1
|
Salerno S, Viviano M, Baglini E, Poggetti V, Giorgini D, Castagnoli J, Barresi E, Castellano S, Da Settimo F, Taliani S. TSPO Radioligands for Neuroinflammation: An Overview. Molecules 2024; 29:4212. [PMID: 39275061 PMCID: PMC11397380 DOI: 10.3390/molecules29174212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/16/2024] Open
Abstract
The translocator protein (TSPO) is predominately localized on the outer mitochondrial membrane in steroidogenic cells. In the brain, TSPO expression, low under normal conditions, results upregulated in response to glial cell activation, that occurs in neuroinflammation. As a consequence, TSPO has been extensively studied as a biomarker of such conditions by means of TSPO-targeted radiotracers. Although [11C]-PK11195, the prototypical TSPO radioligand, is still widely used for in vivo studies, it is endowed with severe limitations, mainly low sensitivity and poor amenability to quantification. Consequently, several efforts have been focused on the design of new radiotracers for the in vivo imaging of TSPO. The present review will provide an outlook on the latest advances in TSPO radioligands for neuroinflammation imaging. The final goal is to pave the way for (radio)chemists in the future design and development of novel effective and sensitive radiopharmaceuticals targeting TSPO.
Collapse
Affiliation(s)
- Silvia Salerno
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (S.S.); (E.B.); (V.P.); (J.C.); (S.T.)
| | - Monica Viviano
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (M.V.); (D.G.); (S.C.)
| | - Emma Baglini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (S.S.); (E.B.); (V.P.); (J.C.); (S.T.)
| | - Valeria Poggetti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (S.S.); (E.B.); (V.P.); (J.C.); (S.T.)
| | - Doralice Giorgini
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (M.V.); (D.G.); (S.C.)
| | - Jacopo Castagnoli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (S.S.); (E.B.); (V.P.); (J.C.); (S.T.)
| | - Elisabetta Barresi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (S.S.); (E.B.); (V.P.); (J.C.); (S.T.)
| | - Sabrina Castellano
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (M.V.); (D.G.); (S.C.)
| | - Federico Da Settimo
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (S.S.); (E.B.); (V.P.); (J.C.); (S.T.)
| | - Sabrina Taliani
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (S.S.); (E.B.); (V.P.); (J.C.); (S.T.)
| |
Collapse
|
2
|
Su X, Wang L, Yang R, Guo Z. Longitudinal 18F-VUIIS1008 PET imaging in a rat model of rheumatoid arthritis. Front Chem 2022; 10:1064518. [PMID: 36618864 PMCID: PMC9816387 DOI: 10.3389/fchem.2022.1064518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Macrophages have crucial roles in the pathogenesis of rheumatoid arthritis (RA). We aimed to elucidate the temporal profile of macrophage infiltration in synovitis in RA rat models using PET (positron emission tomography) imaging based a new generation of TSPO (Translocator protein, 18 kDa)-PET ligand, 18F-VUIIS1008 {2-[5,7-Diethyl-2-{4-[2-(18F)fluoroethoxy]phenyl}pyrazolo(1,5-a)pyri-midin-3-yl]-N, N-diethylacetamide}. In vitro and in vivo studies were conducted using RAW264.7 macrophage cells and a rat model of RA induced by Complete Freund's Adjuvant (CFA). Our results showed 18F-VUIIS1008 showed excellent stability in vitro and binding specificity to RAW264.7 cells, and rapid accumulation in the left inflammatory ankles. PET studies revealed that 18F-VUIIS1008 could clearly identify the left inflammatory ankles with good contrast at 30-120 min post-injection. The uptake of 18F-VUIIS1008 of left inflammatory ankles was a wiggle trace with two peaks on day 7 and 29, and then, the highest peak uptake was seen on day 29 (3.00% ± 0.08%ID/g) at 60 min after injection. Tracer uptakes could be inhibited by PK11195 or VUIIS1008. Immunohistochemistry and immunofluorescence tests showed that elevated TSPO expression and infiltrated macrophages were found in the left inflammation ankles. 18F-VUIIS1008 as a novel PET imaging agent showed great potential to identify temporal profile of macrophage infiltration in synovitis in RA, and deliver accurate non-invasive diagnosis and real-time monitoring of RA development.
Collapse
Affiliation(s)
- Xinhui Su
- Department of Nuclear Medicine, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China,The School of Clinical Medicine, Fujian Medical University, Fuzhou, China,Department of Nuclear Medicine, Zhongshan Hospital Xiamen University, Xiamen, China,*Correspondence: Xinhui Su,
| | - Liangliang Wang
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China,Department of Nuclear Medicine, Zhongshan Hospital Xiamen University, Xiamen, China,Department of Nuclear Medicine, Linyi People’s Hospital, Linyi, China
| | - Rongshui Yang
- Department of Nuclear Medicine, Zhongshan Hospital Xiamen University, Xiamen, China
| | - Zhide Guo
- Center for Molecular Imaging and Translational Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
3
|
Viviano M, Barresi E, Siméon FG, Costa B, Taliani S, Da Settimo F, Pike VW, Castellano S. Essential Principles and Recent Progress in the Development of TSPO PET Ligands for Neuroinflammation Imaging. Curr Med Chem 2022; 29:4862-4890. [PMID: 35352645 PMCID: PMC10080361 DOI: 10.2174/0929867329666220329204054] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/21/2021] [Accepted: 01/25/2022] [Indexed: 11/22/2022]
Abstract
The translocator protein 18kDa (TSPO) is expressed in the outer mitochondrial membrane and is implicated in several functions, including cholesterol transport and steroidogenesis. Under normal physiological conditions, TSPO is present in very low concentrations in the human brain but is markedly upregulated in response to brain injury and inflammation. This upregulation is strongly associated with activated microglia. Therefore, TSPO is particularly suited for assessing active gliosis associated with brain lesions following injury or disease. For over three decades, TSPO has been studied as a biomarker. Numerous radioligands for positron emission tomography (PET) that target TSPO have been developed for imaging inflammatory progression in the brain. Although [11C]PK11195, the prototypical first-generation PET radioligand, is still widely used for in vivo studies, mainly now as its single more potent R-enantiomer, it has severe limitations, including low sensitivity and poor amenability to quantification. Second-generation radioligands are characterized by higher TSPO specific signals but suffer from other drawbacks, such as sensitivity to the TSPO single nucleotide polymorphism (SNP) rs6971. Therefore, their applications in human studies have the burden of needing to genotype subjects. Consequently, recent efforts are focused on developing improved radioligands that combine the optimal features of the second generation with the ability to overcome the differences in binding affinities across the population. This review presents essential principles in the design and development of TSPO PET ligands and discusses prominent examples among the main chemotypes.
Collapse
Affiliation(s)
- Monica Viviano
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy
| | | | - Fabrice G. Siméon
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Barbara Costa
- Department of Pharmacy, University of Pisa, 56126, Pisa, Italy
| | - Sabrina Taliani
- Department of Pharmacy, University of Pisa, 56126, Pisa, Italy
| | | | - Victor W. Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sabrina Castellano
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy
| |
Collapse
|
4
|
Zinnhardt B, Roncaroli F, Foray C, Agushi E, Osrah B, Hugon G, Jacobs AH, Winkeler A. Imaging of the glioma microenvironment by TSPO PET. Eur J Nucl Med Mol Imaging 2021; 49:174-185. [PMID: 33721063 DOI: 10.1007/s00259-021-05276-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/18/2021] [Indexed: 12/13/2022]
Abstract
Gliomas are highly dynamic and heterogeneous tumours of the central nervous system (CNS). They constitute the most common neoplasm of the CNS and the second most common cause of death from intracranial disease after stroke. The advances in detailing the genetic profile of paediatric and adult gliomas along with the progress in MRI and PET multimodal molecular imaging technologies have greatly improved prognostic stratification of patients with glioma and informed on treatment decisions. Amino acid PET has already gained broad clinical application in the study of gliomas. PET imaging targeting the translocator protein (TSPO) has recently been applied to decipher the heterogeneity and dynamics of the tumour microenvironment (TME) and its various cellular components especially in view of targeted immune therapies with the goal to delineate pro- and anti-glioma immune cell modulation. The current review provides a comprehensive overview on the historical developments of TSPO PET for gliomas and summarizes the most relevant experimental and clinical data with regard to the assessment and quantification of various cellular components with the TME of gliomas by in vivo TSPO PET imaging.
Collapse
Affiliation(s)
- Bastian Zinnhardt
- European Institute for Molecular Imaging (EIMI), Westfälische Wilhelms-University Münster (WWU), Münster, Germany
- Biomarkers and Translational Technologies, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Federico Roncaroli
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Manchester, UK
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Brain and Mental Health, University of Manchester, Manchester, UK
| | - Claudia Foray
- European Institute for Molecular Imaging (EIMI), Westfälische Wilhelms-University Münster (WWU), Münster, Germany
| | - Erjon Agushi
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Manchester, UK
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Brain and Mental Health, University of Manchester, Manchester, UK
| | - Bahiya Osrah
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Manchester, UK
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Brain and Mental Health, University of Manchester, Manchester, UK
| | - Gaëlle Hugon
- Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), CEA, CNRS, Inserm, Université Paris-Saclay, Orsay, France
| | - Andreas H Jacobs
- European Institute for Molecular Imaging (EIMI), Westfälische Wilhelms-University Münster (WWU), Münster, Germany
- Department of Geriatrics and Neurology, Johanniter Hospital, Bonn, Germany
| | - Alexandra Winkeler
- Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), CEA, CNRS, Inserm, Université Paris-Saclay, Orsay, France.
- CEA, DRF, JOLIOT, SHFJ, Orsay, France.
| |
Collapse
|
5
|
Bolcaen J, Kleynhans J, Nair S, Verhoeven J, Goethals I, Sathekge M, Vandevoorde C, Ebenhan T. A perspective on the radiopharmaceutical requirements for imaging and therapy of glioblastoma. Theranostics 2021; 11:7911-7947. [PMID: 34335972 PMCID: PMC8315062 DOI: 10.7150/thno.56639] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/29/2021] [Indexed: 11/26/2022] Open
Abstract
Despite numerous clinical trials and pre-clinical developments, the treatment of glioblastoma (GB) remains a challenge. The current survival rate of GB averages one year, even with an optimal standard of care. However, the future promises efficient patient-tailored treatments, including targeted radionuclide therapy (TRT). Advances in radiopharmaceutical development have unlocked the possibility to assess disease at the molecular level allowing individual diagnosis. This leads to the possibility of choosing a tailored, targeted approach for therapeutic modalities. Therapeutic modalities based on radiopharmaceuticals are an exciting development with great potential to promote a personalised approach to medicine. However, an effective targeted radionuclide therapy (TRT) for the treatment of GB entails caveats and requisites. This review provides an overview of existing nuclear imaging and TRT strategies for GB. A critical discussion of the optimal characteristics for new GB targeting therapeutic radiopharmaceuticals and clinical indications are provided. Considerations for target selection are discussed, i.e. specific presence of the target, expression level and pharmacological access to the target, with particular attention to blood-brain barrier crossing. An overview of the most promising radionuclides is given along with a validation of the relevant radiopharmaceuticals and theranostic agents (based on small molecules, peptides and monoclonal antibodies). Moreover, toxicity issues and safety pharmacology aspects will be presented, both in general and for the brain in particular.
Collapse
Affiliation(s)
- Julie Bolcaen
- Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town, South Africa
| | - Janke Kleynhans
- Nuclear Medicine Research Infrastructure NPC, Pretoria, South Africa
- Nuclear Medicine Department, University of Pretoria and Steve Biko Academic Hospital, Pretoria, South Africa
| | - Shankari Nair
- Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town, South Africa
| | | | - Ingeborg Goethals
- Ghent University Hospital, Department of Nuclear Medicine, Ghent, Belgium
| | - Mike Sathekge
- Nuclear Medicine Research Infrastructure NPC, Pretoria, South Africa
- Nuclear Medicine Department, University of Pretoria and Steve Biko Academic Hospital, Pretoria, South Africa
| | - Charlot Vandevoorde
- Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town, South Africa
| | - Thomas Ebenhan
- Nuclear Medicine Research Infrastructure NPC, Pretoria, South Africa
- Nuclear Medicine Department, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
6
|
An update into the medicinal chemistry of translocator protein (TSPO) ligands. Eur J Med Chem 2020; 209:112924. [PMID: 33081988 DOI: 10.1016/j.ejmech.2020.112924] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 10/06/2020] [Accepted: 10/06/2020] [Indexed: 01/16/2023]
Abstract
The Translocator Protein 18 kDa (TSPO) has been discovered in 1977 as an alternative binding site for the benzodiazepine diazepam. It is an evolutionary well-conserved and tryptophan-rich 169-amino acids protein with five alpha helical transmembrane domains stretching the outer mitochondrial membrane, with the carboxyl-terminus in the cytosol and a short amino-terminus in the intermembrane space of mitochondrion. At this level, together with the voltage-dependent anion channel (VDAC) and the adenine nucleotide translocase (ANT), it forms the mitochondrial permeability transition pore (MPTP). TSPO expression is ubiquitary, with higher levels in steroid producing tissues; in the central nervous system, it is mainly expressed in glial cells and in neurons. TSPO is implicated in a variety of fundamental cellular processes including steroidogenesis, heme biosynthesis, mitochondrial respiration, mitochondrial membrane potential, cell proliferation and differentiation, cell life/death balance, oxidative stress. Altered TSPO expression has been found in some pathological conditions. In particular, high TSPO expression levels have been documented in cancer, neuroinflammation, and brain injury. Conversely, low TSPO expression levels have been evidenced in anxiety disorders. Therefore, TSPO is not only an interesting drug target for therapeutic purpose (anticonvulsant, anxiolytic, etc.), but also a valid diagnostic marker of related-diseases detectable by fluorescent or radiolabeled ligands. The aim of this report is to present an update of previous reviews dealing with the medicinal chemistry of TSPO and to highlight the most outstanding advances in the development of TSPO ligands as potential therapeutic or diagnostic tools, especially referring to the last five years.
Collapse
|
7
|
Ammer LM, Vollmann-Zwerenz A, Ruf V, Wetzel CH, Riemenschneider MJ, Albert NL, Beckhove P, Hau P. The Role of Translocator Protein TSPO in Hallmarks of Glioblastoma. Cancers (Basel) 2020; 12:cancers12102973. [PMID: 33066460 PMCID: PMC7602186 DOI: 10.3390/cancers12102973] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/09/2020] [Accepted: 10/09/2020] [Indexed: 12/18/2022] Open
Abstract
Simple Summary The translocator protein (TSPO) has been under extensive investigation as a specific marker in positron emission tomography (PET) to visualize brain lesions following injury or disease. In recent years, TSPO is increasingly appreciated as a potential novel therapeutic target in cancer. In Glioblastoma (GBM), the most malignant primary brain tumor, TSPO expression levels are strongly elevated and scientific evidence accumulates, hinting at a pivotal role of TSPO in tumorigenesis and glioma progression. The aim of this review is to summarize the current literature on TSPO with respect to its role both in diagnostics and especially with regard to the critical hallmarks of cancer postulated by Hanahan and Weinberg. Overall, our review contributes to a better understanding of the functional significance of TSPO in Glioblastoma and draws attention to TSPO as a potential modulator of treatment response and thus an important factor that may influence the clinical outcome of GBM. Abstract Glioblastoma (GBM) is the most fatal primary brain cancer in adults. Despite extensive treatment, tumors inevitably recur, leading to an average survival time shorter than 1.5 years. The 18 kDa translocator protein (TSPO) is abundantly expressed throughout the body including the central nervous system. The expression of TSPO increases in states of inflammation and brain injury due to microglia activation. Not least due to its location in the outer mitochondrial membrane, TSPO has been implicated with a broad spectrum of functions. These include the regulation of proliferation, apoptosis, migration, as well as mitochondrial functions such as mitochondrial respiration and oxidative stress regulation. TSPO is frequently overexpressed in GBM. Its expression level has been positively correlated to WHO grade, glioma cell proliferation, and poor prognosis of patients. Several lines of evidence indicate that TSPO plays a functional part in glioma hallmark features such as resistance to apoptosis, invasiveness, and proliferation. This review provides a critical overview of how TSPO could regulate several aspects of tumorigenesis in GBM, particularly in the context of the hallmarks of cancer proposed by Hanahan and Weinberg in 2011.
Collapse
Affiliation(s)
- Laura-Marie Ammer
- Wilhelm Sander-NeuroOncology Unit and Department of Neurology, University Hospital Regensburg, 93053 Regensburg, Germany; (L.-M.A.); (A.V.-Z.)
| | - Arabel Vollmann-Zwerenz
- Wilhelm Sander-NeuroOncology Unit and Department of Neurology, University Hospital Regensburg, 93053 Regensburg, Germany; (L.-M.A.); (A.V.-Z.)
| | - Viktoria Ruf
- Center for Neuropathology and Prion Research, Ludwig Maximilians University of Munich, 81377 Munich, Germany;
| | - Christian H. Wetzel
- Molecular Neurosciences, Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany;
| | | | - Nathalie L. Albert
- Department of Nuclear Medicine, Ludwig-Maximilians-University Munich, 81377 Munich, Germany;
| | - Philipp Beckhove
- Regensburg Center for Interventional Immunology (RCI) and Department Internal Medicine III, University Hospital Regensburg, 93053 Regensburg, Germany;
| | - Peter Hau
- Wilhelm Sander-NeuroOncology Unit and Department of Neurology, University Hospital Regensburg, 93053 Regensburg, Germany; (L.-M.A.); (A.V.-Z.)
- Correspondence:
| |
Collapse
|
8
|
Cohen AS, Li J, Hight MR, McKinley E, Fu A, Payne A, Liu Y, Zhang D, Xie Q, Bai M, Ayers GD, Tantawy MN, Smith JA, Revetta F, Washington MK, Shi C, Merchant N, Manning HC. TSPO-targeted PET and Optical Probes for the Detection and Localization of Premalignant and Malignant Pancreatic Lesions. Clin Cancer Res 2020; 26:5914-5925. [PMID: 32933996 DOI: 10.1158/1078-0432.ccr-20-1214] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/24/2020] [Accepted: 09/10/2020] [Indexed: 12/28/2022]
Abstract
PURPOSE Pancreatic cancer is among the most aggressive malignancies and is rarely discovered early. However, pancreatic "incidentalomas," particularly cysts, are frequently identified in asymptomatic patients through anatomic imaging for unrelated causes. Accurate determination of the malignant potential of cystic lesions could lead to life-saving surgery or spare patients with indolent disease undue risk. Current risk assessment of pancreatic cysts requires invasive sampling, with attendant morbidity and sampling errors. Here, we sought to identify imaging biomarkers of high-risk pancreatic cancer precursor lesions. EXPERIMENTAL DESIGN Translocator protein (TSPO) expression, which is associated with cholesterol metabolism, was evaluated in premalignant and pancreatic cancer lesions from human and genetically engineered mouse (GEM) tissues. In vivo imaging was performed with [18F]V-1008, a TSPO-targeted PET agent, in two GEM models. For image-guided surgery (IGS), V-1520, a TSPO ligand for near-IR optical imaging based upon the V-1008 pharmacophore, was developed and evaluated. RESULTS TSPO was highly expressed in human and murine pancreatic cancer. Notably, TSPO expression was associated with high-grade, premalignant intraductal papillary mucinous neoplasms (IPMNs) and pancreatic intraepithelial neoplasia (PanIN) lesions. In GEM models, [18F]V-1008 exhibited robust uptake in early pancreatic cancer, detectable by PET. Furthermore, V-1520 localized to premalignant pancreatic lesions and advanced tumors enabling real-time IGS. CONCLUSIONS We anticipate that combined TSPO PET/IGS represents a translational approach for precision pancreatic cancer care through discrimination of high-risk indeterminate lesions and actionable surgery.
Collapse
Affiliation(s)
- Allison S Cohen
- Vanderbilt Center for Molecular Probes, Vanderbilt University Medical Center, Nashville, Tennessee.,Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jun Li
- Vanderbilt Center for Molecular Probes, Vanderbilt University Medical Center, Nashville, Tennessee.,Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Matthew R Hight
- Vanderbilt Center for Molecular Probes, Vanderbilt University Medical Center, Nashville, Tennessee.,Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Eliot McKinley
- Vanderbilt Center for Molecular Probes, Vanderbilt University Medical Center, Nashville, Tennessee.,Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
| | - Allie Fu
- Vanderbilt Center for Molecular Probes, Vanderbilt University Medical Center, Nashville, Tennessee.,Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Adria Payne
- Vanderbilt Center for Molecular Probes, Vanderbilt University Medical Center, Nashville, Tennessee.,Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yang Liu
- Vanderbilt Center for Molecular Probes, Vanderbilt University Medical Center, Nashville, Tennessee.,Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Dawei Zhang
- Vanderbilt Center for Molecular Probes, Vanderbilt University Medical Center, Nashville, Tennessee.,Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Qing Xie
- Vanderbilt Center for Molecular Probes, Vanderbilt University Medical Center, Nashville, Tennessee.,Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Mingfeng Bai
- Vanderbilt Center for Molecular Probes, Vanderbilt University Medical Center, Nashville, Tennessee.,Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee.,Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Gregory D Ayers
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Mohammed Noor Tantawy
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jarrod A Smith
- Vanderbilt University Center for Structural Biology, Vanderbilt University, Nashville, Tennessee
| | - Frank Revetta
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - M Kay Washington
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Chanjuan Shi
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Nipun Merchant
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - H Charles Manning
- Vanderbilt Center for Molecular Probes, Vanderbilt University Medical Center, Nashville, Tennessee. .,Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee.,Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
9
|
Tang D, Li J, Nickels ML, Huang G, Cohen AS, Manning HC. Preclinical Evaluation of a Novel TSPO PET Ligand 2-(7-Butyl-2-(4-(2-[ 18F]Fluoroethoxy)phenyl)-5-Methylpyrazolo[1,5-a]Pyrimidin-3-yl)-N,N-Diethylacetamide ( 18F-VUIIS1018A) to Image Glioma. Mol Imaging Biol 2019; 21:113-121. [PMID: 29869061 DOI: 10.1007/s11307-018-1198-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
PURPOSE There is an urgent need for the development of novel positron emission tomography (PET) tracers for glioma imaging. In this study, we developed a novel PET probe ([18F]VUIIS1018A) by targeting translocator protein (TSPO), an imaging biomarker for glioma. The purpose of this preclinical study was to evaluate this novel TSPO probe for glioma imaging. PROCEDURES In this study, we synthesized [19F]VUIIS1018A and the precursor for radiosynthesis of [18F]VUIIS1018A. TSPO binding affinity was confirmed using a radioligand competitive binding assay in C6 glioma cell lysate. Further, dynamic imaging studies were performed in rats using a microPET system. These studies include displacement and blocking studies for ligand reversibility and specificity evaluation, and compartment modeling of PET data for pharmacokinetic parameter measurement using metabolite-corrected arterial input functions and PMOD. RESULTS Compared to previously reported TSPO tracers including [18F]VUIIS1008 and [18F]DPA-714, the novel tracer [18F]VUIIS1018A demonstrated higher binding affinity and BPND. Pretreatment with the cold analog [19F]VUIIS1018A could partially block tumor accumulation of this novel tracer. Further, compartment modeling of this novel tracer also exhibited a greater tumor-to-background ratio, a higher tumor binding potential and a lower brain binding potential when compared with other TSPO probes, such as [18F]DPA-714 and [18F]VUIIS1008. CONCLUSIONS These studies illustrate that [18F]VUIIS1018A can serve as a promising TSPO PET tracer for glioma imaging and potentially imaging of other solid tumors.
Collapse
Affiliation(s)
- Dewei Tang
- Center for Molecular Imaging, Shanghai University of Medicine & Health Sciences, Shanghai, China.,Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Pudong New District, Shanghai, 200127, China
| | - Jun Li
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Center for Molecular Probes (CMP), Vanderbilt University Medical School, 1161 21st Ave. S., AA 1105 MCN, Nashville, TN, 37232-2310, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michael L Nickels
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Center for Molecular Probes (CMP), Vanderbilt University Medical School, 1161 21st Ave. S., AA 1105 MCN, Nashville, TN, 37232-2310, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Gang Huang
- Center for Molecular Imaging, Shanghai University of Medicine & Health Sciences, Shanghai, China.,Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Pudong New District, Shanghai, 200127, China
| | - Allison S Cohen
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Center for Molecular Probes (CMP), Vanderbilt University Medical School, 1161 21st Ave. S., AA 1105 MCN, Nashville, TN, 37232-2310, USA
| | - H Charles Manning
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA. .,Vanderbilt Center for Molecular Probes (CMP), Vanderbilt University Medical School, 1161 21st Ave. S., AA 1105 MCN, Nashville, TN, 37232-2310, USA. .,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA. .,Program in Chemical and Physical Biology, Vanderbilt University Medical Center, Nashville, TN, USA. .,Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA. .,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA. .,Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
10
|
Xia Y, Ledwitch K, Kuenze G, Duran A, Li J, Sanders CR, Manning C, Meiler J. A unified structural model of the mammalian translocator protein (TSPO). JOURNAL OF BIOMOLECULAR NMR 2019; 73:347-364. [PMID: 31243635 PMCID: PMC8006375 DOI: 10.1007/s10858-019-00257-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 06/10/2019] [Indexed: 05/10/2023]
Abstract
The translocator protein (TSPO), previously known as the peripheral benzodiazepine receptor (PBR), is a membrane protein located on the outer mitochondrial membrane. Experimentally-derived structures of mouse TSPO (mTSPO) and its homologs from bacterial species have been determined by NMR spectroscopy and X-ray crystallography, respectively. These structures and ligand interactions within the TSPO binding pocket display distinct differences. Here, we leverage experimental and computational studies to derive a unified structural model of mTSPO in the presence and absence of the TSPO ligand, PK11195, and study the effects of DPC detergent micelles on the TSPO structure and ligand binding. From this work, we conclude that that the lipid-mimetic system used to solubilize mTSPO for NMR studies thermodynamically destabilizes the protein, introduces structural perturbations, and alters the characteristics of ligand binding. Furthermore, we used Rosetta to construct a unified mTSPO model that reconciles deviating features of the mammalian and bacterial TSPO. These deviating features are likely a consequence of the detergent system used for structure determination of mTSPO by NMR. The unified mTSPO model agrees with available experimental NMR data, appears to be physically realistic (i.e. thermodynamically not frustrated as judged by the Rosetta energy function), and simultaneously shares the structural features observed in sequence-conserved regions of the bacterial proteins. Finally, we identified the binding site for an imaging ligand VUIIS8310 that is currently positioned for clinical translation using NMR spectroscopy and propose a computational model of the VUIIS8310-mTSPO complex.
Collapse
Affiliation(s)
- Yan Xia
- Center for Structural Biology, Vanderbilt University, Nashville, TN, 37240, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA
| | - Kaitlyn Ledwitch
- Center for Structural Biology, Vanderbilt University, Nashville, TN, 37240, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA
| | - Georg Kuenze
- Center for Structural Biology, Vanderbilt University, Nashville, TN, 37240, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA
| | - Amanda Duran
- Center for Structural Biology, Vanderbilt University, Nashville, TN, 37240, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA
| | - Jun Li
- Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Charles R Sanders
- Department of Biochemistry, Vanderbilt University, Nashville, TN, 37240, USA
| | - Charles Manning
- Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Jens Meiler
- Center for Structural Biology, Vanderbilt University, Nashville, TN, 37240, USA.
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA.
- Department of Chemistry, Center for Structural Biology, Vanderbilt University, MRBIII 5144B, Nashville, TN, 37232, USA.
| |
Collapse
|
11
|
Substrate Reduction Therapy for Sandhoff Disease through Inhibition of Glucosylceramide Synthase Activity. Mol Ther 2019; 27:1495-1506. [PMID: 31208914 DOI: 10.1016/j.ymthe.2019.05.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/10/2019] [Accepted: 05/19/2019] [Indexed: 12/12/2022] Open
Abstract
Neuronopathic glycosphingolipidoses are a sub-group of lysosomal storage disorders for which there are presently no effective therapies. Here, we evaluated the potential of substrate reduction therapy (SRT) using an inhibitor of glucosylceramide synthase (GCS) to decrease the synthesis of glucosylceramide (GL1) and related glycosphingolipids. The substrates that accumulate in Sandhoff disease (e.g., ganglioside GM2 and its nonacylated derivative, lyso-GM2) are distal to the drug target, GCS. Treatment of Sandhoff mice with a GCS inhibitor that has demonstrated CNS access (Genz-682452) reduced the accumulation of GL1 and GM2, as well as a variety of disease-associated substrates in the liver and brain. Concomitant with these effects was a significant decrease in the expression of CD68 and glycoprotein non-metastatic melanoma B protein (Gpnmb) in the brain, indicating a reduction in microgliosis in the treated mice. Moreover, using in vivo imaging, we showed that the monocytic biomarker translocator protein (TSPO), which was elevated in Sandhoff mice, was normalized following Genz-682452 treatment. These positive effects translated in turn into a delay (∼28 days) in loss of motor function and coordination, as measured by rotarod latency, and a significant increase in longevity (∼17.5%). Together, these results support the development of SRT for the treatment of gangliosidoses, particularly in patients with residual enzyme activity.
Collapse
|
12
|
Chae SY, Kwon TW, Jin S, Kwon SU, Sung C, Oh SJ, Lee SJ, Oh JS, Han Y, Cho YP, Lee N, Kim JY, Koglin N, Berndt M, Stephens AW, Moon DH. A phase 1, first-in-human study of 18F-GP1 positron emission tomography for imaging acute arterial thrombosis. EJNMMI Res 2019; 9:3. [PMID: 30617563 PMCID: PMC6323046 DOI: 10.1186/s13550-018-0471-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 12/26/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND 18F-GP1 is a novel positron emission tomography (PET) tracer that targets glycoprotein IIb/IIIa receptors on activated platelets. The study objective was to explore the feasibility of directly imaging acute arterial thrombosis (AAT) with 18F-GP1 PET/computed tomography (PET/CT) and to quantitatively assess 18F-GP1 uptake. Safety, biodistribution, pharmacokinetics and metabolism were also evaluated. METHODS Adult patients who had signs or symptoms of AAT or had recently undergone arterial intervention or surgery within 14 days prior to 18F-GP1 PET/CT were eligible for inclusion. The AAT focus was demonstrated by conventional imaging within the 5 days prior to 18F-GP1 administration. Whole-body dynamic 18F-GP1 PET/CT images were acquired for up to 140 min after injection of 250 MBq of 18F-GP1. Venous plasma samples were analysed to determine 18F-GP1 clearance and metabolite formation. RESULTS Among the ten eligible patients assessed, underlying diseases were abdominal aortic aneurysm with endovascular repair (n = 6), bypass surgery and stent placement (n = 1), endarterectomy (n = 1), arterial dissection (n = 1) and acute cerebral infarction (n = 1). 18F-GP1 administration and PET/CT procedures were well tolerated, with no drug-related adverse events. All patients showed high initial 18F-GP1 uptake in the spleen, kidney and blood pool, followed by rapid clearance. Unmetabolised plasma 18F-GP1 levels peaked at 4 min post-injection and decreased over time until 120 min. The overall image quality was sufficient for diagnosis in all patients and AAT foci were detected in all participants. The 18F-GP1 uptake in AAT foci remained constant from 7 min after injection and began to separate from the blood pool after 20 min. The median standardised uptake value of AAT was 5.0 (range 2.4-7.9) at 120 min post-injection. The median ratio of standardised uptake value of AAT foci to the mean blood pool activity was 3.4 (range 2.0-6.3) at 120 min. CONCLUSIONS 18F-GP1 is a safe and promising novel PET tracer for imaging AAT with a favourable biodistribution and pharmacokinetic profile. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT02864810 , Registered August 3, 2016.
Collapse
Affiliation(s)
- Sun Young Chae
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Tae-Won Kwon
- Department of Vascular Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Soyoung Jin
- Department of Nuclear Medicine, Nowon Eulji Medical Center, Eulji University, Seoul, Republic of Korea
| | - Sun U Kwon
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Changhwan Sung
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Seung Jun Oh
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Sang Ju Lee
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Jungsu S Oh
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Youngjin Han
- Department of Vascular Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yong-Pil Cho
- Department of Vascular Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Narae Lee
- Department of Nuclear Medicine, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Ji Young Kim
- Department of Nuclear Medicine, Guri Hospital of Hanyang University Medical Center, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Norman Koglin
- Life Molecular Imaging GmbH (formerly Piramal Imaging GmbH), Berlin, Germany
| | - Mathias Berndt
- Life Molecular Imaging GmbH (formerly Piramal Imaging GmbH), Berlin, Germany
| | - Andrew W Stephens
- Life Molecular Imaging GmbH (formerly Piramal Imaging GmbH), Berlin, Germany
| | - Dae Hyuk Moon
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
| |
Collapse
|
13
|
Tantawy MN, Charles Manning H, Peterson TE, Colvin DC, Gore JC, Lu W, Chen Z, Chad Quarles C. Translocator Protein PET Imaging in a Preclinical Prostate Cancer Model. Mol Imaging Biol 2019; 20:200-204. [PMID: 28822038 DOI: 10.1007/s11307-017-1113-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE The identification and targeting of biomarkers specific to prostate cancer (PCa) could improve its detection. Given the high expression of translocator protein (TSPO) in PCa, we investigated the use of [18F]VUIIS1008 (a novel TSPO-targeting radioligand) coupled with positron emission tomography (PET) to identify PCa in mice and to characterize their TSPO uptake. PROCEDURES Ptenpc-/-, Trp53pc-/- prostate cancer-bearing mice (n = 9, 4-6 months old) were imaged in a 7T MRI scanner for lesion localization. Within 24 h, the mice were imaged using a microPET scanner for 60 min in dynamic mode following a retro-orbital injection of ~ 18 MBq [18F]VUIIS1008. Following imaging, tumors were harvested and stained with a TSPO antibody. Regions of interest (ROIs) were drawn around the tumor and muscle (hind limb) in the PET images. Time-activity curves (TACs) were recorded over the duration of the scan for each ROI. The mean activity concentrations between 40 and 60 min post radiotracer administration between tumor and muscle were compared. RESULTS Tumor presence was confirmed by visual inspection of the MR images. The uptake of [18F]VUIIS1008 in the tumors was significantly higher (p < 0.05) than that in the muscle, where the percent injected dose per unit volume for tumor was 7.1 ± 1.6 % ID/ml and that of muscle was < 1 % ID/ml. In addition, positive TSPO expression was observed in tumor tissue analysis. CONCLUSIONS The foregoing preliminary data suggest that TSPO may be a useful biomarker of PCa. Therefore, using TSPO-targeting PET ligands, such as [18F]VUIIS1008, may improve PCa detectability and characterization.
Collapse
Affiliation(s)
- Mohammed N Tantawy
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, 1161 21st Ave. S., AA 1105 MCN, Nashville, TN, 37232, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - H Charles Manning
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, 1161 21st Ave. S., AA 1105 MCN, Nashville, TN, 37232, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.,Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.,Program in Chemical and Physical Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Todd E Peterson
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, 1161 21st Ave. S., AA 1105 MCN, Nashville, TN, 37232, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Daniel C Colvin
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, 1161 21st Ave. S., AA 1105 MCN, Nashville, TN, 37232, USA
| | - John C Gore
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, 1161 21st Ave. S., AA 1105 MCN, Nashville, TN, 37232, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Wenfu Lu
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN, 37208, USA
| | - Zhenbang Chen
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN, 37208, USA
| | - C Chad Quarles
- Imaging Research, Barrow Neurological Institute, 350 W Thomas Rd, Phoenix, AZ, 85013, USA.
| |
Collapse
|
14
|
Comparison of 18F-GE-180 and dynamic 18F-FET PET in high grade glioma: a double-tracer pilot study. Eur J Nucl Med Mol Imaging 2018; 46:580-590. [DOI: 10.1007/s00259-018-4166-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 09/11/2018] [Indexed: 12/20/2022]
|
15
|
Tang D, Li J, Buck JR, Tantawy MN, Xia Y, Harp JM, Nickels ML, Meiler J, Manning HC. Evaluation of TSPO PET Ligands [ 18F]VUIIS1009A and [ 18F]VUIIS1009B: Tracers for Cancer Imaging. Mol Imaging Biol 2018; 19:578-588. [PMID: 27853987 DOI: 10.1007/s11307-016-1027-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE Positron emission tomography (PET) ligands targeting translocator protein (TSPO) are potential imaging diagnostics of cancer. In this study, we report two novel, high-affinity TSPO PET ligands that are 5,7 regioisomers, [18F]VUIIS1009A ([18F]3A) and [18F]VUIIS1009B ([18F]3B), and their initial in vitro and in vivo evaluation in healthy mice and glioma-bearing rats. PROCEDURES VUIIS1009A/B was synthesized and confirmed by X-ray crystallography. Interactions between TSPO binding pocket and novel ligands were evaluated and compared with contemporary TSPO ligands using 2D 1H-15N heteronuclear single quantum coherence (HSQC) spectroscopy. In vivo biodistribution of [18F]VUIIS1009A and [18F]VUIIS1009B was carried out in healthy mice with and without radioligand displacement. Dynamic PET imaging data were acquired simultaneously with [18F]VUIIS1009A/B injections in glioma-bearing rats, with binding reversibility and specificity evaluated by radioligand displacement. In vivo radiometabolite analysis was performed using radio-TLC, and quantitative analysis of PET data was performed using metabolite-corrected arterial input functions. Imaging was validated with histology and immunohistochemistry. RESULTS Both VUIIS1009A (3A) and VUIIS1009B (3B) were found to exhibit exceptional binding affinity to TSPO, with observed IC50 values against PK11195 approximately 500-fold lower than DPA-714. However, HSQC NMR suggested that VUIIS1009A and VUIIS1009B share a common binding pocket within mammalian TSPO (mTSPO) as DPA-714 and to a lesser extent, PK11195. [18F]VUIIS1009A ([18F]3A) and [18F]VUIIS1009B ([18F]3B) exhibited similar biodistribution in healthy mice. In rats bearing C6 gliomas, both [18F]VUIIS1009A and [18F]VUIIS1009B exhibited greater binding potential (k 3/k 4)in tumor tissue compared to [18F]DPA-714. Interestingly, [18F]VUIIS1009B exhibited significantly greater tumor uptake (V T) than [18F]VUIIS1009A, which was attributed primarily to greater plasma-to-tumor extraction efficiency. CONCLUSIONS The novel PET ligand [18F]VUIIS1009B exhibits promising characteristics for imaging glioma; its superiority over [18F]VUIIS1009A, a regioisomer, appears to be primarily due to improved plasma extraction efficiency. Continued evaluation of [18F]VUIIS1009B as a high-affinity TSPO PET ligand for precision medicine appears warranted.
Collapse
Affiliation(s)
- Dewei Tang
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN, 37232, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.,Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Shanghai Key Laboratory for Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Jun Li
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN, 37232, USA.,Interdisciplinary Materials Science Program, Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, 37240, USA
| | - Jason R Buck
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Mohamed Noor Tantawy
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN, 37232, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Yan Xia
- Center for Structural Biology (CSB), Vanderbilt University, Nashville, TN, 37205, USA.,Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA
| | - Joel M Harp
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.,Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235, USA
| | - Michael L Nickels
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN, 37232, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Jens Meiler
- Center for Structural Biology (CSB), Vanderbilt University, Nashville, TN, 37205, USA.,Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA.,Vanderbilt Institute of Chemical Biology (VICB), Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - H Charles Manning
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN, 37232, USA. .,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA. .,Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA. .,Program in Chemical and Physical Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA. .,Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University Medical Center, Nashville, TN, 37232, USA. .,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37232, USA. .,Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| |
Collapse
|
16
|
Deng X, Shen J, Zhu H, Xiao J, Sun R, Xie F, Lam C, Wang J, Qiao Y, Tavallaie MS, Hu Y, Du Y, Li J, Fu L, Jiang F. Surrogating and redirection of pyrazolo[1,5-a]pyrimidin-7(4H)-one core, a novel class of potent and selective DPP-4 inhibitors. Bioorg Med Chem 2018; 26:903-912. [PMID: 29373269 DOI: 10.1016/j.bmc.2018.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/09/2018] [Accepted: 01/10/2018] [Indexed: 01/18/2023]
Abstract
The initial focus on characterizing novel pyrazolo[1,5-a]pyrimidin-7(4H)-one derivatives as DPP-4 inhibitors, led to a potent and selective inhibitor compound b2. This ligand exhibits potent in vitro DPP-4 inhibitory activity (IC50: 80 nM), while maintaining other key cellular parameters such as high selectivity, low cytotoxicity and good cell viability. Subsequent optimization of b2 based on docking analysis and structure-based drug design knowledge resulted in d1. Compound d1 has nearly 2-fold increase of inhibitory activity (IC50: 49 nM) and over 1000-fold selectivity against DPP-8 and DPP-9. Further in vivo IPGTT assays showed that compound b2 effectively reduce glucose excursion by 34% at the dose of 10 mg/kg in diabetic mice. Herein we report the optimization and design of a potent and highly selective series of pyrazolo[1,5-a]pyrimidin-7(4H)-one DPP-4 inhibitors.
Collapse
Affiliation(s)
- Xinxian Deng
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang District, Shanghai 200240, China; China State Institute of Pharmaceutical Industry, No. 285 Gebaini Rd., Pudong District, Shanghai 201203, China
| | - Jian Shen
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang District, Shanghai 200240, China; Viva Biotech Ltd. (Shanghai), No. 334 Aidisheng Rd., Pudong District, Shanghai 201203, China
| | - Hui Zhu
- Department of Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 369 Zhizaoju Road, Huangpu District, Shanghai 200011, China
| | - Jia Xiao
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang District, Shanghai 200240, China
| | - Ran Sun
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang District, Shanghai 200240, China
| | - Fangzhou Xie
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang District, Shanghai 200240, China
| | - Celine Lam
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang District, Shanghai 200240, China
| | - Juntao Wang
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang District, Shanghai 200240, China
| | - Yixue Qiao
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang District, Shanghai 200240, China
| | - Mojdeh S Tavallaie
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang District, Shanghai 200240, China
| | - Yang Hu
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang District, Shanghai 200240, China
| | - Yi Du
- Xinhua Hospital affiliated to Shanghai Jiao Tong University, School of Medicine, No. 1665 Kongjiang Rd., Yangpu District, Shanghai 200092, China
| | - Jianqi Li
- China State Institute of Pharmaceutical Industry, No. 285 Gebaini Rd., Pudong District, Shanghai 201203, China.
| | - Lei Fu
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang District, Shanghai 200240, China.
| | - Faqin Jiang
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang District, Shanghai 200240, China.
| |
Collapse
|
17
|
Coupling between physiological TSPO expression in brain and myocardium allows stabilization of late-phase cerebral [18F]GE180 PET quantification. Neuroimage 2018; 165:83-91. [DOI: 10.1016/j.neuroimage.2017.10.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/29/2017] [Accepted: 10/03/2017] [Indexed: 01/31/2023] Open
|
18
|
Pulagam KR, Colás L, Padro D, Plaza-García S, Gómez-Vallejo V, Higuchi M, Llop J, Martín A. Evaluation of the novel TSPO radiotracer [ 18F] VUIIS1008 in a preclinical model of cerebral ischemia in rats. EJNMMI Res 2017; 7:93. [PMID: 29177913 PMCID: PMC5701906 DOI: 10.1186/s13550-017-0343-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/12/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND In vivo positron-emission tomography (PET) imaging of transporter protein (TSPO) expression is an attractive and indispensable tool for the diagnosis and therapy evaluation of neuroinflammation after cerebral ischemia. Despite several radiotracers have shown an excellent capacity to image neuroinflammation, novel radiotracers such as [18F] VUIIS1008 have shown promising properties to visualize and quantify the in vivo expression of TSPO. METHODS Longitudinal in vivo magnetic resonance (MRI) and PET imaging studies with the novel TSPO radiotracer 2-(5,7-diethyl-2-(4-(2-[18F] fluoroethoxy) phenyl) pyrazolo [1,5-a] pyrimidin-3-yl)-N, N-diethylacetamide ([18F] VUIIS1008), and (N, N-diethyl-2-(2-[4-(2-fluoroethoxy)-phenyl]-5,7-dimethyl-pyrazolo [1,5-a] yrimidin-3-yl)-acetamide ([18F] DPA-714) were carried out before and at days 1, 3, 7, 14, 21, and 28 following the transient middle cerebral artery occlusion (MCAO) in rats. RESULTS MRI images showed the extension and evolution of the brain infarction after ischemic stroke in rats. PET imaging with [18F] VUIIS1008 and [18F] DPA714 showed a progressive increase in the ischemic brain hemisphere during the first week, peaking at day 7 and followed by a decline from days 14 to 28 after cerebral ischemia. [18F] DPA714 uptake showed a mild uptake increase compared to [18F] VUIIS1008 in TSPO-rich ischemic brain regions. In vivo [18F] VUIIS1008 binding displacement with VUIIS1008 was more efficient than DPA714. Finally, immunohistochemistry confirmed a high expression of TSPO in microglial cells at day 7 after the MCAO in rats. CONCLUSIONS Altogether, these results suggest that [18F] VUIIS1008 could become a valuable tool for the diagnosis and treatment evaluation of neuroinflammation following ischemic stroke.
Collapse
Affiliation(s)
- Krishna R Pulagam
- Radiochemistry and Nuclear Imaging, Molecular Imaging Unit, CIC biomaGUNE, P° Miramon 182, San Sebastian, Spain
| | - Lorena Colás
- Experimental Molecular Imaging, Molecular Imaging Unit, CIC biomaGUNE, P° Miramon 182, San Sebastian, Spain
| | - Daniel Padro
- Magnetic Resonance Imaging, Molecular Imaging Unit, CIC biomaGUNE, P° Miramon 182, San Sebastian, Spain
| | - Sandra Plaza-García
- Magnetic Resonance Imaging, Molecular Imaging Unit, CIC biomaGUNE, P° Miramon 182, San Sebastian, Spain
| | - Vanessa Gómez-Vallejo
- Radiochemistry and Nuclear Imaging, Molecular Imaging Unit, CIC biomaGUNE, P° Miramon 182, San Sebastian, Spain
| | - Makoto Higuchi
- National Institutes for Quantum and Radiological Science and Technology, National Institute of Radiological Sciences, Chiba, Japan
| | - Jordi Llop
- Radiochemistry and Nuclear Imaging, Molecular Imaging Unit, CIC biomaGUNE, P° Miramon 182, San Sebastian, Spain
| | - Abraham Martín
- Experimental Molecular Imaging, Molecular Imaging Unit, CIC biomaGUNE, P° Miramon 182, San Sebastian, Spain.
| |
Collapse
|
19
|
TSPO PET for glioma imaging using the novel ligand 18F-GE-180: first results in patients with glioblastoma. Eur J Nucl Med Mol Imaging 2017; 44:2230-2238. [DOI: 10.1007/s00259-017-3799-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/03/2017] [Indexed: 12/27/2022]
|
20
|
Alam MM, Lee J, Lee SY. Recent Progress in the Development of TSPO PET Ligands for Neuroinflammation Imaging in Neurological Diseases. Nucl Med Mol Imaging 2017; 51:283-296. [PMID: 29242722 DOI: 10.1007/s13139-017-0475-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/08/2016] [Accepted: 02/06/2017] [Indexed: 12/13/2022] Open
Abstract
Neuroinflammation is heavily associated with various neurological diseases including Alzheimer's disease, Parkinson's disease, multiple sclerosis, and stroke. It is strongly characterized by the activation of microglia which can be visualized using position emission tomography (PET). Traditionally, translocator protein 18 kDa (TSPO) has been the preferred target for imaging the inflammatory progression of the microglial component. TSPO is expressed in the outer mitochondrial membrane and present in very low concentrations in the healthy human brain, but is markedly upregulated in response to brain injury and inflammation. Due to its value as a marker of microglial activation and subsequent utility for evaluating neuroinflammation in CNS disorders, several classes of TSPO radioligands have been developed and evaluated. However, the application of these second-generation TSPO radiotracers has been subject to several limiting factors, including a polymorphism that affects TSPO binding. This review focuses on recent developments in TSPO imaging, as well as current limitations and suggestions for future directions from a medical imaging perspective.
Collapse
Affiliation(s)
- Md Maqusood Alam
- Neuroscience Research Institute, Gachon University, Incheon, 20565 South Korea
| | - Jihye Lee
- Neuroscience Research Institute, Gachon University, Incheon, 20565 South Korea
| | - Sang-Yoon Lee
- Neuroscience Research Institute, Gachon University, Incheon, 20565 South Korea.,Department of Neuroscience, College of Medicine, Gachon University, Incheon, 21936 South Korea
| |
Collapse
|
21
|
Li J, Smith JA, Dawson ES, Fu A, Nickels ML, Schulte ML, Manning HC. Optimized Translocator Protein Ligand for Optical Molecular Imaging and Screening. Bioconjug Chem 2017; 28:1016-1023. [PMID: 28156095 DOI: 10.1021/acs.bioconjchem.6b00711] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Translocator protein (TSPO) is a validated target for molecular imaging of a variety of human diseases and disorders. Given its involvement in cholesterol metabolism, TSPO expression is commonly elevated in solid tumors, including glioma, colorectal cancer, and breast cancer. TSPO ligands capable of detection by optical imaging are useful molecular tracers for a variety of purposes that range from quantitative biology to drug discovery. Leveraging our prior optimization of the pyrazolopyrimidine TSPO ligand scaffold for cancer imaging, we report herein a new generation of TSPO tracers with superior binding affinity and suitability for optical imaging and screening. In total, seven candidate TSPO tracers were synthesized and vetted in this study; the most promising tracer identified (29, Kd = 0.19 nM) was the result of conjugating a high-affinity TSPO ligand to a fluorophore used routinely in biological sciences (FITC) via a functional carbon linker of optimal length. Computational modeling suggested that an n-alkyl linker of eight carbons in length allows for positioning of the bulky fluorophore distal to the ligand binding domain and toward the solvent interface, minimizing potential ligand-protein interference. Probe 29 was found to be highly suitable for in vitro imaging of live TSPO-expressing cells and could be deployed as a ligand screening and discovery tool. Competitive inhibition of probe 29 quantified by fluorescence and 3H-PK11195 quantified by traditional radiometric detection resulted in equivalent affinity data for two previously reported TSPO ligands. This study introduces the utility of TSPO ligand 29 for in vitro imaging and screening and provides a structural basis for the development of future TSPO imaging ligands bearing bulky signaling moieties.
Collapse
Affiliation(s)
- Jun Li
- Interdisciplinary Materials Science Program, ∥Vanderbilt University Center for Structural Biology, and ■Department of Biomedical Engineering, Vanderbilt University , Nashville, Tennessee 37232, United States.,Vanderbilt University Institute of Imaging Science (VUIIS), §Center for Molecular Probes, ⊥Department of Radiology and Radiological Sciences, #Department of Biochemistry, ¶Vanderbilt-Ingram Cancer Center (VICC), and ▽Department of Neurosurgery, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| | - Jarrod A Smith
- Interdisciplinary Materials Science Program, ∥Vanderbilt University Center for Structural Biology, and ■Department of Biomedical Engineering, Vanderbilt University , Nashville, Tennessee 37232, United States.,Vanderbilt University Institute of Imaging Science (VUIIS), §Center for Molecular Probes, ⊥Department of Radiology and Radiological Sciences, #Department of Biochemistry, ¶Vanderbilt-Ingram Cancer Center (VICC), and ▽Department of Neurosurgery, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| | - Eric S Dawson
- Interdisciplinary Materials Science Program, ∥Vanderbilt University Center for Structural Biology, and ■Department of Biomedical Engineering, Vanderbilt University , Nashville, Tennessee 37232, United States.,Vanderbilt University Institute of Imaging Science (VUIIS), §Center for Molecular Probes, ⊥Department of Radiology and Radiological Sciences, #Department of Biochemistry, ¶Vanderbilt-Ingram Cancer Center (VICC), and ▽Department of Neurosurgery, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| | - Allie Fu
- Interdisciplinary Materials Science Program, ∥Vanderbilt University Center for Structural Biology, and ■Department of Biomedical Engineering, Vanderbilt University , Nashville, Tennessee 37232, United States.,Vanderbilt University Institute of Imaging Science (VUIIS), §Center for Molecular Probes, ⊥Department of Radiology and Radiological Sciences, #Department of Biochemistry, ¶Vanderbilt-Ingram Cancer Center (VICC), and ▽Department of Neurosurgery, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| | - Michael L Nickels
- Interdisciplinary Materials Science Program, ∥Vanderbilt University Center for Structural Biology, and ■Department of Biomedical Engineering, Vanderbilt University , Nashville, Tennessee 37232, United States.,Vanderbilt University Institute of Imaging Science (VUIIS), §Center for Molecular Probes, ⊥Department of Radiology and Radiological Sciences, #Department of Biochemistry, ¶Vanderbilt-Ingram Cancer Center (VICC), and ▽Department of Neurosurgery, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| | - Michael L Schulte
- Interdisciplinary Materials Science Program, ∥Vanderbilt University Center for Structural Biology, and ■Department of Biomedical Engineering, Vanderbilt University , Nashville, Tennessee 37232, United States.,Vanderbilt University Institute of Imaging Science (VUIIS), §Center for Molecular Probes, ⊥Department of Radiology and Radiological Sciences, #Department of Biochemistry, ¶Vanderbilt-Ingram Cancer Center (VICC), and ▽Department of Neurosurgery, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| | - H Charles Manning
- Interdisciplinary Materials Science Program, ∥Vanderbilt University Center for Structural Biology, and ■Department of Biomedical Engineering, Vanderbilt University , Nashville, Tennessee 37232, United States.,Vanderbilt University Institute of Imaging Science (VUIIS), §Center for Molecular Probes, ⊥Department of Radiology and Radiological Sciences, #Department of Biochemistry, ¶Vanderbilt-Ingram Cancer Center (VICC), and ▽Department of Neurosurgery, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| |
Collapse
|
22
|
Sokias R, Werry EL, Chua SW, Reekie TA, Munoz L, Wong ECN, Ittner LM, Kassiou M. Determination and reduction of translocator protein (TSPO) ligand rs6971 discrimination. MEDCHEMCOMM 2016; 8:202-210. [PMID: 30108706 PMCID: PMC6071920 DOI: 10.1039/c6md00523c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 11/11/2016] [Indexed: 12/26/2022]
Abstract
The 18 kDa translocator protein (TSPO) is a target for development of diagnostic imaging agents for glioblastoma and neuroinflammation.
The 18 kDa translocator protein (TSPO) is a target for development of diagnostic imaging agents for glioblastoma and neuroinflammation. Clinical translation of TSPO imaging agents has been hindered by the presence of a polymorphism, rs6971, which causes a non-conservative substitution of alanine for threonine at amino acid residue 147 (TSPO A147T). Disclosed brain-permeant second-generation TSPO ligands bind TSPO A147T with reduced affinity compared to the wild type protein (TSPO WT). Efforts to develop a TSPO ligand that binds TSPO WT and TSPO A147T with similarly high affinity have been hampered by a lack of knowledge about how ligand structure differentially influences interaction with the two forms of TSPO. To gain insight, we have established human embryonic kidney cell lines stably over-expressing human TSPO WT and TSPO A147T, and tested how modifications of a novel N-alkylated carbazole scaffold influence affinity to both TSPO isoforms. Most of the new analogues developed in this study showed high affinity to TSPO WT and a 5–6-fold lower affinity to TSPO A147T. Addition of electron-withdrawing substituents yielded analogues with highest affinity for TSPO A147T without decreasing affinity for TSPO WT. This knowledge can be used to inform further development of non-discriminating TSPO ligands for use as diagnostic markers for glioblastoma and neuroinflammation irrespective of rs6971.
Collapse
Affiliation(s)
- Renee Sokias
- School of Chemistry , The University of Sydney , NSW 2006 , Australia .
| | - Eryn L Werry
- Faculty of Health Sciences , The University of Sydney , NSW 2006 , Australia.,School of Medical Sciences (Pharmacology) , Bosch Institute , The University of Sydney , NSW 2006 , Australia
| | - Sook W Chua
- Dementia Research Unit , School of Medical Sciences , University of New South Wales , NSW 2052 , Australia
| | - Tristan A Reekie
- School of Chemistry , The University of Sydney , NSW 2006 , Australia .
| | - Lenka Munoz
- School of Medical Sciences (Pathology) and Charles Perkins Centre , The University of Sydney , NSW 2006 , Australia
| | - Erick C N Wong
- School of Medical Sciences (Pharmacology) , Bosch Institute , The University of Sydney , NSW 2006 , Australia
| | - Lars M Ittner
- Dementia Research Unit , School of Medical Sciences , University of New South Wales , NSW 2052 , Australia
| | - Michael Kassiou
- School of Chemistry , The University of Sydney , NSW 2006 , Australia .
| |
Collapse
|
23
|
Li J, Schulte ML, Nickels ML, Manning HC. New structure-activity relationships of N-acetamide substituted pyrazolopyrimidines as pharmacological ligands of TSPO. Bioorg Med Chem Lett 2016; 26:3472-7. [PMID: 27353534 DOI: 10.1016/j.bmcl.2016.06.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/13/2016] [Accepted: 06/15/2016] [Indexed: 11/26/2022]
Abstract
Translocator protein (TSPO) represents an attractive target for molecular imaging and therapy due to its prevalence and critical roles played in oncology and other pathologies. Based upon our previously optimized pyrazolopyrimidine scaffold, we elucidated new structure activity relationships related to N,N-disubstitutions of the terminal acetamide on pyrazolopyrimidines and further explored the impacts of these substituents on lipophilicity and plasma protein binding. Several novel chemical probes reported here exhibited significantly increased binding affinity, suitable lipophilicity and protein binding compared with contemporary TSPO ligands. We illustrate that N,N-acetamide disubstitution affords opportunities to introduce diverse chemical moieties distal to the central pyrazolopyrimidine core, without sacrificing TSPO affinity. We anticipate that further exploration of N-acetamide substitutions may yield additional TSPO ligands capable of furthering the field of precision medicine.
Collapse
Affiliation(s)
- Jun Li
- Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, TN 37232, United States; Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN 37232, United States; Center for Molecular Probes, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Michael L Schulte
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN 37232, United States; Center for Molecular Probes, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Michael L Nickels
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN 37232, United States; Center for Molecular Probes, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - H Charles Manning
- Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, TN 37232, United States; Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN 37232, United States; Center for Molecular Probes, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Program in Chemical and Physical Biology, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University Medical Center, Nashville, TN 37232, United States; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, United States; Department of Chemistry, Vanderbilt University, Nashville, TN 37232, United States; Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, TN 37232, United States.
| |
Collapse
|
24
|
TSPO: kaleidoscopic 18-kDa amid biochemical pharmacology, control and targeting of mitochondria. Biochem J 2016; 473:107-21. [PMID: 26733718 DOI: 10.1042/bj20150899] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The 18-kDa translocator protein (TSPO) localizes in the outer mitochondrial membrane (OMM) of cells and is readily up-regulated under various pathological conditions such as cancer, inflammation, mechanical lesions and neurological diseases. Able to bind with high affinity synthetic and endogenous ligands, its core biochemical function resides in the translocation of cholesterol into the mitochondria influencing the subsequent steps of (neuro-)steroid synthesis and systemic endocrine regulation. Over the years, however, TSPO has also been linked to core cellular processes such as apoptosis and autophagy. It interacts and forms complexes with other mitochondrial proteins such as the voltage-dependent anion channel (VDAC) via which signalling and regulatory transduction of these core cellular events may be influenced. Despite nearly 40 years of study, the precise functional role of TSPO beyond cholesterol trafficking remains elusive even though the recent breakthroughs on its high-resolution crystal structure and contribution to quality-control signalling of mitochondria. All this along with a captivating pharmacological profile provides novel opportunities to investigate and understand the significance of this highly conserved protein as well as contribute the development of specific therapeutics as presented and discussed in the present review.
Collapse
|
25
|
Roncaroli F, Su Z, Herholz K, Gerhard A, Turkheimer FE. TSPO expression in brain tumours: is TSPO a target for brain tumour imaging? Clin Transl Imaging 2016; 4:145-156. [PMID: 27077069 PMCID: PMC4820497 DOI: 10.1007/s40336-016-0168-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/07/2016] [Indexed: 02/06/2023]
Abstract
Positron emission tomography (PET) alone or in combination with MRI is increasingly assuming a central role in the development of diagnostic and therapeutic strategies for brain tumours with the aim of addressing tumour heterogeneity, assisting in patient stratification, and contributing to predicting treatment response. The 18 kDa translocator protein (TSPO) is expressed in high-grade gliomas, while its expression is comparatively low in normal brain. In addition, the evidence of elevated TSPO in neoplastic cells has led to studies investigating TSPO as a transporter of anticancer drugs for brain delivery and a selective target for tumour tissue. The TSPO therefore represents an ideal candidate for molecular imaging studies. Knowledge of the biology of TSPO in normal brain cells, in-depth understanding of TSPO functions and biodistribution in neoplastic cells, accurate methods for quantification of uptake of TSPO tracers and pharmacokinetic data regarding TSPO-targeted drugs are required before introducing TSPO PET and TSPO-targeted treatment in clinical practice. In this review, we will discuss the impact of preclinical PET studies and the application of TSPO imaging in human brain tumours, the advantages and disadvantages of TSPO imaging compared to other imaging modalities and other PET tracers, and pathology studies on the extent and distribution of TSPO in gliomas. The suitability of TSPO as molecular target for treatment of brain tumours will also be the appraised.
Collapse
Affiliation(s)
- Federico Roncaroli
- Wolfson Molecular Imaging Centre, The University of Manchester, 7 Palatine Road, Withington, Manchester, M20 3LJ UK
| | - Zhangjie Su
- Wolfson Molecular Imaging Centre, The University of Manchester, 7 Palatine Road, Withington, Manchester, M20 3LJ UK
| | - Karl Herholz
- Wolfson Molecular Imaging Centre, The University of Manchester, 7 Palatine Road, Withington, Manchester, M20 3LJ UK
| | - Alexander Gerhard
- Wolfson Molecular Imaging Centre, The University of Manchester, 7 Palatine Road, Withington, Manchester, M20 3LJ UK
| | | |
Collapse
|
26
|
Buck JR, McKinley ET, Fu A, Abel TW, Thompson RC, Chambless L, Watchmaker JM, Harty JP, Cooper MK, Manning HC. Preclinical TSPO Ligand PET to Visualize Human Glioma Xenotransplants: A Preliminary Study. PLoS One 2015; 10:e0141659. [PMID: 26517124 PMCID: PMC4627825 DOI: 10.1371/journal.pone.0141659] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 10/12/2015] [Indexed: 11/18/2022] Open
Abstract
Current positron emission tomography (PET) imaging biomarkers for detection of infiltrating gliomas are limited. Translocator protein (TSPO) is a novel and promising biomarker for glioma PET imaging. To validate TSPO as a potential target for molecular imaging of glioma, TSPO expression was assayed in a tumor microarray containing 37 high-grade (III, IV) gliomas. TSPO staining was detected in all tumor specimens. Subsequently, PET imaging was performed with an aryloxyanilide-based TSPO ligand, [18F]PBR06, in primary orthotopic xenograft models of WHO grade III and IV gliomas. Selective uptake of [18F]PBR06 in engrafted tumor was measured. Furthermore, PET imaging with [18F]PBR06 demonstrated infiltrative glioma growth that was undetectable by traditional magnetic resonance imaging (MRI). Preliminary PET with [18F]PBR06 demonstrated a preferential tumor-to-normal background ratio in comparison to 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG). These results suggest that TSPO PET imaging with such high-affinity radiotracers may represent a novel strategy to characterize distinct molecular features of glioma growth, as well as better define the extent of glioma infiltration for therapeutic purposes.
Collapse
Affiliation(s)
- Jason R. Buck
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Eliot T. McKinley
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Allie Fu
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Ty W. Abel
- Department of Pathology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Reid C. Thompson
- Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University Medical Center, Nashville, TN, United States of America
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Lola Chambless
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Jennifer M. Watchmaker
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN, United States of America
- Program in Chemical and Physical Biology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - James P. Harty
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Michael K. Cooper
- Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University Medical Center, Nashville, TN, United States of America
- Neurology Service, Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, United States of America
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - H. Charles Manning
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN, United States of America
- Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University Medical Center, Nashville, TN, United States of America
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Program in Chemical and Physical Biology, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States of America
- * E-mail:
| |
Collapse
|
27
|
Damont A, Médran-Navarrete V, Cacheux F, Kuhnast B, Pottier G, Bernards N, Marguet F, Puech F, Boisgard R, Dollé F. Novel Pyrazolo[1,5-a]pyrimidines as Translocator Protein 18 kDa (TSPO) Ligands: Synthesis, in Vitro Biological Evaluation, [(18)F]-Labeling, and in Vivo Neuroinflammation PET Images. J Med Chem 2015; 58:7449-64. [PMID: 26280386 DOI: 10.1021/acs.jmedchem.5b00932] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A series of novel pyrazolo[1,5-a]pyrimidines, closely related to N,N-diethyl-2-(2-(4-(2-fluoroethoxy)phenyl)-5,7-dimethylpyrazolo[1,5-a]pyrimidin-3-yl)acetamide (2, DPA-714), were synthesized and biologically in vitro evaluated for their potential to bind the translocator protein 18 kDa (TSPO), a protein today recognized as an early biomarker of neuroinflammatory processes. This series is composed of fluoroalkyl- and fluoroalkynyl- analogues, prepared from a common iodinated intermediate via Sonogashira coupling reactions. All derivatives displayed subnanomolar affinity for the TSPO (0.37 to 0.86 nM), comparable to that of 2 (0.91 nM). Two of them were radiolabeled with fluorine-18, and their biodistribution was investigated by in vitro autoradiography and positron emission tomography (PET) imaging on a rodent model of neuroinflammation. Brain uptake and local accumulation of both compounds in the AMPA-mediated lesion confirm their potential as in vivo PET-radiotracers. In particular, [(18)F]23 exhibited a significantly higher ipsi- to contralateral ratio at 60 min than the parent molecule [(18)F]2 in vivo.
Collapse
Affiliation(s)
- Annelaure Damont
- CEA, I2BM, Service Hospitalier Frédéric Joliot, Orsay, France.,Inserm/CEA/Université Paris Sud, UMR 1023-ERL 9218 CNRS, IMIV, Orsay, France
| | - Vincent Médran-Navarrete
- CEA, I2BM, Service Hospitalier Frédéric Joliot, Orsay, France.,Inserm/CEA/Université Paris Sud, UMR 1023-ERL 9218 CNRS, IMIV, Orsay, France
| | - Fanny Cacheux
- CEA, I2BM, Service Hospitalier Frédéric Joliot, Orsay, France.,Inserm/CEA/Université Paris Sud, UMR 1023-ERL 9218 CNRS, IMIV, Orsay, France
| | - Bertrand Kuhnast
- CEA, I2BM, Service Hospitalier Frédéric Joliot, Orsay, France.,Inserm/CEA/Université Paris Sud, UMR 1023-ERL 9218 CNRS, IMIV, Orsay, France
| | - Géraldine Pottier
- CEA, I2BM, Service Hospitalier Frédéric Joliot, Orsay, France.,Inserm/CEA/Université Paris Sud, UMR 1023-ERL 9218 CNRS, IMIV, Orsay, France
| | - Nicholas Bernards
- CEA, I2BM, Service Hospitalier Frédéric Joliot, Orsay, France.,Inserm/CEA/Université Paris Sud, UMR 1023-ERL 9218 CNRS, IMIV, Orsay, France
| | | | | | - Raphaël Boisgard
- CEA, I2BM, Service Hospitalier Frédéric Joliot, Orsay, France.,Inserm/CEA/Université Paris Sud, UMR 1023-ERL 9218 CNRS, IMIV, Orsay, France
| | - Frédéric Dollé
- CEA, I2BM, Service Hospitalier Frédéric Joliot, Orsay, France.,Inserm/CEA/Université Paris Sud, UMR 1023-ERL 9218 CNRS, IMIV, Orsay, France
| |
Collapse
|
28
|
Abstract
The mitochondrial 18-kDa translocator protein (TSPO) was originally discovered as a peripheral binding site of benzodiazepines to be later described as a core element of cholesterol trafficking between cytosol and mitochondria from which the current nomenclature originated. The high affinity it exhibits with chemicals (i.e. PK11195) has generated interest in the development of mitochondrial based TSPO-binding drugs for in vitro and in vivo analysis. Increased TSPO expression is observed in numerous pathologies such as cancer and inflammatory conditions of the central nervous system (CNS) that have been successfully exploited via protocols of positron emission tomography (PET) imaging. We endeavoured to dissect the molecular role of TSPO in mitochondrial cell biology and discovered a functional link with quality control mechanisms operated by selective autophagy. This review focuses on the current understanding of this pathway and focuses on the interplay with reactive oxygen species (ROS) and the voltage-dependent anion channel (VDAC), to which TSPO binds, in the regulation of cell mitophagy and hence homoeostasis of the mitochondrial network as a whole.
Collapse
|
29
|
Liu G, Middleton RJ, Hatty CR, Kam WW, Chan R, Pham T, Harrison‐Brown M, Dodson E, Veale K, Banati RB. The 18 kDa translocator protein, microglia and neuroinflammation. Brain Pathol 2014; 24:631-53. [PMID: 25345894 PMCID: PMC8029074 DOI: 10.1111/bpa.12196] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 08/19/2014] [Indexed: 12/17/2022] Open
Abstract
The 18 kDa translocator protein (TSPO), previously known as the peripheral benzodiazepine receptor, is expressed in the injured brain. It has become known as an imaging marker of "neuroinflammation" indicating active disease, and is best interpreted as a nondiagnostic biomarker and disease staging tool that refers to histopathology rather than disease etiology. The therapeutic potential of TSPO as a drug target is mostly based on the understanding that it is an outer mitochondrial membrane protein required for the translocation of cholesterol, which thus regulates the rate of steroid synthesis. This pivotal role together with the evolutionary conservation of TSPO has underpinned the belief that any loss or mutation of TSPO should be associated with significant physiological deficits or be outright incompatible with life. However, against prediction, full Tspo knockout mice are viable and across their lifespan do not show the phenotype expected if cholesterol transport and steroid synthesis were significantly impaired. Thus, the "translocation" function of TSPO remains to be better substantiated. Here, we discuss the literature before and after the introduction of the new nomenclature for TSPO and review some of the newer findings. In light of the controversy surrounding the function of TSPO, we emphasize the continued importance of identifying compounds with confirmed selectivity and suggest that TSPO expression is analyzed within specific disease contexts rather than merely equated with the reified concept of "neuroinflammation."
Collapse
Affiliation(s)
- Guo‐Jun Liu
- Life SciencesAustralian Nuclear Science and Technology OrganisationNSWAustralia
- Brain & Mind Research InstituteThe University of SydneyNSWAustralia
- Discipline of Medical Imaging & Radiation SciencesFaculty of Health SciencesThe University of SydneyNSWAustralia
| | - Ryan J. Middleton
- Life SciencesAustralian Nuclear Science and Technology OrganisationNSWAustralia
| | - Claire R. Hatty
- Brain & Mind Research InstituteThe University of SydneyNSWAustralia
- Discipline of Medical Imaging & Radiation SciencesFaculty of Health SciencesThe University of SydneyNSWAustralia
| | - Winnie Wai‐Ying Kam
- Life SciencesAustralian Nuclear Science and Technology OrganisationNSWAustralia
- Brain & Mind Research InstituteThe University of SydneyNSWAustralia
- Discipline of Medical Imaging & Radiation SciencesFaculty of Health SciencesThe University of SydneyNSWAustralia
| | - Ronald Chan
- Brain & Mind Research InstituteThe University of SydneyNSWAustralia
- Discipline of Medical Imaging & Radiation SciencesFaculty of Health SciencesThe University of SydneyNSWAustralia
| | - Tien Pham
- Life SciencesAustralian Nuclear Science and Technology OrganisationNSWAustralia
| | - Meredith Harrison‐Brown
- Life SciencesAustralian Nuclear Science and Technology OrganisationNSWAustralia
- Discipline of Medical Imaging & Radiation SciencesFaculty of Health SciencesThe University of SydneyNSWAustralia
| | - Eoin Dodson
- Life SciencesAustralian Nuclear Science and Technology OrganisationNSWAustralia
| | - Kelly Veale
- Discipline of Medical Imaging & Radiation SciencesFaculty of Health SciencesThe University of SydneyNSWAustralia
| | - Richard B. Banati
- Life SciencesAustralian Nuclear Science and Technology OrganisationNSWAustralia
- Brain & Mind Research InstituteThe University of SydneyNSWAustralia
- Discipline of Medical Imaging & Radiation SciencesFaculty of Health SciencesThe University of SydneyNSWAustralia
- National Imaging Facility and Ramaciotti Brain Imaging CentreSydneyNSWAustralia
| |
Collapse
|
30
|
Cheung YY, Nickels ML, Tang D, Buck JR, Manning HC. Facile synthesis of SSR180575 and discovery of 7-chloro-N,N,5-trimethyl-4-oxo-3(6-[(18)F]fluoropyridin-2-yl)-3,5-dihydro-4H-pyridazino[4,5-b]indole-1-acetamide, a potent pyridazinoindole ligand for PET imaging of TSPO in cancer. Bioorg Med Chem Lett 2014; 24:4466-4471. [PMID: 25172419 PMCID: PMC4163096 DOI: 10.1016/j.bmcl.2014.07.091] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/29/2014] [Accepted: 07/31/2014] [Indexed: 10/24/2022]
Abstract
A novel synthesis of the translocator protein (TSPO) ligand 7-chloro-N,N,5-trimethyl-4-oxo-3-phenyl-3,5-dihydro-4H-pyridazino[4,5-b]indole-1-acetamide (SSR180575, 3) was achieved in four steps from commercially available starting materials. Focused structure-activity relationship development about the pyridazinoindole ring at the N3 position led to the discovery of 7-chloro-N,N,5-trimethyl-4-oxo-3(6-fluoropyridin-2-yl)-3,5-dihydro-4H-pyridazino[4,5-b]indole-1-acetamide (14), a novel ligand of comparable affinity. Radiolabeling with fluorine-18 ((18)F) yielded 7-chloro-N,N,5-trimethyl-4-oxo-3(6-[(18)F]fluoropyridin-2-yl)-3,5-dihydro-4H-pyridazino[4,5-b]indole-1-acetamide ([(18)F]-14) in high radiochemical yield and specific activity. In vivo studies of [(18)F]-14 revealed this agent as a promising probe for molecular imaging of glioma.
Collapse
Affiliation(s)
- Yiu-Yin Cheung
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Michael L Nickels
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN 37232, United States; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Dewei Tang
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN 37232, United States; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Jason R Buck
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN 37232, United States; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - H Charles Manning
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN 37232, United States; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Program in Chemical and Physical Biology, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University Medical Center, Nashville, TN 37232, United States; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, United States; Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| |
Collapse
|