1
|
Ren T, Yin N, Du L, Pan M, Ding L. Identification and validation of FPR1, FPR2, IL17RA and TLR7 as immunogenic cell death related genes in osteoarthritis. Sci Rep 2023; 13:16872. [PMID: 37803031 PMCID: PMC10558501 DOI: 10.1038/s41598-023-43440-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/24/2023] [Indexed: 10/08/2023] Open
Abstract
Immunogenic cell death (ICDs) has gained increasing attention for its significant clinical efficacy in various diseases. Similarly, more and more attention has been paid in the role of immune factors in the pathological process of osteoarthritis (OA). The objective of this study is to reveal the relationship between ICD-related genes and the process of OA at the gene level through bioinformatics analysis. In this study, Limma R package was applied to identify differentially expressed genes (DEG), and OA related module genes were determined by weighted gene co-expression network analysis. The ICD-related genes were extracted from a previous study. The module genes related to DEGs and ICD were overlapped. Then, hub genes were identified by a series of analyses using the Least absolute shrinkage and selection operator and random forest algorithm, the expression level and diagnostic value of hub genes were evaluated by Logistic regression. In addition, we used Spearman rank correlation analysis to clarify the relationship between hub genes and infiltrating immune cells and immune pathways. The expression levels of FPR1, FPR2, IL17RA, and TLR7 was verified in SD rat knee joint model of OA by immunohistochemistry. The expression levels of FPR1, FPR2, IL17RA, and TLR7 mRNA were detected in the IL-1β induced rat chondrocytes in qPCR experiment in vitro. Four hub genes (FPR1, FPR2, IL17RA, and TLR7) were ultimately identified as OA biomarkers associated with ICD. And knockdown of TLR7 reversed collagen II and ADAMTS-5 degradation in IL-1β-stimulated chondrocytes. This research may provide new immune related biomarkers for the diagnosis of OA and serve as a reference for disease treatment monitoring.
Collapse
Affiliation(s)
- Tingting Ren
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Nuo Yin
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, Shanghai, 201400, China
| | - Li Du
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, Shanghai, 201400, China
| | - Mingmang Pan
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, Shanghai, 201400, China
| | - Liang Ding
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, Shanghai, 201400, China.
| |
Collapse
|
2
|
Pinto-Cardoso R, Bessa-Andrês C, Correia-de-Sá P, Bernardo Noronha-Matos J. Could hypoxia rehabilitate the osteochondral diseased interface? Lessons from the interplay of hypoxia and purinergic signals elsewhere. Biochem Pharmacol 2023:115646. [PMID: 37321413 DOI: 10.1016/j.bcp.2023.115646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/03/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023]
Abstract
The osteochondral unit comprises the articular cartilage (90%), subchondral bone (5%) and calcified cartilage (5%). All cells present at the osteochondral unit that is ultimately responsible for matrix production and osteochondral homeostasis, such as chondrocytes, osteoblasts, osteoclasts and osteocytes, can release adenine and/or uracil nucleotides to the local microenvironment. Nucleotides are released by these cells either constitutively or upon plasma membrane damage, mechanical stress or hypoxia conditions. Once in the extracellular space, endogenously released nucleotides can activate membrane-bound purinoceptors. Activation of these receptors is fine-tuning regulated by nucleotides' breakdown by enzymes of the ecto-nucleotidase cascade. Depending on the pathophysiological conditions, both the avascular cartilage and the subchondral bone subsist to significant changes in oxygen tension, which has a tremendous impact on tissue homeostasis. Cell stress due to hypoxic conditions directly influences the expression and activity of several purinergic signalling players, namely nucleotide release channels (e.g. Cx43), NTPDase enzymes and purinoceptors. This review gathers experimental evidence concerning the interplay between hypoxia and the purinergic signalling cascade contributing to osteochondral unit homeostasis. Reporting deviations to this relationship resulting from pathological alterations of articular joints may ultimately unravel novel therapeutic targets for osteochondral rehabilitation. At this point, one can only hypothesize how hypoxia mimetic conditions can be beneficial to the ex vivo expansion and differentiation of osteo- and chondro-progenitors for auto-transplantation and tissue regenerative purposes.
Collapse
Affiliation(s)
- Rui Pinto-Cardoso
- Laboratório de Farmacologia e Neurobiologia; Center for Drug Discovery and Innovative Medicines (MedInUP), Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP)
| | - Catarina Bessa-Andrês
- Laboratório de Farmacologia e Neurobiologia; Center for Drug Discovery and Innovative Medicines (MedInUP), Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP)
| | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia; Center for Drug Discovery and Innovative Medicines (MedInUP), Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP)
| | - José Bernardo Noronha-Matos
- Laboratório de Farmacologia e Neurobiologia; Center for Drug Discovery and Innovative Medicines (MedInUP), Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP).
| |
Collapse
|
3
|
Zappalà A, Romano IR, D’Angeli F, Musumeci G, Lo Furno D, Giuffrida R, Mannino G. Functional Roles of Connexins and Gap Junctions in Osteo-Chondral Cellular Components. Int J Mol Sci 2023; 24:ijms24044156. [PMID: 36835567 PMCID: PMC9967557 DOI: 10.3390/ijms24044156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Gap junctions (GJs) formed by connexins (Cxs) play an important role in the intercellular communication within most body tissues. In this paper, we focus on GJs and Cxs present in skeletal tissues. Cx43 is the most expressed connexin, participating in the formation of both GJs for intercellular communication and hemichannels (HCs) for communication with the external environment. Through GJs in long dendritic-like cytoplasmic processes, osteocytes embedded in deep lacunae are able to form a functional syncytium not only with neighboring osteocytes but also with bone cells located at the bone surface, despite the surrounding mineralized matrix. The functional syncytium allows a coordinated cell activity through the wide propagation of calcium waves, nutrients and anabolic and/or catabolic factors. Acting as mechanosensors, osteocytes are able to transduce mechanical stimuli into biological signals that spread through the syncytium to orchestrate bone remodeling. The fundamental role of Cxs and GJs is confirmed by a plethora of investigations that have highlighted how up- and downregulation of Cxs and GJs critically influence skeletal development and cartilage functions. A better knowledge of GJ and Cx mechanisms in physiological and pathological conditions might help in developing therapeutic approaches aimed at the treatment of human skeletal system disorders.
Collapse
Affiliation(s)
- Agata Zappalà
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Ivana Roberta Romano
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Floriana D’Angeli
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University, 00166 Rome, Italy
| | - Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Debora Lo Furno
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
- Correspondence: (D.L.F.); (R.G.)
| | - Rosario Giuffrida
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
- Correspondence: (D.L.F.); (R.G.)
| | - Giuliana Mannino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98122 Messina, Italy
| |
Collapse
|
4
|
He S, Zhang Z, Peng X, Wu Y, Zhu Y, Wang L, Zhou H, Li T, Liu L. The protective effect of pericytes on vascular permeability after hemorrhagic shock and their relationship with Cx43. Front Physiol 2022; 13:948541. [PMID: 36262250 PMCID: PMC9576106 DOI: 10.3389/fphys.2022.948541] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
Vascular hyperpermeability is a complication of hemorrhagic shock. Pericytes (PCs) are a group of mural cells surrounded by microvessels that are located on the basolateral side of the endothelium. Previous studies have shown that damage to PCs contributes to the occurrence of many diseases such as diabetic retinopathy and myocardial infarction. Whether PCs can protect the vascular barrier function following hemorrhagic shock and the underlying mechanisms are unknown. A hemorrhagic shock rat model, Cx43 vascular endothelial cell (VEC)-specific knockdown mice, and VECs were used to investigate the role of PCs in vascular barrier function and their relationship with Cx43. The results showed that following hemorrhagic shock, the number of PCs in the microvessels was significantly decreased and was negatively associated with an increase in pulmonary and mesenteric vascular permeability. Exogenous infusion of PCs (106 cells per rat) colonized the microvessels and improved pulmonary and mesenteric vascular barrier function. Upregulation of Cx43 in PCs significantly increased the number of PCs colonizing the pulmonary vessels. In contrast, downregulation of Cx43 expression in PCs or knockout of Cx43 in VECs (Cx43 KO mice) significantly reduced PC colonization in pulmonary vessels in vivo and reduced direct contact formation between PCs and VECs in vitro. It has been suggested that PCs have an important protective effect on vascular barrier function in pulmonary and peripheral vessels following hemorrhagic shock. Cx43 plays an important role in the colonization of exogenous PCs in the microvessels. This finding provides a potential new shock treatment measure.
Collapse
Affiliation(s)
- Shuangshuang He
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Research Department, Army Medical Center, Army Medical University, Chongqing, China
- Department of Pharmacy, Army Medical Center, Army Medical University, Chongqing, China
| | - Zisen Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Research Department, Army Medical Center, Army Medical University, Chongqing, China
| | - Xiaoyong Peng
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Research Department, Army Medical Center, Army Medical University, Chongqing, China
| | - Yue Wu
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Research Department, Army Medical Center, Army Medical University, Chongqing, China
| | - Yu Zhu
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Research Department, Army Medical Center, Army Medical University, Chongqing, China
| | - Li Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Research Department, Army Medical Center, Army Medical University, Chongqing, China
| | - Henan Zhou
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Research Department, Army Medical Center, Army Medical University, Chongqing, China
| | - Tao Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Research Department, Army Medical Center, Army Medical University, Chongqing, China
- *Correspondence: Tao Li, ; Liangming Liu,
| | - Liangming Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Research Department, Army Medical Center, Army Medical University, Chongqing, China
- *Correspondence: Tao Li, ; Liangming Liu,
| |
Collapse
|
5
|
Carpintero-Fernández P, Varela-Eirín M, García-Yuste A, López-Díaz I, Caeiro JR, Mayán MD. Osteoarthritis: Mechanistic Insights, Senescence, and Novel Therapeutic Opportunities. Bioelectricity 2022; 4:39-47. [PMID: 39355566 PMCID: PMC11441363 DOI: 10.1089/bioe.2021.0039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Osteoarthritis (OA) is the most common joint disease. In the last years, the research community has focused on understanding the molecular mechanisms that led to the pathogenesis of the disease, trying to identify different molecular and clinical phenotypes along with the discovery of new therapeutic opportunities. Different types of cell-to-cell communication mechanisms have been proposed to contribute to OA progression, including mechanisms mediated by connexin43 (Cx43) channels or by small extracellular vesicles. Furthermore, changes in the chondrocyte phenotype such as cellular senescence have been proposed as new contributors of the OA progression, changing the paradigm of the disease. The use of different drugs able to restore chondrocyte phenotype, to reduce cellular senescence and senescence-associated secretory phenotype components, and to modulate ion channel activity or Cx43 appears to be promising therapeutic strategies for the different types of OA. In this review, we aim to summarize the current knowledge in OA phenotypes related with aging and tissue damage and the new therapeutic opportunities currently available.
Collapse
Affiliation(s)
- Paula Carpintero-Fernández
- CellCOM Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), A Coruña, Spain
| | - Marta Varela-Eirín
- CellCOM Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), A Coruña, Spain
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, The Netherlands
| | - Alejandro García-Yuste
- CellCOM Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), A Coruña, Spain
| | - Iñaki López-Díaz
- CellCOM Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), A Coruña, Spain
| | - José Ramón Caeiro
- Department of Orthopaedic Surgery and Traumatology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - María D Mayán
- CellCOM Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), A Coruña, Spain
| |
Collapse
|
6
|
Duan M, Liu Y, Guo D, Kan S, Niu Z, Pu X, Bai M, Zhang D, Du W, Xie J. TGF-β2 increases cell-cell communication in chondrocytes via p-Smad3 signalling. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119175. [PMID: 34863793 DOI: 10.1016/j.bbamcr.2021.119175] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 02/08/2023]
Abstract
Connexin 43 (Cx43)-mediated gap junction intercellular communication (GJIC) plays a crucial role in the pathology and physiology of joint tissues. Transforming growth factor-β2 (TGF-β2), one of the potent regulatory factors in chondrocytes, plays a key role in the regulation of cell cycle and development of joint diseases. However, it is still unknown how TGF-β2 mediates GJIC in chondrocytes. The aim of this study was to explore the potential mechanism by which TGF-β2 regulates GJIC in chondrocytes. CCK-8 assays and scratch assays were performed to define the role of TGF-β2 on cell proliferation and migration. The scrape loading/dye transfer assay and scanning electron microscopy (SEM) were used to verify the effect of TGF-β2 on GJIC between chondrocytes. qPCR was performed to analyse the expression of genes in the gap junction protein family in chondrocytes. The expression of the Cx43 protein and phosphorylated Smad3 (p-Smad3) was evaluated by western blot assay. Immunofluorescence staining was used to explore p-Smad3 signalling pathway activation and Cx43 distribution. From these experiments, we found that the Cx43 protein was the most highly expressed member of the gap junction protein family in chondrocytes. We also found that TGF-β2 facilitated cell-to-cell communication in chondrocytes by upregulating Cx43 expression in chondrocytes. Finally, we found that TGF-β2 activated Smad3 signalling and promoted the nuclear aggregation of p-Smad3. Inhibition experiments by SIS3 also confirmed that TGF-β2-mediated GJIC through p-Smad3 signalling. For the first time, this study confirmed that TGF-β2 could regulate the formation of Cx43-mediated GJIC in chondrocytes via the canonical p-Smad3 signalling pathway.
Collapse
Affiliation(s)
- Mengmeng Duan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yang Liu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Daimo Guo
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shiyi Kan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhixing Niu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaohua Pu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mingru Bai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610064, China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wei Du
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610064, China.
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|