1
|
Goossens C, Tambay V, Raymond VA, Rousseau L, Turcotte S, Bilodeau M. Impact of the delay in cryopreservation timing during biobanking procedures on human liver tissue metabolomics. PLoS One 2024; 19:e0304405. [PMID: 38857235 PMCID: PMC11164386 DOI: 10.1371/journal.pone.0304405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 05/10/2024] [Indexed: 06/12/2024] Open
Abstract
The liver is a highly specialized organ involved in regulating systemic metabolism. Understanding metabolic reprogramming of liver disease is key in discovering clinical biomarkers, which relies on robust tissue biobanks. However, sample collection and storage procedures pose a threat to obtaining reliable results, as metabolic alterations may occur during sample handling. This study aimed to elucidate the impact of pre-analytical delay during liver resection surgery on liver tissue metabolomics. Patients were enrolled for liver resection during which normal tissue was collected and snap-frozen at three timepoints: before transection, after transection, and after analysis in Pathology. Metabolomics analyses were performed using 1H Nuclear Magnetic Resonance (NMR) and Liquid Chromatography-Mass Spectrometry (LC-MS). Time at cryopreservation was the principal variable contributing to differences between liver specimen metabolomes, which superseded even interindividual variability. NMR revealed global changes in the abundance of an array of metabolites, namely a decrease in most metabolites and an increase in β-glucose and lactate. LC-MS revealed that succinate, alanine, glutamine, arginine, leucine, glycerol-3-phosphate, lactate, AMP, glutathione, and NADP were enhanced during cryopreservation delay (all p<0.05), whereas aspartate, iso(citrate), ADP, and ATP, decreased (all p<0.05). Cryopreservation delays occurring during liver tissue biobanking significantly alter an array of metabolites. Indeed, such alterations compromise the integrity of metabolomic data from liver specimens, underlining the importance of standardized protocols for tissue biobanking in hepatology.
Collapse
Affiliation(s)
- Corentine Goossens
- Laboratoire d’Hépatologie Cellulaire, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Vincent Tambay
- Laboratoire d’Hépatologie Cellulaire, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Valérie-Ann Raymond
- Laboratoire d’Hépatologie Cellulaire, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Louise Rousseau
- Biobanque et Base de Données Hépatopancréatobiliaire, Centre Hospitalier de l’Université de Montréal (CHUM), Montréal, QC, Canada
| | - Simon Turcotte
- Biobanque et Base de Données Hépatopancréatobiliaire, Centre Hospitalier de l’Université de Montréal (CHUM), Montréal, QC, Canada
- Département de Chirurgie, Service de Transplantation Hépatique et de Chirurgie Hépatopancréatobiliaire, Centre Hospitalier de l’Université de Montréal (CHUM), Montréal, QC, Canada
| | - Marc Bilodeau
- Laboratoire d’Hépatologie Cellulaire, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de Médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
2
|
Joblin-Mills A, Wu ZE, Sequeira-Bisson IR, Miles-Chan JL, Poppitt SD, Fraser K. Utilising a Clinical Metabolomics LC-MS Study to Determine the Integrity of Biological Samples for Statistical Modelling after Long Term -80 °C Storage: A TOFI_Asia Sub-Study. Metabolites 2024; 14:313. [PMID: 38921448 PMCID: PMC11205627 DOI: 10.3390/metabo14060313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/20/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024] Open
Abstract
Biological samples of lipids and metabolites degrade after extensive years in -80 °C storage. We aimed to determine if associated multivariate models are also impacted. Prior TOFI_Asia metabolomics studies from our laboratory established multivariate models of metabolic risks associated with ethnic diversity. Therefore, to compare multivariate modelling degradation after years of -80 °C storage, we selected a subset of aged (≥5-years) plasma samples from the TOFI_Asia study to re-analyze via untargeted LC-MS metabolomics. Samples from European Caucasian (n = 28) and Asian Chinese (n = 28) participants were evaluated for ethnic discrimination by partial least squares discriminative analysis (PLS-DA) of lipids and polar metabolites. Both showed a strong discernment between participants ethnicity by features, before (Initial) and after (Aged) 5-years of -80 °C storage. With receiver operator characteristic curves, sparse PLS-DA derived confusion matrix and prediction error rates, a considerable reduction in model integrity was apparent with the Aged polar metabolite model relative to Initial modelling. Ethnicity modelling with lipids maintained predictive integrity in Aged plasma samples, while equivalent polar metabolite models reduced in integrity. Our results indicate that researchers re-evaluating samples for multivariate modelling should consider time at -80 °C when producing predictive metrics from polar metabolites, more so than lipids.
Collapse
Affiliation(s)
- Aidan Joblin-Mills
- Food Chemistry & Structure Team, AgResearch, Palmerston North 4410, New Zealand; (Z.E.W.); (K.F.)
- High-Value Nutrition National Science Challenge, Auckland 1145, New Zealand; (I.R.S.-B.); (J.L.M.-C.); (S.D.P.)
| | - Zhanxuan E. Wu
- Food Chemistry & Structure Team, AgResearch, Palmerston North 4410, New Zealand; (Z.E.W.); (K.F.)
- High-Value Nutrition National Science Challenge, Auckland 1145, New Zealand; (I.R.S.-B.); (J.L.M.-C.); (S.D.P.)
- School of Food and Nutrition, Massey University, Palmerston North 4410, New Zealand
| | - Ivana R. Sequeira-Bisson
- High-Value Nutrition National Science Challenge, Auckland 1145, New Zealand; (I.R.S.-B.); (J.L.M.-C.); (S.D.P.)
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland 1024, New Zealand
| | - Jennifer L. Miles-Chan
- High-Value Nutrition National Science Challenge, Auckland 1145, New Zealand; (I.R.S.-B.); (J.L.M.-C.); (S.D.P.)
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland 1024, New Zealand
| | - Sally D. Poppitt
- High-Value Nutrition National Science Challenge, Auckland 1145, New Zealand; (I.R.S.-B.); (J.L.M.-C.); (S.D.P.)
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland 1024, New Zealand
- Department of Medicine, University of Auckland, Auckland 1145, New Zealand
| | - Karl Fraser
- Food Chemistry & Structure Team, AgResearch, Palmerston North 4410, New Zealand; (Z.E.W.); (K.F.)
- High-Value Nutrition National Science Challenge, Auckland 1145, New Zealand; (I.R.S.-B.); (J.L.M.-C.); (S.D.P.)
| |
Collapse
|
3
|
Geissenberger J, Pittner S, Ehrenfellner B, Jakob L, Stoiber W, Monticelli FC, Steinbacher P. Effect of temporary freezing on postmortem protein degradation patterns. Int J Legal Med 2023; 137:1803-1814. [PMID: 37268796 PMCID: PMC10567868 DOI: 10.1007/s00414-023-03024-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/12/2023] [Indexed: 06/04/2023]
Abstract
BACKGROUND A precise determination of time since death plays a major role in forensic routine. Currently available techniques for estimating the postmortem interval (PMI) are restricted to specific time periods or cannot be applied for individual case-specific reasons. During recent years, it has been repeatedly demonstrated that Western blot analysis of postmortem muscle protein degradation can substantially contribute to overcome these limitations in cases with different background. Enabling to delimit time points at which certain marker proteins undergo distinct degradation events, the method has become a reasonable new tool for PMI delimitation under various forensic scenarios. However, additional research is yet required to improve our understanding of protein decomposition and how it is affected by intrinsic and extrinsic factors. Since there are temperature limits for proteolysis, and investigators are confronted with frozen corpses, investigation of the effects of freezing and thawing on postmortem protein decomposition in the muscle tissue is an important objective to firmly establish the new method. It is also important because freezing is often the only practical means to intermittently preserve tissue samples from both true cases and animal model research. METHODS Sets of dismembered pig hind limbs, either freshly detached non-frozen, or thawed after 4 months of freeze-storage (n = 6 each), were left to decompose under controlled conditions at 30 °C for 7 days and 10 days, respectively. Samples of the M. biceps femoris were regularly collected at predefined time points. All samples were processed via SDS-PAGE and Western blotting to identify the degradation patterns of previously characterized muscle proteins. RESULTS Western blots show that the proteins degrade predictably over time in precise patterns that are largely unaffected by the freeze-and-thaw process. Investigated proteins showed complete degradation of the native protein band, partly giving rise to degradation products present in distinct time phases of the decomposition process. CONCLUSION This study provides substantial new information from a porcine model to assess the degree of bias that freezing and thawing induces on postmortem degradation of skeletal muscle proteins. Results support that a freeze-thaw cycle with prolonged storage in frozen state has no significant impact on the decomposition behavior. This will help to equip the protein degradation-based method for PMI determination with a robust applicability in the normal forensic setting.
Collapse
Affiliation(s)
- Janine Geissenberger
- Department of Environment and Biodiversity, University of Salzburg, Hellbrunner Straße 34, 5020, Salzburg, Austria.
| | - S Pittner
- Department of Forensic Medicine and Forensic Psychiatry, University of Salzburg, Salzburg, Austria
| | - B Ehrenfellner
- Department of Environment and Biodiversity, University of Salzburg, Hellbrunner Straße 34, 5020, Salzburg, Austria
| | - L Jakob
- Department of Environment and Biodiversity, University of Salzburg, Hellbrunner Straße 34, 5020, Salzburg, Austria
| | - W Stoiber
- Department of Environment and Biodiversity, University of Salzburg, Hellbrunner Straße 34, 5020, Salzburg, Austria
| | - F C Monticelli
- Department of Forensic Medicine and Forensic Psychiatry, University of Salzburg, Salzburg, Austria
| | - P Steinbacher
- Department of Environment and Biodiversity, University of Salzburg, Hellbrunner Straße 34, 5020, Salzburg, Austria
| |
Collapse
|
4
|
Isolated Effects of Plasma Freezing versus Thawing on Metabolite Stability. Metabolites 2022; 12:metabo12111098. [DOI: 10.3390/metabo12111098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Freezing and thawing plasma samples is known to perturb metabolite stability. However, no study has systematically tested how different freezing and thawing methods affect plasma metabolite levels. The objective of this study was to isolate the effects of freezing from thawing on mouse plasma metabolite levels, by comparing a matrix of freezing and thawing conditions through 10 freeze–thaw cycles. We tested freezing with liquid nitrogen (LN2), at −80 °C, or at −20 °C, and thawing quickly in room temperature water or slowly on ice. Plasma samples were extracted and the relative abundance of 87 metabolites was obtained via liquid chromatography–mass spectrometry (LC–MS). Observed changes in metabolite abundance by treatment group correlated with the amount of time it took for samples to freeze or thaw. Thus, snap-freezing with LN2 and quick-thawing with water led to minimal changes in metabolite levels. Conversely, samples frozen at −20 °C exhibited the most changes in metabolite levels, likely because freezing required about 4 h, versus freezing instantaneously in LN2. Overall, our results show that plasma samples subjected to up to 10 cycles of LN2 snap-freezing with room temperature water quick-thawing exhibit remarkable metabolomic stability.
Collapse
|
5
|
Olshansky G, Giles C, Salim A, Meikle PJ. Challenges and opportunities for prevention and removal of unwanted variation in lipidomic studies. Prog Lipid Res 2022; 87:101177. [PMID: 35780914 DOI: 10.1016/j.plipres.2022.101177] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 05/19/2022] [Accepted: 06/26/2022] [Indexed: 10/17/2022]
Abstract
Large 'omics studies are of particular interest to population and clinical research as they allow elucidation of biological pathways that are often out of reach of other methodologies. Typically, these information rich datasets are produced from multiple coordinated profiling studies that may include lipidomics, metabolomics, proteomics or other strategies to generate high dimensional data. In lipidomics, the generation of such data presents a series of unique technological and logistical challenges; to maximize the power (number of samples) and coverage (number of analytes) of the dataset while minimizing the sources of unwanted variation. Technological advances in analytical platforms, as well as computational approaches, have led to improvement of data quality - especially with regard to instrumental variation. In the small scale, it is possible to control systematic bias from beginning to end. However, as the size and complexity of datasets grow, it is inevitable that unwanted variation arises from multiple sources, some potentially unknown and out of the investigators control. Increases in cohort sizes and complexity has led to new challenges in sample collection, handling, storage, and preparation stages. If not considered and dealt with appropriately, this unwanted variation may undermine the quality of the data and reliability of any subsequent analysis. Here we review the various experimental phases where unwanted variation may be introduced and review general strategies and approaches to handle this variation, specifically addressing issues relevant to lipidomics studies.
Collapse
Affiliation(s)
- Gavriel Olshansky
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, Victoria, Australia
| | - Corey Giles
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, Victoria, Australia
| | - Agus Salim
- Melbourne School of Population and Global Health, University of Melbourne, Parkville, VIC 3010, Australia; School of Mathematics and Statistics, University of Melbourne, Parkville, VIC 3010, Australia
| | - Peter J Meikle
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, Victoria, Australia; Faculty of Medicine, Nursing and Health Sciences, Central Clinical School, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
6
|
Xu S, Panettieri RA, Jude J. Metabolomics in asthma: A platform for discovery. Mol Aspects Med 2022; 85:100990. [PMID: 34281719 PMCID: PMC9088882 DOI: 10.1016/j.mam.2021.100990] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 06/21/2021] [Accepted: 07/06/2021] [Indexed: 12/28/2022]
Abstract
Asthma, characterized by airway hyperresponsiveness, inflammation and remodeling, is a chronic airway disease with complex etiology. Severe asthma is characterized by frequent exacerbations and poor therapeutic response to conventional asthma therapy. A clear understanding of cellular and molecular mechanisms of asthma is critical for the discovery of novel targets for optimal therapeutic control of asthma. Metabolomics is emerging as a powerful tool to elucidate novel disease mechanisms in a variety of diseases. In this review, we summarize the current status of knowledge in asthma metabolomics at systemic and cellular levels. The findings demonstrate that various metabolic pathways, related to energy metabolism, macromolecular biosynthesis and redox signaling, are differentially modulated in asthma. Airway smooth muscle cell plays pivotal roles in asthma by contributing to airway hyperreactivity, inflammatory mediator release and remodeling. We posit that metabolomic profiling of airway structural cells, including airway smooth muscle cells, will shed light on molecular mechanisms of asthma and airway hyperresponsiveness and help identify novel therapeutic targets.
Collapse
Affiliation(s)
- Shengjie Xu
- Rutgers Institute for Translational Medicine & Science, Rutgers, The State University of New Jersey, 89 French Street, New Brunswick, NJ, 08901, USA; Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 89 French Street, New Brunswick, NJ, 08901, USA
| | - Reynold A Panettieri
- Rutgers Institute for Translational Medicine & Science, Rutgers, The State University of New Jersey, 89 French Street, New Brunswick, NJ, 08901, USA; Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 89 French Street, New Brunswick, NJ, 08901, USA; Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, 89 French Street, New Brunswick, NJ, 08901, USA
| | - Joseph Jude
- Rutgers Institute for Translational Medicine & Science, Rutgers, The State University of New Jersey, 89 French Street, New Brunswick, NJ, 08901, USA; Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 89 French Street, New Brunswick, NJ, 08901, USA; Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, 89 French Street, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
7
|
Tevini J, Eder SK, Huber-Schönauer U, Niederseer D, Strebinger G, Gostner JM, Aigner E, Datz C, Felder TK. Changing Metabolic Patterns along the Colorectal Adenoma–Carcinoma Sequence. J Clin Med 2022; 11:jcm11030721. [PMID: 35160173 PMCID: PMC8836789 DOI: 10.3390/jcm11030721] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/18/2022] [Accepted: 01/27/2022] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is a major public health burden and one of the leading causes of cancer-related deaths worldwide. Screening programs facilitate early diagnosis and can help to reduce poor outcomes. Serum metabolomics can extract vital molecular information that may increase the sensitivity and specificity of colonoscopy in combination with histopathological examination. The present study identifies serum metabolite patterns of treatment-naïve patients, diagnosed with either advanced adenoma (AA) or CRC in colonoscopy screenings, in the framework of the SAKKOPI (Salzburg Colon Cancer Prevention Initiative) program. We used a targeted flow injection analysis and liquid chromatography-tandem mass spectrometry metabolomics approach (FIA- and LC-MS/MS) to characterise the serum metabolomes of an initial screening cohort and two validation cohorts (in total 66 CRC, 76 AA and 93 controls). The lipidome was significantly perturbed, with a proportion of lipid species being downregulated in CRC patients, as compared to AA and controls. The predominant alterations observed were in the levels of lyso-lipids, glycerophosphocholines and acylcarnitines, but additionally, variations in the quantity of hydroxylated sphingolipids could be detected. Changed amino acid metabolism was restricted mainly to metabolites of the arginine/dimethylarginine/NO synthase pathway. The identified metabolic divergences observed in CRC set the foundation for mechanistic studies to characterise biochemical pathways that become deregulated during progression through the adenoma to carcinoma sequence and highlight the key importance of lipid metabolites. Biomarkers related to these pathways could improve the sensitivity and specificity of diagnosis, as well as the monitoring of therapies.
Collapse
Affiliation(s)
- Julia Tevini
- Department of Laboratory Medicine, Paracelsus Medical University, 5020 Salzburg, Austria;
| | - Sebastian K. Eder
- First Department of Medicine, Paracelsus Medical University, 5020 Salzburg, Austria; (S.K.E.); (E.A.)
- Department of Pediatrics and Adolescent Medicine, St. Anna Children’s Hospital, Medical University of Vienna, 1090 Vienna, Austria
| | - Ursula Huber-Schönauer
- Department of Internal Medicine, Hospital Oberndorf, Teaching Hospital of the Paracelsus Medical University Salzburg, 5110 Oberndorf, Austria; (U.H.-S.); (G.S.)
| | - David Niederseer
- Department of Cardiology, University Heart Center Zurich, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland;
| | - Georg Strebinger
- Department of Internal Medicine, Hospital Oberndorf, Teaching Hospital of the Paracelsus Medical University Salzburg, 5110 Oberndorf, Austria; (U.H.-S.); (G.S.)
| | - Johanna M. Gostner
- Institute of Medical Biochemistry, Innsbruck Medical University, 6020 Innsbruck, Austria;
| | - Elmar Aigner
- First Department of Medicine, Paracelsus Medical University, 5020 Salzburg, Austria; (S.K.E.); (E.A.)
| | - Christian Datz
- Department of Internal Medicine, Hospital Oberndorf, Teaching Hospital of the Paracelsus Medical University Salzburg, 5110 Oberndorf, Austria; (U.H.-S.); (G.S.)
- Correspondence: (C.D.); (T.K.F.); Tel.: +43-5-7255-58126 (T.K.F.)
| | - Thomas K. Felder
- Department of Laboratory Medicine, Paracelsus Medical University, 5020 Salzburg, Austria;
- Correspondence: (C.D.); (T.K.F.); Tel.: +43-5-7255-58126 (T.K.F.)
| |
Collapse
|
8
|
Goodman K, Mitchell M, Evans AM, Miller LAD, Ford L, Wittmann B, Kennedy AD, Toal D. Assessment of the effects of repeated freeze thawing and extended bench top processing of plasma samples using untargeted metabolomics. Metabolomics 2021; 17:31. [PMID: 33704583 DOI: 10.1007/s11306-021-01782-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 02/26/2021] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Clinical metabolomics has utility as a screen for inborn errors of metabolism (IEM) and variant classification in patients with rare disease. It is important to understand and characterize preanalytical factors that influence assay performance during patient sample testing. OBJECTIVES To evaluate the impact of extended thawing of human EDTA plasma samples on ice prior to extraction as well as repeated freeze-thaw cycling of samples to identify compounds that are unstable prior to metabolomic analysis. METHODS Twenty-four (24) donor EDTA plasma samples were collected and immediately frozen at - 80 °C. Twelve samples were thawed on ice and extracted for analysis at time 0, 2, 4, and 6 h. Twelve other donor samples were repeatedly thawed and frozen up to four times and analyzed at each cycle. Compound levels at each time point/freeze-thaw cycle were compared to the control samples using matched-paired t tests to identify analytes affected by each condition. RESULTS We identified 1026 biochemicals across all samples. Incubation of thawed EDTA plasma samples on ice for up to 6 h resulted in < 1% of biochemicals changing significantly. Freeze-thaw cycles affected a greater percentage of the metabolome; ~ 2% of biochemicals changed after 3 freeze-thaw cycles. CONCLUSIONS Our study highlights that the number and magnitude of these changes are not as widespread as other aspects of improper sample handling. In total, < 3% of the metabolome detected on our clinical metabolomics platform should be disqualified when multiple freeze-thaw cycles or extended thawing at 4 °C are performed on a given sample.
Collapse
Affiliation(s)
- Kelli Goodman
- Metabolon, 617 Davis Drive, Suite 100, Morrisville, NC, 27560, USA
| | - Matthew Mitchell
- Metabolon, 617 Davis Drive, Suite 100, Morrisville, NC, 27560, USA
| | - Anne M Evans
- Metabolon, 617 Davis Drive, Suite 100, Morrisville, NC, 27560, USA
| | - Luke A D Miller
- Metabolon, 617 Davis Drive, Suite 100, Morrisville, NC, 27560, USA
| | - Lisa Ford
- Metabolon, 617 Davis Drive, Suite 100, Morrisville, NC, 27560, USA
| | - Bryan Wittmann
- Metabolon, 617 Davis Drive, Suite 100, Morrisville, NC, 27560, USA
| | - Adam D Kennedy
- Metabolon, 617 Davis Drive, Suite 100, Morrisville, NC, 27560, USA
| | - Douglas Toal
- Metabolon, 617 Davis Drive, Suite 100, Morrisville, NC, 27560, USA.
| |
Collapse
|
9
|
González-Domínguez R, González-Domínguez Á, Sayago A, Fernández-Recamales Á. Recommendations and Best Practices for Standardizing the Pre-Analytical Processing of Blood and Urine Samples in Metabolomics. Metabolites 2020; 10:metabo10060229. [PMID: 32503183 PMCID: PMC7344701 DOI: 10.3390/metabo10060229] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/29/2020] [Accepted: 05/31/2020] [Indexed: 12/11/2022] Open
Abstract
Metabolomics can be significantly influenced by a range of pre-analytical factors, such as sample collection, pre-processing, aliquoting, transport, storage and thawing. This therefore shows the crucial need for standardizing the pre-analytical phase with the aim of minimizing the inter-sample variability driven by these technical issues, as well as for maintaining the metabolic integrity of biological samples to ensure that metabolomic profiles are a direct expression of the in vivo biochemical status. This review article provides an updated literature revision of the most important factors related to sample handling and pre-processing that may affect metabolomics results, particularly focusing on the most commonly investigated biofluids in metabolomics, namely blood plasma/serum and urine. Finally, we also provide some general recommendations and best practices aimed to standardize and accurately report all these pre-analytical aspects in metabolomics research.
Collapse
Affiliation(s)
- Raúl González-Domínguez
- AgriFood Laboratory, Faculty of Experimental Sciences, University of Huelva, 21007 Huelva, Spain; (A.S.); (Á.F.-R.)
- International Campus of Excellence CeiA3, University of Huelva, 21007 Huelva, Spain
- Correspondence: ; Tel.: +34-959219975
| | - Álvaro González-Domínguez
- Department of Pediatrics, Hospital Universitario Puerta del Mar, 11009 Cádiz, Spain;
- Institute of Research and Innovation in Biomedical Sciences of the Province of Cádiz (INiBICA), 11009 Cádiz, Spain
| | - Ana Sayago
- AgriFood Laboratory, Faculty of Experimental Sciences, University of Huelva, 21007 Huelva, Spain; (A.S.); (Á.F.-R.)
- International Campus of Excellence CeiA3, University of Huelva, 21007 Huelva, Spain
| | - Ángeles Fernández-Recamales
- AgriFood Laboratory, Faculty of Experimental Sciences, University of Huelva, 21007 Huelva, Spain; (A.S.); (Á.F.-R.)
- International Campus of Excellence CeiA3, University of Huelva, 21007 Huelva, Spain
| |
Collapse
|
10
|
Madssen TS, Cao MD, Pladsen AV, Ottestad L, Sahlberg KK, Bathen TF, Giskeødegård GF. Historical Biobanks in Breast Cancer Metabolomics- Challenges and Opportunities. Metabolites 2019; 9:metabo9110278. [PMID: 31766128 PMCID: PMC6918424 DOI: 10.3390/metabo9110278] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/05/2019] [Accepted: 11/11/2019] [Indexed: 11/21/2022] Open
Abstract
Background: Metabolomic characterization of tumours can potentially improve prediction of cancer prognosis and treatment response. Here, we describe efforts to validate previous metabolomic findings using a historical cohort of breast cancer patients and discuss challenges with using older biobanks collected with non-standardized sampling procedures. Methods: In total, 100 primary breast cancer samples were analysed by high-resolution magic angle spinning magnetic resonance spectroscopy (HR MAS MRS) and subsequently examined by histology. Metabolomic profiles were related to the presence of cancer tissue, hormone receptor status, T-stage, N-stage, and survival. RNA integrity number (RIN) and metabolomic profiles were compared with an ongoing breast cancer biobank. Results: The 100 samples had a median RIN of 4.3, while the ongoing biobank had a significantly higher median RIN of 6.3 (p = 5.86 × 10−7). A low RIN was associated with changes in choline-containing metabolites and creatine, and the samples in the older biobank showed metabolic differences previously associated with tissue degradation. The association between metabolomic profile and oestrogen receptor status was in accordance with previous findings, however, with a lower classification accuracy. Conclusions: Our findings highlight the importance of standardized biobanking procedures in breast cancer metabolomics studies.
Collapse
Affiliation(s)
- Torfinn S. Madssen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, 7491 Trondheim, Norway; (M.D.C.); (T.F.B.); (G.F.G.)
- Correspondence:
| | - Maria D. Cao
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, 7491 Trondheim, Norway; (M.D.C.); (T.F.B.); (G.F.G.)
| | - Arne V. Pladsen
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, 0310 Oslo, Norway; (A.V.P.); (L.O.); (K.K.S.)
| | - Lars Ottestad
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, 0310 Oslo, Norway; (A.V.P.); (L.O.); (K.K.S.)
- Department of Oncology, Østfold Hospital Trust, 1714 Kalnes, Norway
| | - Kristine K. Sahlberg
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, 0310 Oslo, Norway; (A.V.P.); (L.O.); (K.K.S.)
- Department of Research and Innovation, Vestre Viken Hospital Trust, 3004 Drammen, Norway
| | - Tone F. Bathen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, 7491 Trondheim, Norway; (M.D.C.); (T.F.B.); (G.F.G.)
| | - Guro F. Giskeødegård
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, 7491 Trondheim, Norway; (M.D.C.); (T.F.B.); (G.F.G.)
| |
Collapse
|
11
|
Hunt H, Fraser K, Cave NJ, Gartrell BD, Petersen J, Roe WD. Untargeted metabolic profiling of dogs with a suspected toxic mitochondrial myopathy using liquid chromatography-mass spectrometry. Toxicon 2019; 166:46-55. [PMID: 31102596 DOI: 10.1016/j.toxicon.2019.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/22/2019] [Accepted: 05/11/2019] [Indexed: 10/26/2022]
Abstract
'Go Slow myopathy' (GSM) is a suspected toxic myopathy in dogs that primarily occurs in the North Island of New Zealand, and affected dogs usually have a history of consuming meat, offal or bones from wild pigs (including previously frozen and/or cooked meat). Previous epidemiological and pathological studies on GSM have demonstrated that changes in mitochondrial structure and function are most likely caused by an environmental toxin that dogs are exposed to through the ingestion of wild pig. The disease has clinical, histological and biochemical similarities to poisoning in people and animals from the plant Ageratina altissima (white snakeroot). Aqueous and lipid extracts were prepared from liver samples of 24 clinically normal dogs and 15 dogs with GSM for untargeted liquid chromatography-mass spectrometry. Group-wise comparisons of mass spectral data revealed 38 features that were significantly different (FDR<0.05) between normal dogs and those with GSM in aqueous extracts, and 316 significantly different features in lipid extracts. No definitive cause of the myopathy was identified, but alkaloids derived from several plant species were among the possible identities of features that were more abundant in liver samples from affected dogs compared to normal dogs. Mass spectral data also revealed that dogs with GSM have reduced hepatic phospholipid and sphingolipid concentrations relative to normal dogs. In addition, affected dogs had changes in the abundance of kynurenic acid, various dicarboxylic acids and N-acetylated branch chain amino acids, suggestive of mitochondrial dysfunction.
Collapse
Affiliation(s)
- H Hunt
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - K Fraser
- Food Nutrition and Health Team, Food and Bio-Based Products Group, AgResearch Grasslands Research Centre, Palmerston North, New Zealand
| | - N J Cave
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - B D Gartrell
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - J Petersen
- Norvet Services Ltd., Okaihau, New Zealand
| | - W D Roe
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| |
Collapse
|
12
|
Abstract
Drug discovery is an extremely difficult and challenging endeavor with a very high failure rate. The task of identifying a drug that is safe, selective, and effective is a daunting proposition because disease biology is complex and highly variable across patients. Metabolomics enables the discovery of disease biomarkers, which provides insights into the molecular and metabolic basis of disease and may be used to assess treatment prognosis and outcome. In this regard, metabolomics has evolved to become an important component of the drug discovery process to resolve efficacy and toxicity issues and as a tool for precision medicine. A detailed description of an experimental protocol is presented that outlines the application of NMR metabolomics to the drug discovery pipeline. This includes (1) target identification by understanding the metabolic dysregulation in diseases, (2) predicting the mechanism of action of newly discovered or existing drug therapies, (3) and using metabolomics to screen a chemical lead to assess biological activity. Unlike other OMICS approaches, the metabolome is "fragile" and may be negatively impacted by improper sample collection, storage, and extraction procedures. Similarly, biologically irrelevant conclusions may result from incorrect data collection, preprocessing or processing procedures, or the erroneous use of univariate and multivariate statistical methods. These critical concerns are also addressed in the protocol.
Collapse
|
13
|
Lewis KN, Rubinstein ND, Buffenstein R. A window into extreme longevity; the circulating metabolomic signature of the naked mole-rat, a mammal that shows negligible senescence. GeroScience 2018; 40:105-121. [PMID: 29679203 PMCID: PMC5964061 DOI: 10.1007/s11357-018-0014-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 03/15/2018] [Indexed: 12/23/2022] Open
Abstract
Mouse-sized naked mole-rats (Heterocephalus glaber), unlike other mammals, do not conform to Gompertzian laws of age-related mortality; adults show no age-related change in mortality risk. Moreover, we observe negligible hallmarks of aging with well-maintained physiological and molecular functions, commonly altered with age in other species. We questioned whether naked mole-rats, living an order of magnitude longer than laboratory mice, exhibit different plasma metabolite profiles, which could then highlight novel mechanisms or targets involved in disease and longevity. Using a comprehensive, unbiased metabolomics screen, we observe striking inter-species differences in amino acid, peptide, and lipid metabolites. Low circulating levels of specific amino acids, particularly those linked to the methionine pathway, resemble those observed during the fasting period at late torpor in hibernating ground squirrels and those seen in longer-lived methionine-restricted rats. These data also concur with metabolome reports on long-lived mutant mice, including the Ames dwarf mice and calorically restricted mice, as well as fruit flies, and even show similarities to circulating metabolite differences observed in young human adults when compared to older humans. During evolution, some of these beneficial nutrient/stress response pathways may have been positively selected in the naked mole-rat. These observations suggest that interventions that modify the aging metabolomic profile to a more youthful one may enable people to lead healthier and longer lives.
Collapse
Affiliation(s)
- Kaitlyn N Lewis
- Calico Life Sciences LLC, 1170 Veterans Blvd., South San Francisco, 94080, USA
| | - Nimrod D Rubinstein
- Calico Life Sciences LLC, 1170 Veterans Blvd., South San Francisco, 94080, USA
| | | |
Collapse
|
14
|
Struja T, Eckart A, Kutz A, Huber A, Neyer P, Kraenzlin M, Mueller B, Meier C, Bernasconi L, Schuetz P. Metabolomics for Prediction of Relapse in Graves' Disease: Observational Pilot Study. Front Endocrinol (Lausanne) 2018; 9:623. [PMID: 30386302 PMCID: PMC6199355 DOI: 10.3389/fendo.2018.00623] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 10/01/2018] [Indexed: 12/12/2022] Open
Abstract
Background: There is a lack of biochemical markers for early prediction of relapse in patients with Graves' disease [GD], which may help to direct treatment decisions. We assessed the prognostic ability of a high-throughput proton NMR metabolomic profile to predict relapse in a well characterized cohort of GD patients. Methods: Observational study investigating patients presenting with GD at a Swiss hospital endocrine referral center and an associated endocrine outpatient clinic. We measured 227 metabolic markers in the blood of patients before treatment initiation. Main outcome was relapse of hyperthyroidism within 18 months of stopping anti-thyroid drugs. We used ROC analysis with AUC to assess discrimination. Results: Of 69 included patients 18 (26%) patients had a relapse of disease. The clinical GREAT score had an AUC of 0.68 (95% CI 0.63-0.70) to predict relapse. When looking at the metabolomic markers, univariate analysis revealed pyruvate and triglycerides in medium VLDL as predictors with AUCs of 0.73 (95% CI 0.58-0.84) and 0.67 (95% CI 0.53-0.80), respectively. All other metabolomic markers had lower AUCs. Conclusion: Overall, metabolomic markers in our pilot study had low to moderate prognostic potential for prediction of relapse of GD, with pyruvate and triglycerides being candidates with acceptable discriminatory abilities. Our data need validation in future larger trials.
Collapse
Affiliation(s)
- Tristan Struja
- Division of Endocrinology, Diabetes and Metabolism, Medical University Department, Kantonsspital Aarau, Aarau, Switzerland
- *Correspondence: Tristan Struja
| | - Andreas Eckart
- Division of Endocrinology, Diabetes and Metabolism, Medical University Department, Kantonsspital Aarau, Aarau, Switzerland
| | - Alexander Kutz
- Division of Endocrinology, Diabetes and Metabolism, Medical University Department, Kantonsspital Aarau, Aarau, Switzerland
| | - Andreas Huber
- Department of Laboratory Medicine, Kantonsspital Aarau, Aarau, Switzerland
| | - Peter Neyer
- Department of Laboratory Medicine, Kantonsspital Aarau, Aarau, Switzerland
| | | | - Beat Mueller
- Division of Endocrinology, Diabetes and Metabolism, Medical University Department, Kantonsspital Aarau, Aarau, Switzerland
- Medical Faculty, University of Basel, Basel, Switzerland
| | - Christian Meier
- Endonet, Basel, Switzerland
- Medical Faculty, University of Basel, Basel, Switzerland
| | - Luca Bernasconi
- Department of Laboratory Medicine, Kantonsspital Aarau, Aarau, Switzerland
| | - Philipp Schuetz
- Division of Endocrinology, Diabetes and Metabolism, Medical University Department, Kantonsspital Aarau, Aarau, Switzerland
- Medical Faculty, University of Basel, Basel, Switzerland
| |
Collapse
|