesenchymal stromal cells (MSC) demonstrate innate and regulatory immunologic functions and have been widely explored for cell therapy applications. Mechanisms by which MSCs achieve therapeutic effects are theorized, though appropriate dosing and duration of these mechanisms in vivo warrant deeper investigation. One, rapid immunosuppressive function of MSCs is through ectoenzyme expression of CD73 and CD39 which cooperatively hydrolyze inflammatory, extracellular adenosine triphosphate (ATP) to anti-inflammatory adenosine. Extracellular ATP has a key role in autoimmune and inflammatory diseases, which administered MSCs have the potential to modulate in a timescale that is befitting of shorter acting therapeutic function. METHODS In vitro experiments were performed to determine the hydrolysis rates of ATP by MSCs. Through kinetic modeling from experimental results, the rate at which a single cell can metabolize ATP was determined. Based on these rates, the ability of MSCs to downregulate inflammatory signaling pathways was prospectively validated using model system parameters with respect to two different mechanisms: extracellular ATP stimulates lymphocytes to suppress proliferation and induce apoptosis and with co-stimulation, it stimulates monocytes to release pro-inflammatory IL-1β. MSCs were co-cultured with immune cells using transwell inserts and compared to immune cell only groups. RESULTS Hydrolysis of ATP was efficiently modeled by first-order enzyme kinetics. For in vitro culture, the rate at which a single cell can hydrolyize ATP is 8.9 nmol/min. In the presence of extracellular ATP, cocultures of MSCs reduced cytotoxicity and allows for proliferation of lymphocytes while limiting IL-1β secretion from monocytes. CONCLUSIONS Such use of these models may allow for better dosing predictions for MSCs to be used therapeutically for chronic inflammatory diseases such as rheumatoid arthritis, diabetes, pancreatitis, and other systemic inflammatory response syndromes. For the first time, the effect of MSCs on ATP hydrolysis in immune cell response is quantitatively analyzed on a cell-molecule basis by modeling the hydrolysis as an enzyme-substrate reaction. The results also give insight into MSCs' dynamic response mechanisms to ameliorate effects of extracellular ATP whether it be through positive or negative regulation.
Collapse
Affiliation(s)
- Alexandra Burr
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, 08854, USA
| | - Biju Parekkadan
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, 08854, USA.
- Department of Medicine, Rutgers Biomedical and Health Sciences, Piscataway, NJ, 08854, USA.
- Department of Surgery, Center for Surgery, Innovation & Bioengineering, Massachusetts General Hospital, Harvard Medical School and the Shriners Hospitals for Children, Boston, MA, 02114, USA.
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA.
| |
Collapse
|
10
|
Mesenchymal stem cells immunomodulation: The road to IFN-γ licensing and the path ahead. Cytokine Growth Factor Rev 2019; 47:32-42. [DOI: 10.1016/j.cytogfr.2019.05.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 12/11/2022]
|
11
|
de Castro LL, Lopes-Pacheco M, Weiss DJ, Cruz FF, Rocco PRM. Current understanding of the immunosuppressive properties of mesenchymal stromal cells. J Mol Med (Berl) 2019; 97:605-618. [PMID: 30903229 DOI: 10.1007/s00109-019-01776-y] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/17/2019] [Accepted: 03/11/2019] [Indexed: 12/14/2022]
Abstract
Several studies have demonstrated the anti-inflammatory potential of mesenchymal stromal cells (MSCs) isolated from bone marrow, adipose tissue, placenta, and other sources. Nevertheless, MSCs may also induce immunosuppression when administered systemically or directly to injured environments, as shown in different preclinical disease models. MSCs express certain receptors, including toll-like receptors and the aryl-hydrocarbon receptor, that are activated by the surrounding environment, thus leading to modulation of their immunosuppressive activity. Once MSCs are activated, they can affect a wide range of immune cells (e.g., neutrophils, monocytes/macrophages, dendritic cells, natural killer cells, T and B lymphocytes), a phenomenon that has been correlated to secretion of several mediators (e.g., indolamine 2,3-dioxygenase, galectins, prostaglandin E2, nitric oxide, and damage- and pathogen-associated molecular patterns) and stimulation of certain signaling pathways (e.g., protein kinase R, signal transducer and activator of transcription-1, nuclear factor-κB). Additionally, MSC manipulation and culture conditions, as well as the number of passages, duration of cryopreservation, and O2 content available, can significantly affect the immunosuppressive properties of MSCs. This review sheds light on current knowledge regarding the mechanisms by which MSCs exert immunosuppressive effects both in vitro and in vivo, focusing on the receptors expressed by MSCs, the correlation between soluble factors secreted by MSCs and their immunosuppressive effects, and interactions between MSCs and immune cells.
Collapse
Affiliation(s)
- Ligia Lins de Castro
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Miquéias Lopes-Pacheco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Daniel Jay Weiss
- Department of Medicine, College of Medicine, University of Vermont, Burlington, VT, USA
| | - Fernanda Ferreira Cruz
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Patricia Rieken Macêdo Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil. .,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil.
| |
Collapse
|
12
|
Reduction in murine acute GVHD severity by human gingival tissue-derived mesenchymal stem cells via the CD39 pathways. Cell Death Dis 2019; 10:13. [PMID: 30622237 PMCID: PMC6325106 DOI: 10.1038/s41419-018-1273-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 11/18/2018] [Accepted: 12/05/2018] [Indexed: 01/08/2023]
Abstract
Human gingival tissue-derived mesenchymal stem cells (GMSCs) present an accessible source of mesenchymal stem cells (MSCs) for treating autoimmune diseases. Here we show that human GMSCs can prevent and treat acute graft-versus-host disease (GVHD) in two different mouse models. Our results indicate that besides exhibiting suppressive function in vitro and in vivo, GMSCs may also regulate the conversion of Tregs to Th1 and/or Th17-like cells, as well as stabilize Foxp3 expression. Furthermore, GMSC-mediated prevention of acute GVHD was dependent on CD39 signaling that play an important role in the function and stability of Tregs. Finally, we also observed stronger protective ability of GMSCs with greater expansion ability compared with BMSCs or ASCs. These results indicate that human GMSCs have the potential to be used to treat GVHD.
Collapse
|
13
|
Najar M, Ouhaddi Y, Bouhtit F, Melki R, Afif H, Boukhatem N, Merimi M, Fahmi H. Empowering the immune fate of bone marrow mesenchymal stromal cells: gene and protein changes. Inflamm Res 2018; 68:167-176. [PMID: 30426152 DOI: 10.1007/s00011-018-1198-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 10/23/2018] [Accepted: 11/07/2018] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE AND DESIGN Bone marrow mesenchymal stromal cells (BM-MSCs) are referred as a promising immunotherapeutic cell product. New approaches using empowered MSCs should be developed as for the treatment or prevention of different immunological diseases. Such preconditioning by new licensing stimuli will empower the immune fate of BM-MSCs and, therefore, promote a better and more efficient biological. Here, our main goal was to establish the immunological profile of BM-MSCs following inflammatory priming and in particular their capacity to adjust their immune-related proteome and transcriptome. MATERIAL AND METHODS To run this study, we have used BM-MSC cell cultures, a pro-inflammatory cytokine cocktail priming, flow cytometry analysis, qPCR and ELISA techniques. RESULTS Different expression levels of several immunological mediators such as COX-1, COX-2, LIF, HGF, Gal-1, HO-1, IL-11, IL-8, IL-6 and TGF-β were constitutively observed in BM-MSCs. Inflammation priming substantially but differentially modulated the gene and protein expression profiles of these mediators. Thus, expressions of COX-2, LIF, HGF, IL-11, IL-8 and IL-6 were highly increased/induced and those of COX-1, Gal-1, and TGF-β were reduced. CONCLUSIONS Collectively, we demonstrated that BM-MSCs are endowed with a specific and modular regulatory machinery which is potentially involved in immunomodulation. Moreover, BM-MSCs are highly sensitive to inflammation and respond to such signal by properly adjusting their gene and protein expression of regulatory factors. Using such preconditioning may empower the immune fate of MSCs and, therefore, enhance their value for cell-based immunotherapy.
Collapse
Affiliation(s)
- Mehdi Najar
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Department of Medicine, University of Montreal, 900 Saint-Denis, R11.424, Montreal, QC, H2X 0A9, Canada.
| | - Yassine Ouhaddi
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Department of Medicine, University of Montreal, 900 Saint-Denis, R11.424, Montreal, QC, H2X 0A9, Canada
| | - Fatima Bouhtit
- Laboratory of Physiology, Ethnopharmacology and Genetics, Faculty of Sciences, University Mohammed Premier, Oujda, Morocco
| | - Rahma Melki
- Laboratory of Physiology, Ethnopharmacology and Genetics, Faculty of Sciences, University Mohammed Premier, Oujda, Morocco
| | - Hassan Afif
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Department of Medicine, University of Montreal, 900 Saint-Denis, R11.424, Montreal, QC, H2X 0A9, Canada
| | - Noureddine Boukhatem
- Laboratory of Physiology, Ethnopharmacology and Genetics, Faculty of Sciences, University Mohammed Premier, Oujda, Morocco
| | - Makram Merimi
- Laboratory of Physiology, Ethnopharmacology and Genetics, Faculty of Sciences, University Mohammed Premier, Oujda, Morocco.,Laboratory of Experimental Hematology, Jules Bordet Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Hassan Fahmi
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Department of Medicine, University of Montreal, 900 Saint-Denis, R11.424, Montreal, QC, H2X 0A9, Canada.
| |
Collapse
|
14
|
Roszek K, Wujak M. How to influence the mesenchymal stem cells fate? Emerging role of ectoenzymes metabolizing nucleotides. J Cell Physiol 2018; 234:320-334. [PMID: 30078187 DOI: 10.1002/jcp.26904] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 06/13/2018] [Indexed: 12/11/2022]
Abstract
Extracellular purines, principally adenosine triphosphate and adenosine, are among the oldest evolutionary and widespread chemical messengers. The integrative view of purinergic signaling as a multistage coordinated cascade involves the participation of nucleotides/nucleosides, their receptors, enzymes metabolizing extracellular nucleosides and nucleotides as well as several membrane transporters taking part in the release and/or uptake of these molecules. In view of the emerging data, it is evident and widely accepted that an extensive network of diverse enzymatic activities exists in the extracellular space. The enzymes regulate the availability of nucleotide and adenosine receptor agonists, and consequently, the course of signaling events. The current data indicate that mesenchymal stem cells (MSCs) and cells induced to differentiate exhibit different sensitivity to purinergic ligands as well as a distinct activity and expression profiles of ectonucleotidases than mature cells. In the proposed review, we postulate for a critical role of these enzymatic players which, by orchestrating a fine-tune regulation of nucleotides concentrations, are integrally involved in modulation and diversification of purinergic signals. This specific hallmark of the MSC purinome should be linked with cell-specific biological potential and capacity for tissue regeneration. We anticipate this publication to be a starting point for scientific discussion and novel approach to the in vitro and in vivo regulation of the MSC properties.
Collapse
Affiliation(s)
- Katarzyna Roszek
- Biochemistry Department, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Toruń, Poland
| | - Magdalena Wujak
- Biochemistry Department, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Toruń, Poland
| |
Collapse
|
15
|
Abstract
"Although there is ample evidence that beneficial results can be obtained from the use of mesenchymal stem cells, several questions regarding their use remain to be answered. For many of these questions, preclinical models will be helpful, but the task of evaluating and implementing these findings for orthopaedic patients falls onto the shoulders of clinical researchers. Evaluation of these questions is a daunting, but such a challenge fits the concept of personalized medicine in today's medicine."
Collapse
|
16
|
Rahimzadeh M, Pirdel L. Effect of Interferon- on Expression of CD39 and CD73 Genes in the Human Wharton’s Jelly Mesenchymal Stem Cells. JOURNAL OF ARDABIL UNIVERSITY OF MEDICAL SCIENCES 2018. [DOI: 10.29252/jarums.18.1.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
17
|
Canonical and non-canonical adenosinergic pathways. Immunol Lett 2018; 205:25-30. [PMID: 29550257 DOI: 10.1016/j.imlet.2018.03.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 03/13/2018] [Indexed: 12/18/2022]
Abstract
Adenosine (ADO) is an immunosuppressive molecule with multiple functions in different human organs. ADO is released through the concerted action of surface molecules endowed with enzymatic functions, that belong to two different adenosinergic pathways. The canonical pathway is started by CD39, that converts ATP to AMP. On the other hand, the non-canonical pathway metabolizes NAD+ to ADPR, through the action of CD38. The latter byproduct is then converted to AMP by CD203a/PC-1. Both pathways converge to CD73, that fully degrades AMP to the final product ADO. In this Review we take into account the most relevant finding regarding the expression of ectoenzymes belonging to both adenosinergic pathways in different cell types, including regulatory cell subsets and neoplastic cells. Moreover, we summarize the role of these molecules in different physiological and pathological settings. Finally, we discuss potential therapeutic application of specific inhibitors of ectoenzymes and/or ADO receptors.
Collapse
|
18
|
Zhang W, Zhou L, Dang J, Zhang X, Wang J, Chen Y, Liang J, Li D, Ma J, Yuan J, Chen W, Zadeh HH, Olsen N, Zheng SG. Human Gingiva-Derived Mesenchymal Stem Cells Ameliorate Streptozoticin-induced T1DM in mice via Suppression of T effector cells and Up-regulating Treg Subsets. Sci Rep 2017; 7:15249. [PMID: 29127315 PMCID: PMC5681565 DOI: 10.1038/s41598-017-14979-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 10/19/2017] [Indexed: 12/16/2022] Open
Abstract
There is yet no cure for type 1 diabetes (T1DM) so far. A significant body of evidence has demonstrated that bone marrow-derived mesenchymal stem cells (BMSCs) showed great potential in controlling T1DM. But there exists much difficulty in using BMSCs as a clinical therapy. We here test whether a new population of mesenchymal stem cells from human gingiva (GMSCs), which has many advantages over BMSCs, can delay or prevent progress of T1DM. GMSCs were adoptively transferred to multiple low-dose streptozotocin (STZ)-induced T1DM. Blood glucose levels and disease severities were analyzed. T cells subsets in blood, spleen and lymph nodes were detected dynamically by flow cytometry. GMSC distribution was dynamically analyzed. We found that infusion of GMSCs but not fibroblast cells significantly controlled blood glucose levels, delayed diabetes onset, ameliorated pathology scores in pancreas, and down-regulated production of IL-17 and IFN-γ in CD4+ and CD8+ T cells in spleens, pancreatic lymph nodes (pLN) and other lymph nodes. GMSCs also up-regulated the levels of CD4+ Treg induced in the periphery. Mechanismly, GMSCs could migrate to pancreas and local lymph node and function through CD39/CD73 pathway to regulate effector T cells. Thus, GMSCs show a potential promise in treating T1DM in the clinic.
Collapse
Affiliation(s)
- Wei Zhang
- Expert Workstation and Division of Endocrinology, Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan Province, China
- Division of Rheumatology, The Pennsylvania State University, College of Medicine, 500 University Drive, Hershey, 17033, PA, USA
| | - Li Zhou
- Department of Clinical Immunology and Division of Endocrinology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Division of Rheumatology, The Pennsylvania State University, College of Medicine, 500 University Drive, Hershey, 17033, PA, USA
| | - Junlong Dang
- Department of Clinical Immunology and Division of Endocrinology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Division of Rheumatology, The Pennsylvania State University, College of Medicine, 500 University Drive, Hershey, 17033, PA, USA
| | - Ximei Zhang
- Department of Clinical Immunology and Division of Endocrinology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Julie Wang
- Division of Rheumatology, The Pennsylvania State University, College of Medicine, 500 University Drive, Hershey, 17033, PA, USA
| | - Yanming Chen
- Department of Clinical Immunology and Division of Endocrinology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China.
| | - Jichao Liang
- Expert Workstation and Division of Endocrinology, Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan Province, China
| | - Dongqing Li
- Expert Workstation and Division of Endocrinology, Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan Province, China
| | - Jilin Ma
- Division of Rheumatology, The Pennsylvania State University, College of Medicine, 500 University Drive, Hershey, 17033, PA, USA
- Division of Nephrology, Zhejiang Traditional Chinese Medicine and Western Medicine Hospital, Hangzhou, Zhejiang Province, China
| | - Jia Yuan
- Department of Clinical Immunology and Division of Endocrinology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Weiwen Chen
- Expert Workstation and Division of Endocrinology, Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan Province, China.
| | - Homayoun H Zadeh
- Division of Periodontology, Diagnostic Sciences & Dental Hygiene, University of Southern California Ostrow School of Dentistry, Los Angeles, CA, 90089, USA
| | - Nancy Olsen
- Division of Rheumatology, The Pennsylvania State University, College of Medicine, 500 University Drive, Hershey, 17033, PA, USA
| | - Song Guo Zheng
- Department of Clinical Immunology and Division of Endocrinology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China.
- Division of Rheumatology, The Pennsylvania State University, College of Medicine, 500 University Drive, Hershey, 17033, PA, USA.
| |
Collapse
|
19
|
Contreras-Kallens P, Terraza C, Oyarce K, Gajardo T, Campos-Mora M, Barroilhet MT, Álvarez C, Fuentes R, Figueroa F, Khoury M, Pino-Lagos K. Mesenchymal stem cells and their immunosuppressive role in transplantation tolerance. Ann N Y Acad Sci 2017; 1417:35-56. [PMID: 28700815 DOI: 10.1111/nyas.13364] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/13/2017] [Accepted: 03/29/2017] [Indexed: 12/23/2022]
Abstract
Since they were first described, mesenchymal stem cells (MSCs) have been shown to have important effector mechanisms and the potential for use in cell therapy. A great deal of research has been focused on unveiling how MSCs contribute to anti-inflammatory responses, including describing several cell populations involved and identifying soluble and other effector molecules. In this review, we discuss some of the contemporary evidence for use of MSCs in the field of immune tolerance, with a special emphasis on transplantation. Although considerable effort has been devoted to understanding the biological function of MSCs, additional resources are required to clarify the mechanisms of their induction of immune tolerance, which will undoubtedly lead to improved clinical outcomes for MSC-based therapies.
Collapse
Affiliation(s)
- Pamina Contreras-Kallens
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Claudia Terraza
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Karina Oyarce
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Tania Gajardo
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Mauricio Campos-Mora
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - María Teresa Barroilhet
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Carla Álvarez
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Ricardo Fuentes
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Fernando Figueroa
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Maroun Khoury
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile.,Cells for Cells, Santiago, Chile.,Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile
| | - Karina Pino-Lagos
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| |
Collapse
|
20
|
Najar M, Lagneaux L. Foreskin as a source of immunotherapeutic mesenchymal stromal cells. Immunotherapy 2017; 9:207-217. [PMID: 28128711 DOI: 10.2217/imt-2016-0093] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) have well-characterized properties and thus represent an attractive cell population for use in several therapeutic applications. Due to the limitations and inconveniences associated with classical sources of MSCs, the identification and characterization of alternative sources are required for safe and efficient cell therapy. The skin tissue is currently referred to as a reservoir of cells with therapeutically relevant functions. Historically considered biological waste, foreskin (FSK) is increasingly used to provide immunotherapeutic MSCs for medicinal products. This review discusses for the first time the nature and profile of MSCs within the foreskin tissue and, in particular, their immunobiology. A better immunological characterization and understanding of foreskin-derived cells will be critical for improving MSC-based cellular strategies for immunotherapeutic applications.
Collapse
Affiliation(s)
- Mehdi Najar
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Campus Erasme, Bâtiment de Transfusion (Level +1), Route de Lennik n° 808, 1070 Brussels, Belgium
| | - Laurence Lagneaux
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Campus Erasme, Bâtiment de Transfusion (Level +1), Route de Lennik n° 808, 1070 Brussels, Belgium
| |
Collapse
|
21
|
Dunavin N, Dias A, Li M, McGuirk J. Mesenchymal Stromal Cells: What Is the Mechanism in Acute Graft-Versus-Host Disease? Biomedicines 2017; 5:biomedicines5030039. [PMID: 28671556 PMCID: PMC5618297 DOI: 10.3390/biomedicines5030039] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/06/2017] [Accepted: 06/14/2017] [Indexed: 12/23/2022] Open
Abstract
After more than a decade of preclinical and clinical development, therapeutic infusion of mesenchymal stromal cells is now a leading investigational strategy for the treatment of acute graft-versus-host disease (GVHD). While their clinical use continues to expand, it is still unknown which of their immunomodulatory properties contributes most to their therapeutic activity. Herein we describe the proposed mechanisms, focusing on the inhibitory activity of mesenchymal stromal cells (MSCs) at immunologic checkpoints. A deeper understanding of the mechanism of action will allow us to design more effective treatment strategies.
Collapse
Affiliation(s)
- Neil Dunavin
- Division of Hematologic Malignancies and Cellular Therapeutics, University of Kansas Cancer Center, 2330 Shawnee Mission Pkwy., Westwood, KS 66205, USA.
| | - Ajoy Dias
- Division of Hematologic Malignancies and Cellular Therapeutics, University of Kansas Cancer Center, 2330 Shawnee Mission Pkwy., Westwood, KS 66205, USA.
| | - Meizhang Li
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA.
| | - Joseph McGuirk
- Division of Hematologic Malignancies and Cellular Therapeutics, University of Kansas Cancer Center, 2330 Shawnee Mission Pkwy., Westwood, KS 66205, USA.
| |
Collapse
|
22
|
Naasani LIS, Rodrigues C, de Campos RP, Beckenkamp LR, Iser IC, Bertoni APS, Wink MR. Extracellular Nucleotide Hydrolysis in Dermal and Limbal Mesenchymal Stem Cells: A Source of Adenosine Production. J Cell Biochem 2017; 118:2430-2442. [PMID: 28120532 DOI: 10.1002/jcb.25909] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 01/23/2017] [Indexed: 01/20/2023]
Abstract
Human Limbal (L-MSCs) and Dermal Mesenchymal Stem Cell (D-MSCs) possess many properties that increase their therapeutic potential in ophthalmology and dermatology. It is known that purinergic signaling plays a role in many aspects of mesenchymal stem cells physiology. They release and respond to purinergic ligands, altering proliferation, migration, differentiation, and apoptosis. Therefore, more information on these processes would be crucial for establishing future clinical applications using their differentiation potential, but without undesirable side effects. This study evaluated and compared the expression of ecto-nucleotidases, the enzymatic activity of degradation of extracellular nucleotides and the metabolism of extracellular ATP in D-MSCs and L-MSCs, isolated from discard tissues of human skin and sclerocorneal rims. The D-MSCs and L-MSCs showed a differentiation potential into osteogenic, adipogenic, and chondrogenic lineages and the expression of markers CD105+ , CD44+ , CD14- , CD34- , CD45- , as expected. Both cells hydrolyzed low levels of extracellular ATP and high levels of AMP, leading to adenosine accumulation that can regulate inflammation and tissue repair. These cells expressed mRNA for ENTPD1, 2, 3, 5 and 6, and CD73 that corresponded to the observed enzymatic activities. Thus, considering the degradation of ATP and adenosine production, limbal MSCs are very similar to dermal MSCs, indicating that from the aspect of extracellular nucleotide metabolism L-MSCs are very similar to the characterized D-MSCs. J. Cell. Biochem. 118: 2430-2442, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Liliana I Sous Naasani
- Departamento de Ciências Básicas da Saúde e Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre-UFCSPA, Porto Alegre, RS, Brasil
| | - Cristiano Rodrigues
- Departamento de Ciências Básicas da Saúde e Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre-UFCSPA, Porto Alegre, RS, Brasil
| | - Rafael Paschoal de Campos
- Departamento de Ciências Básicas da Saúde e Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre-UFCSPA, Porto Alegre, RS, Brasil
| | - Liziane Raquel Beckenkamp
- Departamento de Ciências Básicas da Saúde e Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre-UFCSPA, Porto Alegre, RS, Brasil
| | - Isabele C Iser
- Departamento de Ciências Básicas da Saúde e Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre-UFCSPA, Porto Alegre, RS, Brasil
| | - Ana Paula Santin Bertoni
- Departamento de Ciências Básicas da Saúde e Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre-UFCSPA, Porto Alegre, RS, Brasil
| | - Márcia R Wink
- Departamento de Ciências Básicas da Saúde e Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre-UFCSPA, Porto Alegre, RS, Brasil
| |
Collapse
|
23
|
Schuler PJ, Brandau S. Adenosine Producing Mesenchymal Stem Cells. Stem Cells 2016; 35:1647-1648. [PMID: 27859896 DOI: 10.1002/stem.2532] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/30/2016] [Accepted: 05/19/2016] [Indexed: 12/30/2022]
Abstract
Recent findings support the importance of the adenosine pathway in human immunology. Tissue specific differences exist with respect to the capacity of mesenchymal stem cells (MSC) to produce immune regulatory ATP metabolites. While some MSC may produce adenosine in a cell-autonomous fashion, other types of MSC require the cooperative activity of T-cells. Stem Cells 2017;35:1647-1648.
Collapse
Affiliation(s)
- Patrick J Schuler
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Sven Brandau
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
24
|
de Oliveira Bravo M, Carvalho JL, Saldanha-Araujo F. Adenosine production: a common path for mesenchymal stem-cell and regulatory T-cell-mediated immunosuppression. Purinergic Signal 2016; 12:595-609. [PMID: 27557887 DOI: 10.1007/s11302-016-9529-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/05/2016] [Indexed: 12/14/2022] Open
Abstract
Adenosine is an important molecule that exerts control on the immune system, by signaling through receptors lying on the surface of immune cells. This nucleotide is produced, in part, by the action of the ectoenzymes CD39 and CD73. Interestingly, these proteins are expressed on the cell surface of regulatory T-cells (Tregs) and mesenchymal stromal cells (MSCs)-two cell populations that have emerged as potential therapeutic tools in the field of cell therapy. In fact, the production of adenosine constitutes a mechanism used by both cell types to control the immune response. Recently, great scientific progress was obtained regarding the role of adenosine in the inflammatory environment. In this context, the present review focuses on the advances related to the impact of adenosine production over the immune modulatory activity of Tregs and MSCs, and how this nucleotide controls the biological functions of these cells. Finally, we mention the main challenges and hurdles to bring such molecule to clinical settings.
Collapse
Affiliation(s)
| | - Juliana Lott Carvalho
- Genomic Sciences and Biotechnology Center, Catholic University of Brasilia, Brasilia, Brazil
| | | |
Collapse
|
25
|
Cruz FF, Weiss DJ, Rocco PRM. Prospects and progress in cell therapy for acute respiratory distress syndrome. Expert Opin Biol Ther 2016; 16:1353-1360. [DOI: 10.1080/14712598.2016.1218845] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
26
|
Chen X, Shao H, Zhi Y, Xiao Q, Su C, Dong L, Liu X, Li X, Zhang X. CD73 Pathway Contributes to the Immunosuppressive Ability of Mesenchymal Stem Cells in Intraocular Autoimmune Responses. Stem Cells Dev 2016; 25:337-46. [PMID: 26650818 DOI: 10.1089/scd.2015.0227] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mesenchymal stem cells (MSCs) exhibit a potent immunomodulatory capacity and have been applied to treat diseases such as graft versus host disease and severe autoimmune diseases. However, the mechanism underlying their immunosuppressive effect is not yet completely understood. Here, we investigated the role of the CD73/adenosine pathway in immune modulation by MSCs using a mouse model of experimental autoimmune uveitis (EAU). Moreover, we examined the in vitro modulatory effect of MSCs mediated through the CD73/adenosine pathway in human and mouse T cells. We found that the severity of EAU was significantly attenuated by MSCs; however, most therapeutic effects of MSCs were lost by pretreatment with a CD73 inhibitor. The inhibitory mechanism of MSCs might be contributed by CD73 on MSCs that cooperated with CD39 and CD73 on activated T cells to produce adenosine, resulting in inhibition of T-cell proliferation. Furthermore, MSCs increased the expression of CD73 on CD4(+) T cells, and transforming growth factor-β1 (TGF-β1) was the only tested cytokine that contributed to upregulation of CD73. Hence, our study demonstrates that the CD73/adenosine pathway involves the immunomodulatory function of MSCs in autoimmune responses.
Collapse
Affiliation(s)
- Xiteng Chen
- 1 Tianjin Medical University Eye Hospital , Eye Institute and School of Optometry and Ophthalmology, Tianjin, China
| | - Hui Shao
- 2 Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville , Louisville, Kentucky
| | - Yuntao Zhi
- 1 Tianjin Medical University Eye Hospital , Eye Institute and School of Optometry and Ophthalmology, Tianjin, China
| | - Qing Xiao
- 1 Tianjin Medical University Eye Hospital , Eye Institute and School of Optometry and Ophthalmology, Tianjin, China
| | - Chang Su
- 1 Tianjin Medical University Eye Hospital , Eye Institute and School of Optometry and Ophthalmology, Tianjin, China
| | - Lijie Dong
- 1 Tianjin Medical University Eye Hospital , Eye Institute and School of Optometry and Ophthalmology, Tianjin, China
| | - Xun Liu
- 1 Tianjin Medical University Eye Hospital , Eye Institute and School of Optometry and Ophthalmology, Tianjin, China
| | - Xiaorong Li
- 1 Tianjin Medical University Eye Hospital , Eye Institute and School of Optometry and Ophthalmology, Tianjin, China
| | - Xiaomin Zhang
- 1 Tianjin Medical University Eye Hospital , Eye Institute and School of Optometry and Ophthalmology, Tianjin, China
| |
Collapse
|
27
|
Kerkelä E, Laitinen A, Räbinä J, Valkonen S, Takatalo M, Larjo A, Veijola J, Lampinen M, Siljander P, Lehenkari P, Alfthan K, Laitinen S. Adenosinergic Immunosuppression by Human Mesenchymal Stromal Cells Requires Co-Operation with T cells. Stem Cells 2016; 34:781-90. [PMID: 26731338 DOI: 10.1002/stem.2280] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 10/06/2015] [Accepted: 10/30/2015] [Indexed: 12/17/2022]
Abstract
Mesenchymal stem/stromal cells (MSCs) have the capacity to counteract excessive inflammatory responses. MSCs possess a range of immunomodulatory mechanisms, which can be deployed in response to signals in a particular environment and in concert with other immune cells. One immunosuppressive mechanism, not so well-known in MSCs, is mediated via adenosinergic pathway by ectonucleotidases CD73 and CD39. In this study, we demonstrate that adenosine is actively produced from adenosine 5'-monophosphate (AMP) by CD73 on MSCs and MSC-derived extracellular vesicles (EVs). Our results indicate that although MSCs express CD39 at low level and it colocalizes with CD73 in bulge areas of membranes, the most efficient adenosine production from adenosine 5'-triphosphate (ATP) requires co-operation of MSCs and activated T cells. Highly CD39 expressing activated T cells produce AMP from ATP and MSCs produce adenosine from AMP via CD73 activity. Furthermore, adenosinergic signaling plays a role in suppression of T cell proliferation in vitro. In conclusion, this study shows that adenosinergic signaling is an important immunoregulatory mechanism of MSCs, especially in situations where ATP is present in the extracellular environment, like in tissue injury. An efficient production of immunosuppressive adenosine is dependent on the concerted action of CD39-positive immune cells with CD73-positive cells such as MSCs or their EVs.
Collapse
Affiliation(s)
- Erja Kerkelä
- Finnish Red Cross Blood Service, Helsinki, Finland
| | | | | | - Sami Valkonen
- Division of Biochemistry and Biotechnology, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Maarit Takatalo
- Division of Biochemistry and Biotechnology, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Antti Larjo
- Finnish Red Cross Blood Service, Helsinki, Finland
| | - Johanna Veijola
- Institute of Clinical Medicine, Division of Surgery.,Institute of Biomedicine, Department of Anatomy and Cell Biology, University of Oulu, Oulu, Finland.,Clinical Research Center, Department of Surgery and Intensive Care, Oulu University Hospital, Oulu, Finland
| | | | - Pia Siljander
- Division of Biochemistry and Biotechnology, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Petri Lehenkari
- Institute of Clinical Medicine, Division of Surgery.,Institute of Biomedicine, Department of Anatomy and Cell Biology, University of Oulu, Oulu, Finland.,Clinical Research Center, Department of Surgery and Intensive Care, Oulu University Hospital, Oulu, Finland
| | | | | |
Collapse
|
28
|
Caplan AI, Sorrell JM. The MSC curtain that stops the immune system. Immunol Lett 2015; 168:136-9. [DOI: 10.1016/j.imlet.2015.06.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 06/04/2015] [Indexed: 01/08/2023]
|
29
|
Mattar P, Bieback K. Comparing the Immunomodulatory Properties of Bone Marrow, Adipose Tissue, and Birth-Associated Tissue Mesenchymal Stromal Cells. Front Immunol 2015; 6:560. [PMID: 26579133 PMCID: PMC4630659 DOI: 10.3389/fimmu.2015.00560] [Citation(s) in RCA: 196] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 10/19/2015] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stromal cells (MSC) have gained immense attraction in regenerative medicine, tissue engineering, and immunotherapy. This is based on their differentiation potential and the supply of pro-regenerative and immunomodulatory signals. MSC can be isolated from a multitude of tissue sources, but mainly bone marrow, adipose tissue, and birth-associated tissues (e.g., umbilical cord, cord blood, placenta) appear to be relevant for clinical translation in immune-mediated disorders. However, only a few studies directly compared the immunomodulatory potency of MSC from different tissue sources. This review compiles the current literature regarding the similarities and differences between these three sources for MSCs with a special focus on their immunomodulatory effects on T-lymphocyte subsets and monocytes, macrophages, and dendritic cells.
Collapse
Affiliation(s)
- Philipp Mattar
- Stem Cell Laboratory, Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, Heidelberg University , Heidelberg , Germany ; German Red Cross Blood Service Baden-Württemberg - Hessen , Mannheim , Germany
| | - Karen Bieback
- Stem Cell Laboratory, Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, Heidelberg University , Heidelberg , Germany ; German Red Cross Blood Service Baden-Württemberg - Hessen , Mannheim , Germany
| |
Collapse
|
30
|
Cavaliere F, Donno C, D'Ambrosi N. Purinergic signaling: a common pathway for neural and mesenchymal stem cell maintenance and differentiation. Front Cell Neurosci 2015; 9:211. [PMID: 26082684 PMCID: PMC4451364 DOI: 10.3389/fncel.2015.00211] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/16/2015] [Indexed: 01/25/2023] Open
Abstract
Extracellular ATP, related nucleotides and adenosine are among the earliest signaling molecules, operating in virtually all tissues and cells. Through their specific receptors, namely purinergic P1 for nucleosides and P2 for nucleotides, they are involved in a wide array of physiological effects ranging from neurotransmission and muscle contraction to endocrine secretion, vasodilation, immune response, and fertility. The purinergic system also participates in the proliferation and differentiation of stem cells from different niches. In particular, both mesenchymal stem cells (MSCs) and neural stem cells are endowed with several purinergic receptors and ecto-nucleotide metabolizing enzymes, and release extracellular purines that mediate autocrine and paracrine growth/proliferation, pro- or anti-apoptotic processes, differentiation-promoting effects and immunomodulatory actions. Here, we discuss the often opposing roles played by ATP and adenosine in adult neurogenesis in both physiological and pathological conditions, as well as in adipogenic and osteogenic MSC differentiation. We also focus on how purinergic ligands produced and released by transplanted stem cells can be regarded as ideal candidates to mediate the crosstalk with resident stem cell niches, promoting cell growth and survival, regulating inflammation and, therefore, contributing to local tissue homeostasis and repair.
Collapse
Affiliation(s)
- Fabio Cavaliere
- Department of Neuroscience, Achucarro Basque Center for Neuroscience, CIBERNED and University of Basque Country, Leioa Spain
| | - Claudia Donno
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, Rome Italy
| | - Nadia D'Ambrosi
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, Rome Italy
| |
Collapse
|
31
|
Effect of human bone marrow mesenchymal stromal cells on cytokine production by peripheral blood naive, memory, and effector T cells. Stem Cell Res Ther 2015; 6:3. [PMID: 25559824 PMCID: PMC4417198 DOI: 10.1186/scrt537] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 12/12/2014] [Accepted: 12/15/2014] [Indexed: 12/14/2022] Open
Abstract
Introduction The different distribution of T cells among activation/differentiation stages in immune disorders may condition the outcome of mesenchymal stromal cell (MSC)-based therapies. Indeed, the effect of MSCs in the different functional compartments of T cells is not completely elucidated. Methods We investigated the effect of human bone marrow MSCs on naturally occurring peripheral blood functional compartments of CD4+ and CD8+ T cells: naive, central memory, effector memory, and effector compartments. For that, mononuclear cells (MNCs) stimulated with phorbol myristate acetate (PMA) plus ionomycin were cultured in the absence/presence of MSCs. The percentage of cells expressing tumor necrosis factor-alpha (TNF-α), interferon gamma (IFNγ), and interleukin-2 (IL-2), IL-17, IL-9, and IL-6 and the amount of cytokine produced were assessed by flow cytometry. mRNA levels of IL-4, IL-10, transforming growth factor-beta (TGF-β), and cytotoxic T-lymphocyte-associated protein 4 (CTLA4) in purified CD4+ and CD8+ T cells, and phenotypic and mRNA expression changes induced by PMA + ionomycin stimulation in MSCs, were also evaluated. Results MSCs induced the reduction of the percentage of CD4+ and CD8+ T cells producing TNF-α, IFNγ, and IL-2 in all functional compartments, except for naive IFNγ+CD4+ T cells. This inhibitory effect differentially affected CD4+ and CD8+ T cells as well as the T-cell functional compartments; remarkably, different cytokines showed distinct patterns of inhibition regarding both the percentage of producing cells and the amount of cytokine produced. Likewise, the percentages of IL-17+, IL-17+TNF-α+, and IL-9+ within CD4+ and CD8+ T cells and of IL-6+CD4+ T cells were decreased in MNC-MSC co-cultures. MSCs decreased IL-10 and increased IL-4 mRNA expression in stimulated CD4+ and CD8+ T cells, whereas TGF-β was reduced in CD8+ and augmented in CD4+ T cells, with no changes for CTLA4. Finally, PMA + ionomycin stimulation did not induce significant alterations on MSCs phenotype but did increase indoleamine-2,3-dioxygenase (IDO), inducible costimulatory ligand (ICOSL), IL-1β, IL-8, and TNF-α mRNA expression. Conclusions Overall, our study showed that MSCs differentially regulate the functional compartments of CD4+ and CD8+ T cells, which may differentially impact their therapeutic effect in immune disorders. Furthermore, the influence of MSCs on IL-9 expression can open new possibilities for MSC-based therapy in allergic diseases. Electronic supplementary material The online version of this article (doi:10.1186/scrt537) contains supplementary material, which is available to authorized users.
Collapse
|
32
|
Kaebisch C, Schipper D, Babczyk P, Tobiasch E. The role of purinergic receptors in stem cell differentiation. Comput Struct Biotechnol J 2014; 13:75-84. [PMID: 26900431 PMCID: PMC4720018 DOI: 10.1016/j.csbj.2014.11.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 10/31/2014] [Accepted: 11/03/2014] [Indexed: 12/20/2022] Open
Abstract
A major challenge modern society has to face is the increasing need for tissue regeneration due to degenerative diseases or tumors, but also accidents or warlike conflicts. There is great hope that stem cell-based therapies might improve current treatments of cardiovascular diseases, osteochondral defects or nerve injury due to the unique properties of stem cells such as their self-renewal and differentiation potential. Since embryonic stem cells raise severe ethical concerns and are prone to teratoma formation, adult stem cells are still in the focus of research. Emphasis is placed on cellular signaling within these cells and in between them for a better understanding of the complex processes regulating stem cell fate. One of the oldest signaling systems is based on nucleotides as ligands for purinergic receptors playing an important role in a huge variety of cellular processes such as proliferation, migration and differentiation. Besides their natural ligands, several artificial agonists and antagonists have been identified for P1 and P2 receptors and are already used as drugs. This review outlines purinergic receptor expression and signaling in stem cells metabolism. We will briefly describe current findings in embryonic and induced pluripotent stem cells as well as in cancer-, hematopoietic-, and neural crest-derived stem cells. The major focus will be placed on recent findings of purinergic signaling in mesenchymal stem cells addressed in in vitro and in vivo studies, since stem cell fate might be manipulated by this system guiding differentiation towards the desired lineage in the future.
Collapse
Affiliation(s)
| | | | | | - Edda Tobiasch
- Department of Natural Sciences, Bonn-Rhine-Sieg University of Applied Sciences, Von-Liebig-Str. 20, 53359 Rheinbach, Germany
| |
Collapse
|
33
|
Singh RP, Hasan S, Sharma S, Nagra S, Yamaguchi DT, Wong DTW, Hahn BH, Hossain A. Th17 cells in inflammation and autoimmunity. Autoimmun Rev 2014; 13:1174-81. [PMID: 25151974 DOI: 10.1016/j.autrev.2014.08.019] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 07/05/2014] [Indexed: 02/06/2023]
Abstract
T helper 17 (Th17), a distinct subset of CD4(+) T cells with IL-17 as their major cytokine, orchestrate the pathogenesis of inflammatory and autoimmune diseases. Dysregulated Th17 cells contribute to inflammatory and autoimmune diseases. Candidate biologics are in development for targeting IL-17, IL-17 receptors or IL-17 pathways. Several drugs that impact the IL-17 pathway are already in clinical trials for the treatment of autoimmune diseases. In this review we provide evidence for the role of Th17 cells in immune-mediated diseases. An understanding of the role of Th17 in these conditions will provide important insights and unravel novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- Ram Pyare Singh
- Division of Rheumatology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095-1670, USA; Research Service, Veterans Affairs Greater Los Angeles Health Care System, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095-1670, USA.
| | - Sascha Hasan
- Sanguine Biosciences Inc, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095-1670, USA
| | - Sherven Sharma
- Research Service, Veterans Affairs Greater Los Angeles Health Care System, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095-1670, USA
| | - Saranpreet Nagra
- Division of Rheumatology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095-1670, USA
| | - Dean T Yamaguchi
- Research Service, Veterans Affairs Greater Los Angeles Health Care System, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095-1670, USA
| | - David T W Wong
- UCLA School of Dentistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095-1670, USA
| | - Bevra H Hahn
- Division of Rheumatology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095-1670, USA
| | - Awlad Hossain
- Division of Rheumatology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095-1670, USA
| |
Collapse
|
34
|
Zhang L, Zheng H, Shao H, Nian H, Zhang Y, Bai L, Su C, Liu X, Dong L, Li X, Zhang X. Long-term therapeutic effects of mesenchymal stem cells compared to dexamethasone on recurrent experimental autoimmune uveitis of rats. Invest Ophthalmol Vis Sci 2014; 55:5561-71. [PMID: 25125599 PMCID: PMC4580152 DOI: 10.1167/iovs.14-14788] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 07/31/2014] [Indexed: 12/19/2022] Open
Abstract
PURPOSE We tested the long-term effects of different regimens of mesenchymal stem cell (MSC) administration in a recurrent experimental autoimmune uveitis (rEAU) model in rats, and compared the efficacy of MSC to that of dexamethasone (DEX). METHODS One or two courses of MSC treatments were applied to R16-specific T cell-induced rEAU rats before or after disease onsets. The DEX injections were given for 7 or 50 days continuously after disease onsets. Clinical appearances were observed until the 50th day after transfer. On the 10th day, T cells from control and MSC groups were analyzed by flow cytometry. Supernatants from the proliferation assay and aqueous humor were collected for cytokine detection. Functions of T cells and APCs in spleens also were studied by lymphocyte proliferation assays. RESULTS One course of MSC therapy, administered after disease onset, led to a lasting therapeutic effect, with a decreased incidence, reduced mean clinical score, and reduced retinal impairment after 50 days of observation, while multiple courses of treatment did not improve the therapeutic benefit. Although DEX and MSCs equally reduced the severity of the first episode of rEAU, the effect of DEX was shorter lasting, and DEX therapy failed to control the disease even with long periods of treatment. The MSCs significantly decreased T helper 1 (Th1) and Th17 responses, suppressed the function of antigen-presenting cells, and upregulated T regulatory cells. CONCLUSIONS These results suggested that MSCs might be new corticosteroid spring agents, while providing fewer side effects and longer lasting suppressive effects for recurrent uveitis.
Collapse
Affiliation(s)
- Lingjun Zhang
- Tianjin Medical University Eye Hospital, Eye Institute & School of Optometry and Ophthalmology, Tianjin, China
| | - Hui Zheng
- Tianjin Medical University Eye Hospital, Eye Institute & School of Optometry and Ophthalmology, Tianjin, China
| | - Hui Shao
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, Louisville, Kentucky, United States
| | - Hong Nian
- Tianjin Medical University Eye Hospital, Eye Institute & School of Optometry and Ophthalmology, Tianjin, China
| | - Yan Zhang
- Tianjin Medical University Eye Hospital, Eye Institute & School of Optometry and Ophthalmology, Tianjin, China
| | - Lingling Bai
- Tianjin Medical University Eye Hospital, Eye Institute & School of Optometry and Ophthalmology, Tianjin, China
| | - Chang Su
- Tianjin Medical University Eye Hospital, Eye Institute & School of Optometry and Ophthalmology, Tianjin, China
| | - Xun Liu
- Tianjin Medical University Eye Hospital, Eye Institute & School of Optometry and Ophthalmology, Tianjin, China
| | - Lijie Dong
- Tianjin Medical University Eye Hospital, Eye Institute & School of Optometry and Ophthalmology, Tianjin, China
| | - Xiaorong Li
- Tianjin Medical University Eye Hospital, Eye Institute & School of Optometry and Ophthalmology, Tianjin, China
| | - Xiaomin Zhang
- Tianjin Medical University Eye Hospital, Eye Institute & School of Optometry and Ophthalmology, Tianjin, China
| |
Collapse
|
35
|
Haddad R, Saldanha-Araujo F. Mechanisms of T-cell immunosuppression by mesenchymal stromal cells: what do we know so far? BIOMED RESEARCH INTERNATIONAL 2014; 2014:216806. [PMID: 25025040 PMCID: PMC4082893 DOI: 10.1155/2014/216806] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 05/15/2014] [Accepted: 05/31/2014] [Indexed: 12/12/2022]
Abstract
Mesenchymal stromal cells (MSCs) are multipotent cells, which can give rise to several cell types including osteoblasts, adipocytes, and chondroblasts. These cells can be found in a variety of adult and fetal tissues, such as bone marrow, adipose tissue, cord blood, and placenta. In recent years, the biological properties of MSCs have attracted the attention of researchers worldwide due to their potential application for treating a series of clinical situations. Among these properties, special attention should be given to the immunoregulatory potential of those cells. MSCs are able to act on all cells of the immune system, which includes the capacity to inhibit the proliferation and function of T-cells. This feature renders them natural candidates to treat several diseases in which cellular immune response is exacerbated. In this review, we outline the main mechanisms by which MSCs immunosuppress T-cell response, focusing on cell-cell contact, secretion of soluble factors, and regulatory T-cell generation. The influence of surface markers in the immunosuppression process and features of MSCs isolated from different sources are also discussed. Finally, the influences of toll-like receptors and cytokines on the inflammatory microenvironment are highlighted regarding the activation of MSCs to exert their immunoregulatory function.
Collapse
Affiliation(s)
- Rodrigo Haddad
- 1Faculty of Ceilandia, University of Brasilia, 72220-900 Brasilia, DF, Brazil
| | - Felipe Saldanha-Araujo
- 2Faculty of Health Sciences, University of Brasilia, 70910-900 Brasilia, DF, Brazil
- *Felipe Saldanha-Araujo:
| |
Collapse
|