1
|
Rodriguez-Jimenez FJ, Jendelova P, Erceg S. The activation of dormant ependymal cells following spinal cord injury. Stem Cell Res Ther 2023; 14:175. [PMID: 37408068 DOI: 10.1186/s13287-023-03395-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/02/2023] [Indexed: 07/07/2023] Open
Abstract
Ependymal cells, a dormant population of ciliated progenitors found within the central canal of the spinal cord, undergo significant alterations after spinal cord injury (SCI). Understanding the molecular events that induce ependymal cell activation after SCI represents the first step toward controlling the response of the endogenous regenerative machinery in damaged tissues. This response involves the activation of specific signaling pathways in the spinal cord that promotes self-renewal, proliferation, and differentiation. We review our current understanding of the signaling pathways and molecular events that mediate the SCI-induced activation of ependymal cells by focusing on the roles of some cell adhesion molecules, cellular membrane receptors, ion channels (and their crosstalk), and transcription factors. An orchestrated response regulating the expression of receptors and ion channels fine-tunes and coordinates the activation of ependymal cells after SCI or cell transplantation. Understanding the major players in the activation of ependymal cells may help us to understand whether these cells represent a critical source of cells contributing to cellular replacement and tissue regeneration after SCI. A more complete understanding of the role and function of individual signaling pathways in endogenous spinal cord progenitors may foster the development of novel targeted therapies to induce the regeneration of the injured spinal cord.
Collapse
Affiliation(s)
- Francisco Javier Rodriguez-Jimenez
- Stem Cell Therapies in Neurodegenerative Diseases Lab, Research Center "Principe Felipe", C/Eduardo Primo Yúfera 3, 46012, Valencia, Spain.
| | - Pavla Jendelova
- Department of Neuroregeneration, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| | - Slaven Erceg
- Stem Cell Therapies in Neurodegenerative Diseases Lab, Research Center "Principe Felipe", C/Eduardo Primo Yúfera 3, 46012, Valencia, Spain.
- National Stem Cell Bank - Valencia Node, Research Center "Principe Felipe", C/Eduardo Primo Yúfera 3, 46012, Valencia, Spain.
- Department of Neuroregeneration, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
2
|
Zhang Z, Li X, Zhou H, Zhou J. NG2-glia crosstalk with microglia in health and disease. CNS Neurosci Ther 2022; 28:1663-1674. [PMID: 36000202 PMCID: PMC9532922 DOI: 10.1111/cns.13948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 11/30/2022] Open
Abstract
Neurodegenerative diseases are increasingly becoming a global problem. However, the pathological mechanisms underlying neurodegenerative diseases are not fully understood. NG2‐glia abnormalities and microglia activation are involved in the development and/or progression of neurodegenerative disorders, such as multiple sclerosis, Alzheimer's disease, Parkinson's disease, and cerebrovascular diseases. In this review, we summarize the present understanding of the interaction between NG2‐glia and microglia in physiological and pathological states and discuss unsolved questions concerning their fate and potential fate. First, we introduce the NG2‐glia and microglia in health and disease. Second, we formulate the interaction between NG2‐glia and microglia. NG2‐glia proliferation, migration, differentiation, and apoptosis are influenced by factors released from the microglia. On the other hand, NG2‐glia also regulate microglia actions. We conclude that NG2‐glia and microglia are important immunomodulatory cells in the brain. Understanding the interaction between NG2‐glia and microglia will help provide a novel method to modulate myelination and treat neurodegenerative disorders.
Collapse
Affiliation(s)
- Zuo Zhang
- National Drug Clinical Trial Institution, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Xiaolong Li
- National Drug Clinical Trial Institution, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Hongli Zhou
- National Drug Clinical Trial Institution, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Jiyin Zhou
- National Drug Clinical Trial Institution, Second Affiliated Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
3
|
Lin KN, Zhang K, Zhao W, Huang SY, Li H. Insulin-like Growth Factor 1 Promotes Cell Proliferation by Downregulation of G-Protein-Coupled Receptor 17 Expression via PI3K/Akt/FoxO1 Signaling in SK-N-SH Cells. Int J Mol Sci 2022; 23:ijms23031513. [PMID: 35163437 PMCID: PMC8835821 DOI: 10.3390/ijms23031513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/10/2022] [Accepted: 01/25/2022] [Indexed: 12/04/2022] Open
Abstract
Insulin-like growth factor 1 (IGF-1) not only regulates neuronal function and development but also is neuroprotective in the setting of acute ischemic stroke. G-protein-coupled receptor 17 (GPR17) expression in brain tissue serves as an indicator of brain damage. As whether IGF-1 regulates GPR17 expression remains unknown, the aim of this study is to investigate how IGF-1 regulates GPR17 expression in vitro. Human neuroblastoma SK-N-SH cells were used. Lentivirus-mediated short hairpin RNA (shRNA) was constructed to mediate the silencing of FoxO1, while adenoviral vectors were used for its overexpression. Verification of the relevant signaling cascade was performed using a FoxO1 inhibitor (AS1842856), a phosphatidylinositol 3-kinase (PI3K) inhibitor (LY294002), and a GPR17 antagonist (cangrelor). Cell proliferation was analyzed using EdU staining; immunofluorescence staining was used to detect the expression and subcellular localization of FoxO1. Chromatin immunoprecipitation was used to analyze the binding of FoxO1 to the GPR17 promoter in SK-N-SH cells. The expression of FoxO1, GPR17, and protein kinase B (also known as Akt) mRNA and protein as well as the levels of FoxO1 and Akt phosphorylation were investigated in this study. IGF-1 was found to downregulate FoxO1 and GPR17 expression in SK-N-SH cells while promoting cell viability and proliferation. Inhibition of FoxO1 and antagonism of GPR17 were found to play a role similar to that of IGF-1. Silencing of FoxO1 by lentivirus-mediated shRNA resulted in the downregulation of FoxO1 and GPR17 expression. The overexpression of FoxO1 via adenoviral vectors resulted in the upregulation of FoxO1 and GPR17 expression. Blocking of PI3K signaling by LY294002 inhibited the effect of IGF-1 on GPR17 suppression. Results from chromatin immunoprecipitation revealed that IGF-1 promotes FoxO1 nuclear export and reduces FoxO1 binding to the GPR17 promoter in SK-N-SH cells. Here, we conclude that IGF-1 enhances cell viability and proliferation in SK-N-SH cells via the promotion of FoxO1 nuclear export and reduction of FoxO1 binding to the GPR17 promoter via PI3K/Akt signaling. Our findings suggest that the enhancement of IGF-1 signaling to antagonize GPR17 serves as a potential therapeutic strategy in the management of acute ischemic stroke.
Collapse
Affiliation(s)
- Ka-Na Lin
- Center for Brain Science & Clinical Research Center, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China;
| | - Kan Zhang
- Department of Anesthesiology, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China;
| | - Wei Zhao
- Department of Pharmacy, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; (W.Z.); (S.-Y.H.)
| | - Shi-Ying Huang
- Department of Pharmacy, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; (W.Z.); (S.-Y.H.)
| | - Hao Li
- Center for Brain Science & Clinical Research Center, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China;
- Department of Pharmacy, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; (W.Z.); (S.-Y.H.)
- Correspondence:
| |
Collapse
|
4
|
Braune M, Scherf N, Heine C, Sygnecka K, Pillaiyar T, Parravicini C, Heimrich B, Abbracchio MP, Müller CE, Franke H. Involvement of GPR17 in Neuronal Fibre Outgrowth. Int J Mol Sci 2021; 22:ijms222111683. [PMID: 34769111 PMCID: PMC8584086 DOI: 10.3390/ijms222111683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/24/2021] [Accepted: 10/24/2021] [Indexed: 11/16/2022] Open
Abstract
Characterization of new pharmacological targets is a promising approach in research of neurorepair mechanisms. The G protein-coupled receptor 17 (GPR17) has recently been proposed as an interesting pharmacological target, e.g., in neuroregenerative processes. Using the well-established ex vivo model of organotypic slice co-cultures of the mesocortical dopaminergic system (prefrontal cortex (PFC) and substantia nigra/ventral tegmental area (SN/VTA) complex), the influence of GPR17 ligands on neurite outgrowth from SN/VTA to the PFC was investigated. The growth-promoting effects of Montelukast (MTK; GPR17- and cysteinyl-leukotriene receptor antagonist), the glial cell line-derived neurotrophic factor (GDNF) and of two potent, selective GPR17 agonists (PSB-16484 and PSB-16282) were characterized. Treatment with MTK resulted in a significant increase in mean neurite density, comparable with the effects of GDNF. The combination of MTK and GPR17 agonist PSB-16484 significantly inhibited neuronal growth. qPCR studies revealed an MTK-induced elevated mRNA-expression of genes relevant for neuronal growth. Immunofluorescence labelling showed a marked expression of GPR17 on NG2-positive glia. Western blot and RT-qPCR analysis of untreated cultures suggest a time-dependent, injury-induced stimulation of GPR17. In conclusion, MTK was identified as a stimulator of neurite fibre outgrowth, mediating its effects through GPR17, highlighting GPR17 as an interesting therapeutic target in neuronal regeneration.
Collapse
Affiliation(s)
- Max Braune
- Rudolf Boehm Institute of Pharmacology and Toxicology, Medical Faculty, University of Leipzig, Härtelstr. 16-18, 04107 Leipzig, Germany; (M.B.); (C.H.); (K.S.)
| | - Nico Scherf
- Methods and Development Group Neural Data Analysis and Statistical Computing, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1A, 04103 Leipzig, Germany;
| | - Claudia Heine
- Rudolf Boehm Institute of Pharmacology and Toxicology, Medical Faculty, University of Leipzig, Härtelstr. 16-18, 04107 Leipzig, Germany; (M.B.); (C.H.); (K.S.)
| | - Katja Sygnecka
- Rudolf Boehm Institute of Pharmacology and Toxicology, Medical Faculty, University of Leipzig, Härtelstr. 16-18, 04107 Leipzig, Germany; (M.B.); (C.H.); (K.S.)
| | - Thanigaimalai Pillaiyar
- Department of Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany; (T.P.); (C.E.M.)
| | - Chiara Parravicini
- Department of Pharmaceutical Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy; (C.P.); (M.P.A.)
| | - Bernd Heimrich
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Center for Basics in NeuroModulation, Faculty of Medicine, University of Freiburg, Albertstr. 23, 79104 Freiburg, Germany;
| | - Maria P. Abbracchio
- Department of Pharmaceutical Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy; (C.P.); (M.P.A.)
| | - Christa E. Müller
- Department of Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany; (T.P.); (C.E.M.)
| | - Heike Franke
- Rudolf Boehm Institute of Pharmacology and Toxicology, Medical Faculty, University of Leipzig, Härtelstr. 16-18, 04107 Leipzig, Germany; (M.B.); (C.H.); (K.S.)
- Correspondence: ; Tel.: +49-(0)341-9724602; Fax: +49-(0)341-9724609
| |
Collapse
|
5
|
Ochi S, Sekiya K, Abe N, Funahashi Y, Kumon H, Yoshino Y, Nishihara T, Boku S, Iga JI, Ueno SI. Neural precursor cells are decreased in the hippocampus of the delayed carbon monoxide encephalopathy rat model. Sci Rep 2021; 11:6244. [PMID: 33737717 PMCID: PMC7973557 DOI: 10.1038/s41598-021-85860-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 03/08/2021] [Indexed: 11/25/2022] Open
Abstract
The pathophysiology of delayed carbon monoxide (CO) encephalopathy remains unclear. In this study, the effects of CO exposure on the dentate gyrus (DG) were investigated in a Wistar rat model by histochemical and molecular methods. Model rats showed significant cognitive impairment in the passive-avoidance test beginning 7 days after CO exposure. Immunohistochemistry showed that compared to the control, the cell number of SRY (sex-determining region Y)-box 2 (SOX2)+/brain lipid binding protein (BLBP)+/glial fibrillary acidic protein (GFAP)+ cells in the DG was significantly less, but the number of SOX2+/GFAP− cells was not, reflecting a decreased number of type 1 and type 2a neural precursor cells. Compared to the control, the numbers of CD11b+ cells and neuron glial antigen 2+ cells were significantly less, but the number of SOX2−/GFAP+ cells was not. Flow cytometry showed that the percent of live microglial cells isolated from the hippocampus in this CO rat model was significantly lower than in controls. Furthermore, mRNA expression of fibroblast growth factor 2 and glial cell-derived neurotrophic factor, which are neurogenic factors, was significantly decreased in that area. We conclude that, in this rat model, there is an association between delayed cognitive impairment with dysregulated adult hippocampal neurogenesis and glial changes in delayed CO encephalopathy.
Collapse
Affiliation(s)
- Shinichiro Ochi
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Keisuke Sekiya
- Department of Anesthesia and Perioperative Medicine, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Naoki Abe
- Department of Anesthesia and Perioperative Medicine, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Yu Funahashi
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Hiroshi Kumon
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Yuta Yoshino
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Tasuku Nishihara
- Department of Anesthesia and Perioperative Medicine, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Shuken Boku
- Department of Neuropsychiatry, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Jun-Ichi Iga
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan.
| | - Shu-Ichi Ueno
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| |
Collapse
|
6
|
Wang X, Su Y, Li T, Yu G, Wang Y, Chen X, Yin C, Tang Z, Yi C, Xiao L, Niu J. Quetiapine promotes oligodendroglial process outgrowth and membrane expansion by orchestrating the effects of Olig1. Glia 2021; 69:1709-1722. [PMID: 33660902 DOI: 10.1002/glia.23986] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 02/18/2021] [Accepted: 02/18/2021] [Indexed: 01/09/2023]
Abstract
Oligodendroglial lineage cells go through a series of morphological changes before myelination. Prior to myelination, cell processes and membrane structures enlarge by approximately 7,000 times, which is required to support axonal wrapping and myelin segment formation. Failure of these processes leads to maldevelopment and impaired myelination. Quetiapine, an atypical antipsychotic drug, was proved to promote oligodendroglial differentiation and (re)myelination, pending detailed effects and regulatory mechanism. In this study, we showed that quetiapine promotes morphological maturation of oligodendroglial lineage cells and myelin segment formation, and a short-term quetiapine treatment is sufficient to induce these changes. To uncover the underlying mechanism, we examined the effect of quetiapine on the Oligodendrocyte transcription factor 1 (Olig1). We found that quetiapine upregulates Olig1 expression level and promotes nuclear Olig1 translocation to the cytosol, where it functions not as a transcription modulator, but in a way that highly correlates with oligodendrocyte morphological transformation. In addition, quetiapine treatment reverses the negative regulatory effect of the Olig1-regulated G protein-coupled receptor 17 (GPR17) on oligodendroglial morphological maturation. Our results demonstrate that quetiapine enhances oligodendroglial differentiation and myelination by promoting cell morphological transformation. This would shed light on the orchestration of oligodendroglia developmental mechanisms, and provides new targets for further therapeutic research.
Collapse
Affiliation(s)
- Xiaorui Wang
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing, China
| | - Yixun Su
- Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Tao Li
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing, China
| | - Guangdan Yu
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing, China
| | - Yuxin Wang
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing, China
| | - Xiaoying Chen
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing, China
| | - Chenrui Yin
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing, China
| | - Ziqin Tang
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing, China
| | - Chenju Yi
- Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Lan Xiao
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing, China
| | - Jianqin Niu
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing, China
| |
Collapse
|
7
|
Lietzau G, Magni G, Kehr J, Yoshitake T, Candeias E, Duarte AI, Pettersson H, Skogsberg J, Abbracchio MP, Klein T, Nyström T, Ceruti S, Darsalia V, Patrone C. Dipeptidyl peptidase-4 inhibitors and sulfonylureas prevent the progressive impairment of the nigrostriatal dopaminergic system induced by diabetes during aging. Neurobiol Aging 2020; 89:12-23. [PMID: 32143981 DOI: 10.1016/j.neurobiolaging.2020.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 01/07/2020] [Accepted: 01/10/2020] [Indexed: 02/08/2023]
Abstract
The nigrostriatal dopaminergic system (NDS) controls motor activity, and its impairment during type 2 diabetes (T2D) progression could increase Parkinson's disease risk in diabetics. If so, whether glycemia regulation prevents this impairment needs to be addressed. We investigated whether T2D impairs the NDS and whether dipeptidyl peptidase-4 inhibition (DPP-4i; a clinical strategy against T2D but also neuroprotective in animal models) prevents this effect, in middle-aged mice. Neither T2D (induced by 12 months of high-fat diet) nor aging (14 months) changed striatal dopamine content assessed by high-performance liquid chromatography. However, T2D reduced basal and amphetamine-stimulated striatal extracellular dopamine, assessed by microdialysis. Both the DPP-4i linagliptin and the sulfonylurea glimepiride (an antidiabetic comparator unrelated to DPP-4i) counteracted these effects. The functional T2D-induced effects did not correlate with NDS neuronal/glial alterations. However, aging itself affected striatal neurons/glia, and the glia effects were counteracted mainly by DPP-4i. These findings show NDS functional pathophysiology in T2D and suggest the preventive use of two unrelated anti-T2D drugs. Moreover, DPP-4i counteracted striatal age-related glial alterations suggesting striatal rejuvenation properties.
Collapse
Affiliation(s)
- Grazyna Lietzau
- Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Giulia Magni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Jan Kehr
- Pronexus Analytical AB, Bromma, Sweden; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Takashi Yoshitake
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Emanuel Candeias
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Ana I Duarte
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Hans Pettersson
- Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Maria P Abbracchio
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Thomas Klein
- Boehringer Ingelheim Pharma GmbH & Co KG, Biberach, Germany
| | - Thomas Nyström
- Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Stefania Ceruti
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Vladimer Darsalia
- Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Cesare Patrone
- Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
8
|
NG2 cells and their neurogenic potential. Curr Opin Pharmacol 2020; 50:53-60. [DOI: 10.1016/j.coph.2019.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/18/2019] [Accepted: 11/27/2019] [Indexed: 12/19/2022]
|
9
|
Marucci G, Dal Ben D, Lambertucci C, Martí Navia A, Spinaci A, Volpini R, Buccioni M. GPR17 receptor modulators and their therapeutic implications: review of recent patents. Expert Opin Ther Pat 2019; 29:85-95. [PMID: 30640576 DOI: 10.1080/13543776.2019.1568990] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
INTRODUCTION The GPR17 receptor, phylogenetically related to both purinergic P2Y and CysLT receptors, is mainly expressed in the CNS and, in general, in organs that can typically undergo ischemic damage. This receptor is involved in various pathologies including stroke, brain and spinal cord trauma, multiple sclerosis and in all diseases characterized by neuronal and myelin dysfunction. Therefore, there is a strong needed to identify molecules capable of binding specifically to GPR17 receptors. AREAS COVERED The review provides a summary of patents, published between 2009 and 2018, on chemicals and biologics and their clinical use. In this work, information is reported about the representative structures and biological activity of recently developed GPR17 receptor ligands. EXPERT OPINION The GPR17 receptor is an enigmatic receptor and an interesting therapeutic target in a variety of brain disorders and demyelinating diseases such as multiple sclerosis, stroke, schizophrenia, and depression. The modulation of this receptor could also be potentially useful in obesity treatment. Unfortunately, so far, there are no compounds under investigation in clinical trials but many researchers and companies are investing in the discovery of future potential GPR17 receptor drugs.
Collapse
Affiliation(s)
- Gabriella Marucci
- a School of Pharmacy, Medicinal Chemistry Unit , University of Camerino , Camerino , Italy
| | - Diego Dal Ben
- a School of Pharmacy, Medicinal Chemistry Unit , University of Camerino , Camerino , Italy
| | - Catia Lambertucci
- a School of Pharmacy, Medicinal Chemistry Unit , University of Camerino , Camerino , Italy
| | - Aleix Martí Navia
- a School of Pharmacy, Medicinal Chemistry Unit , University of Camerino , Camerino , Italy
| | - Andrea Spinaci
- a School of Pharmacy, Medicinal Chemistry Unit , University of Camerino , Camerino , Italy
| | - Rosaria Volpini
- a School of Pharmacy, Medicinal Chemistry Unit , University of Camerino , Camerino , Italy
| | - Michela Buccioni
- a School of Pharmacy, Medicinal Chemistry Unit , University of Camerino , Camerino , Italy
| |
Collapse
|
10
|
Zhao B, Wang H, Li CX, Song SW, Fang SH, Wei EQ, Shi QJ. GPR17 mediates ischemia-like neuronal injury via microglial activation. Int J Mol Med 2018; 42:2750-2762. [PMID: 30226562 PMCID: PMC6192776 DOI: 10.3892/ijmm.2018.3848] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 08/23/2018] [Indexed: 01/18/2023] Open
Abstract
GPR17 is a G (i)-coupled dual receptor, linked to P2Y and CysLT receptors stimulated by uracil nucleotides and cysteinyl leukotrienes, respectively. Recent evidence has demonstrated that GPR17 inhibition ameliorates the progression of cerebral ischemic injury by regulating neuronal death and microglial activation. The present study aimed to assess the detailed regulatory roles of this receptor in oxygen-glucose deprivation/recovery (OGD/R)-induced ischemia-like injury in vitro and explore the underlying mechanism. The results demonstrated that OGD/R induced ischemic neuronal injury and microglial activation, including enhanced phagocytosis and increased inflammatory cytokine release in neuron‑glial mixed cultures of cortical cells. GPR17 upregulation during OGD/R was spatially and temporally correlated with neuronal injury and microglial activation. In addition, GPR17 knockdown inhibited OGD/R-induced responses in neuron-glial mixed cultures. GPR17 knockdown also attenuated cell injury induced by the agonist leukotriene D4 (LTD4) or uridine 5′-diphosphate (UDP) in neuron-glial mixed cultures. However, GPR17 knockdown did not affect OGD/R-induced ischemic neuronal injury in primary cultures of neurons. In primary astrocyte cultures, neither GPR17 nor OGD/R induced injury. By contrast, GPR17 knockdown ameliorated OGD/R-induced microglial activation, boosting phagocytosis and inflammatory cytokine release in primary microglia cultures. Finally, the results demonstrated that the conditioned medium of microglia pretreated with OGD/R induced neuronal death, and the neuronal injury was significantly inhibited by GPR17 knockdown. These findings suggested that GPR17 may mediate ischemia-like neuronal injury and microglial activation in vitro; however, the protective effects on ischemic neuronal injury might depend upon microglial activation. Whether GPR17 regulates neuronal injury mediated by oligodendrocyte linkage remains to be investigated.
Collapse
Affiliation(s)
- Bing Zhao
- Department of Anesthesiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Hao Wang
- Department of Neurology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| | - Cai-Xia Li
- Department of Anesthesiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Sheng-Wen Song
- Department of Anesthesiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - San-Hua Fang
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Er-Qing Wei
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Qiao-Juan Shi
- Experimental Animal Center, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310013, P.R. China
| |
Collapse
|
11
|
Nyamoya S, Leopold P, Becker B, Beyer C, Hustadt F, Schmitz C, Michel A, Kipp M. G-Protein-Coupled Receptor Gpr17 Expression in Two Multiple Sclerosis Remyelination Models. Mol Neurobiol 2018; 56:1109-1123. [DOI: 10.1007/s12035-018-1146-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/22/2018] [Indexed: 10/14/2022]
|
12
|
Lecca D, Fumagalli M, Ceruti S, Abbracchio MP. Intertwining extracellular nucleotides and their receptors with Ca2+ in determining adult neural stem cell survival, proliferation and final fate. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0433. [PMID: 27377726 DOI: 10.1098/rstb.2015.0433] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2016] [Indexed: 02/07/2023] Open
Abstract
In the central nervous system (CNS), during both brain and spinal cord development, purinergic and pyrimidinergic signalling molecules (ATP, UTP and adenosine) act synergistically with peptidic growth factors in regulating the synchronized proliferation and final specification of multipotent neural stem cells (NSCs) to neurons, astrocytes or oligodendrocytes, the myelin-forming cells. Some NSCs still persist throughout adulthood in both specific 'neurogenic' areas and in brain and spinal cord parenchyma, retaining the potentiality to generate all the three main types of adult CNS cells. Once CNS anatomical structures are defined, purinergic molecules participate in calcium-dependent neuron-to-glia communication and also control the behaviour of adult NSCs. After development, some purinergic mechanisms are silenced, but can be resumed after injury, suggesting a role for purinergic signalling in regeneration and self-repair also via the reactivation of adult NSCs. In this respect, at least three different types of adult NSCs participate in the response of the adult brain and spinal cord to insults: stem-like cells residing in classical neurogenic niches, in particular, in the ventricular-subventricular zone (V-SVZ), parenchymal oligodendrocyte precursor cells (OPCs, also known as NG2-glia) and parenchymal injury-activated astrocytes (reactive astrocytes). Here, we shall review and discuss the purinergic regulation of these three main adult NSCs, with particular focus on how and to what extent modulation of intracellular calcium levels by purinoceptors is mandatory to determine their survival, proliferation and final fate.This article is part of the themed issue 'Evolution brings Ca(2+) and ATP together to control life and death'.
Collapse
Affiliation(s)
- Davide Lecca
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy
| | - Marta Fumagalli
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy
| | - Stefania Ceruti
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy
| | - Maria P Abbracchio
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy
| |
Collapse
|
13
|
Pino A, Fumagalli G, Bifari F, Decimo I. New neurons in adult brain: distribution, molecular mechanisms and therapies. Biochem Pharmacol 2017; 141:4-22. [PMID: 28690140 DOI: 10.1016/j.bcp.2017.07.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/05/2017] [Indexed: 12/16/2022]
Abstract
"Are new neurons added in the adult mammalian brain?" "Do neural stem cells activate following CNS diseases?" "How can we modulate their activation to promote recovery?" Recent findings in the field provide novel insights for addressing these questions from a new perspective. In this review, we will summarize the current knowledge about adult neurogenesis and neural stem cell niches in healthy and pathological conditions. We will first overview the milestones that have led to the discovery of the classical ventricular and hippocampal neural stem cell niches. In adult brain, new neurons originate from proliferating neural precursors located in the subventricular zone of the lateral ventricles and in the subgranular zone of the hippocampus. However, recent findings suggest that new neuronal cells can be added to the adult brain by direct differentiation (e.g., without cell proliferation) from either quiescent neural precursors or non-neuronal cells undergoing conversion or reprogramming to neuronal fate. Accordingly, in this review we will also address critical aspects of the newly described mechanisms of quiescence and direct conversion as well as the more canonical activation of the neurogenic niches and neuroblast reservoirs in pathological conditions. Finally, we will outline the critical elements involved in neural progenitor proliferation, neuroblast migration and differentiation and discuss their potential as targets for the development of novel therapeutic drugs for neurodegenerative diseases.
Collapse
Affiliation(s)
- Annachiara Pino
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Italy
| | - Guido Fumagalli
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Italy
| | - Francesco Bifari
- Laboratory of Cell Metabolism and Regenerative Medicine, Department of Medical Biotechnology and Translational Medicine, University of Milan, Italy.
| | - Ilaria Decimo
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Italy.
| |
Collapse
|
14
|
Boda E, Nato G, Buffo A. Emerging pharmacological approaches to promote neurogenesis from endogenous glial cells. Biochem Pharmacol 2017. [PMID: 28647491 DOI: 10.1016/j.bcp.2017.06.129] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Neurodegenerative disorders are emerging as leading contributors to the global disease burden. While some drug-based approaches have been designed to limit or prevent neuronal loss following acute damage or chronic neurodegeneration, regeneration of functional neurons in the adult Central Nervous System (CNS) still remains an unmet need. In this context, the exploitation of endogenous cell sources has recently gained an unprecedented attention, thanks to the demonstration that, in some CNS regions or under specific circumstances, glial cells can activate spontaneous neurogenesis or can be instructed to produce neurons in the adult mammalian CNS parenchyma. This field of research has greatly advanced in the last years and identified interesting molecular and cellular mechanisms guiding the neurogenic activation/conversion of glia. In this review, we summarize the evolution of the research devoted to understand how resident glia can be directed to produce neurons. We paid particular attention to pharmacologically-relevant approaches exploiting the modulation of niche-associated factors and the application of selected small molecules.
Collapse
Affiliation(s)
- Enrica Boda
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, I-10126 Turin, Italy; Neuroscience Institute Cavalieri Ottolenghi, I-10043 Orbassano, Turin, Italy.
| | - Giulia Nato
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, I-10126 Turin, Italy; Neuroscience Institute Cavalieri Ottolenghi, I-10043 Orbassano, Turin, Italy
| | - Annalisa Buffo
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, I-10126 Turin, Italy; Neuroscience Institute Cavalieri Ottolenghi, I-10043 Orbassano, Turin, Italy
| |
Collapse
|
15
|
Le Duc D, Schulz A, Lede V, Schulze A, Thor D, Brüser A, Schöneberg T. P2Y Receptors in Immune Response and Inflammation. Adv Immunol 2017; 136:85-121. [PMID: 28950952 DOI: 10.1016/bs.ai.2017.05.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Metabotropic pyrimidine and purine nucleotide receptors (P2Y receptors) are expressed in virtually all cells with implications in very diverse biological functions, including the well-established platelet aggregation (P2Y12), but also immune regulation and inflammation. The classical P2Y receptors bind nucleotides and are encoded by eight genes with limited sequence homology, while phylogenetically related receptors (e.g., P2Y12-like) recognize lipids and peptides, but also nucleotide derivatives. Growing lines of evidence suggest an important function of P2Y receptors in immune cell differentiation and maturation, migration, and cell apoptosis. Here, we give a perspective on the P2Y receptors' molecular structure and physiological importance in immune cells, as well as the related diseases and P2Y-targeting therapies. Extensive research is being undertaken to find modulators of P2Y receptors and uncover their physiological roles. We anticipate the medical applications of P2Y modulators and their immune relevance.
Collapse
Affiliation(s)
- Diana Le Duc
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, University of Leipzig, Leipzig, Germany
| | - Angela Schulz
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, University of Leipzig, Leipzig, Germany
| | - Vera Lede
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, University of Leipzig, Leipzig, Germany
| | - Annelie Schulze
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, University of Leipzig, Leipzig, Germany
| | - Doreen Thor
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, University of Leipzig, Leipzig, Germany
| | - Antje Brüser
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, University of Leipzig, Leipzig, Germany
| | | |
Collapse
|
16
|
Khan MZ, He L. Neuro-psychopharmacological perspective of Orphan receptors of Rhodopsin (class A) family of G protein-coupled receptors. Psychopharmacology (Berl) 2017; 234:1181-1207. [PMID: 28289782 DOI: 10.1007/s00213-017-4586-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/27/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND In the central nervous system (CNS), G protein-coupled receptors (GPCRs) are the most fruitful targets for neuropsychopharmacological drug development. Rhodopsin (class A) is the most studied class of GPCR and includes orphan receptors for which the endogenous ligand is not known or is unclear. Characterization of orphan GPCRs has proven to be challenging, and the production pace of GPCR-based drugs has been incredibly slow. OBJECTIVE Determination of the functions of these receptors may provide unexpected insight into physiological and neuropathological processes. Advances in various methods and techniques to investigate orphan receptors including in situ hybridization and knockdown/knockout (KD/KO) showed extensive expression of these receptors in the mammalian brain and unmasked their physiological and neuropathological roles. Due to these rapid progress and development, orphan GPCRs are rising as a new and promising class of drug targets for neurodegenerative diseases and psychiatric disorders. CONCLUSION This review presents a neuropsychopharmacological perspective of 26 orphan receptors of rhodopsin (class A) family, namely GPR3, GPR6, GPR12, GPR17, GPR26, GPR35, GPR39, GPR48, GPR49, GPR50, GPR52, GPR55, GPR61, GPR62, GPR63, GPR68, GPR75, GPR78, GPR83, GPR84, GPR85, GPR88, GPR153, GPR162, GPR171, and TAAR6. We discussed the expression of these receptors in mammalian brain and their physiological roles. Furthermore, we have briefly highlighted their roles in neurodegenerative diseases and psychiatric disorders including Alzheimer's disease, Parkinson's disease, neuroinflammation, inflammatory pain, bipolar and schizophrenic disorders, epilepsy, anxiety, and depression.
Collapse
Affiliation(s)
- Muhammad Zahid Khan
- Department of Pharmacology, China Pharmaceutical University, No. 24 Tong Jia Xiang, Nanjing, Jiangsu Province, 210009, China.
| | - Ling He
- Department of Pharmacology, China Pharmaceutical University, No. 24 Tong Jia Xiang, Nanjing, Jiangsu Province, 210009, China
| |
Collapse
|