1
|
Cox CPW, Brabander T, Vegt E, de Lussanet de la Sablonière QG, Graven LH, Verburg FA, Segbers M. Reduction of [ 68Ga]Ga-DOTA-TATE injected activity for digital PET/MR in comparison with analogue PET/CT. EJNMMI Phys 2024; 11:27. [PMID: 38488989 PMCID: PMC11266332 DOI: 10.1186/s40658-024-00629-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/06/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND New digital detectors and block-sequential regularized expectation maximization (BSREM) reconstruction algorithm improve positron emission tomography (PET)/magnetic resonance (MR) image quality. The impact on image quality may differ from analogue PET/computed tomography (CT) protocol. The aim of this study is to determine the potential reduction of injected [68Ga]Ga-DOTA-TATE activity for digital PET/MR with BSREM reconstruction while maintaining at least equal image quality compared to the current analogue PET/CT protocol. METHODS NEMA IQ phantom data and 25 patients scheduled for a diagnostic PET/MR were included. According to our current protocol, 1.5 MBq [68Ga]Ga-DOTA-TATE per kilogram (kg) was injected. After 60 min, scans were acquired with 3 (≤ 70 kg) or 4 (> 70 kg) minutes per bedposition. PET/MR scans were reconstructed using BSREM and factors β 150, 300, 450 and 600. List mode data with reduced counts were reconstructed to simulate scans with 17%, 33%, 50% and 67% activity reduction. Image quality was measured quantitatively for PET/CT and PET/MR phantom and patient data. Experienced nuclear medicine physicians performed visual image quality scoring and lesion counting in the PET/MR patient data. RESULTS Phantom analysis resulted in a possible injected activity reduction of 50% with factor β = 600. Quantitative analysis of patient images revealed a possible injected activity reduction of 67% with factor β = 600. Both with equal or improved image quality as compared to PET/CT. However, based on visual scoring a maximum activity reduction of 33% with factor β = 450 was acceptable, which was further limited by lesion detectability analysis to an injected activity reduction of 17% with factor β = 450. CONCLUSION A digital [68Ga]Ga-DOTA-TATE PET/MR together with BSREM using factor β = 450 result in 17% injected activity reduction with quantitative values at least similar to analogue PET/CT, without compromising on PET/MR visual image quality and lesion detectability.
Collapse
Affiliation(s)
- Christina P W Cox
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Postbus 2040, 3000 CA, Rotterdam, The Netherlands.
| | - Tessa Brabander
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Postbus 2040, 3000 CA, Rotterdam, The Netherlands
| | - Erik Vegt
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Postbus 2040, 3000 CA, Rotterdam, The Netherlands
| | - Quido G de Lussanet de la Sablonière
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Postbus 2040, 3000 CA, Rotterdam, The Netherlands
| | - Laura H Graven
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Postbus 2040, 3000 CA, Rotterdam, The Netherlands
| | - Frederik A Verburg
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Postbus 2040, 3000 CA, Rotterdam, The Netherlands
| | - Marcel Segbers
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Postbus 2040, 3000 CA, Rotterdam, The Netherlands
| |
Collapse
|
2
|
Fragoso Costa P, Jentzen W, SÜßELBECK F, Fendler WP, Rischpler C, Herrmann K, Conti M, Kersting D, Weber M. Reduction of emission time for [68Ga]Ga-PSMA PET/CT using the digital biograph vision: a phantom study. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF... 2023; 67:57-68. [PMID: 34309334 DOI: 10.23736/s1824-4785.21.03300-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND The aim of this phantom study was to optimize the [68Ga]Ga-PSMA PET/CT examination in terms of scan time duration and image reconstruction parameters, in combination with PSF and TOF modelling, in a digital Biograph Vision PET/CT scanner. METHODS Three types of phantoms were used: 1) soft-tissue tumor phantom consisting of six spheres mounted in a torso phantom; 2) bone-lung tumor phantom; 3) resolution phantom. Phantom inserts were filled with activity concentrations (ACs) that were derived from clinical data. Phantom data were acquired in list-mode at one bed position. Images with emission data ranging from 30 to 210 s in 30-s increments were reconstructed from a reference image acquired with 3.5-min emission. Iterative image reconstruction (OSEM), point-spread-function (PSF) and time-of-flight (TOF) options were applied using different iterations, Gaussian filters, and voxel sizes. The criteria for image quality was lesion detectability and lesion quantification, evaluated as contrast-to-noise ratio (CNR) and maximum AC (peak AC), respectively. A threshold value of CNR above 6 and percentage maximum AC (peak AC) deviation range of ±20% of the reference image were considered acceptable. The proposed single-bed scan time reduction was projected to a whole-body examination (patient validation scan) using the continuous-bed-motion mode. RESULTS Sphere and background ACs of 20 kBq/mL and 1 kBq/mL were selected, respectively. The optimized single-bed scan time was approximately 60 s using OSEM-TOF or OSEM-TOF+PSF (four iterations, 4.0-mm Gaussian filter and almost isotropic voxel size of 3.0-mm side length), resulting in a PET spatial resolution of 6.3 mm for OSEM-TOF and 5.5 mm for OSEM-TOF+PSF. In the patient validation, the maximum percentage difference in lesion quantification between standard and optimized protocol (whole-body scan time of 15 vs. 5 min) was below 19%. CONCLUSIONS A reduction of single-bed and whole-body scan time for [68Ga]Ga-PSMA PET/CT compared to current recommended clinical acquisition protocols is postulated. Clinical studies are warranted to validate the applicability of this protocol.
Collapse
Affiliation(s)
- Pedro Fragoso Costa
- Department of Nuclear Medicine, Essen University Hospital, Duisburg-Essen University, Essen, Germany -
| | - Walter Jentzen
- Department of Nuclear Medicine, Essen University Hospital, Duisburg-Essen University, Essen, Germany
| | - Finja SÜßELBECK
- Department of Nuclear Medicine, Essen University Hospital, Duisburg-Essen University, Essen, Germany
| | - Wolfgang P Fendler
- Department of Nuclear Medicine, Essen University Hospital, Duisburg-Essen University, Essen, Germany
| | - Christoph Rischpler
- Department of Nuclear Medicine, Essen University Hospital, Duisburg-Essen University, Essen, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, Essen University Hospital, Duisburg-Essen University, Essen, Germany
| | | | - David Kersting
- Department of Nuclear Medicine, Essen University Hospital, Duisburg-Essen University, Essen, Germany
| | - Manuel Weber
- Department of Nuclear Medicine, Essen University Hospital, Duisburg-Essen University, Essen, Germany
| |
Collapse
|
3
|
Reduced Acquisition Time per Bed Position for PET/MRI Using 68Ga-RM2 or 68Ga-PSMA-11 in Patients With Prostate Cancer: A Retrospective Analysis. AJR Am J Roentgenol 2021; 218:333-340. [PMID: 34406051 DOI: 10.2214/ajr.21.25961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND. Growing clinical adoption of PET/MRI for prostate cancer (PC) evaluation has increased interest in reducing PET/MRI scanning times. Reducing acquisition time per bed position below current times of at least 5 minutes would allow shorter examination lengths. OBJECTIVE. The purpose of this study was to evaluate the effect of different reduced PET acquisition times in patients with PC who underwent 68Ga-PSMA-11 or 68Ga-RM2 PET/MRI using highly sensitive silicon photomultiplier-based PET detectors. METHODS. This study involved retrospective review of men with PC who underwent PET/MRI as part of one of two prospective trials. Fifty men (mean [± SD] age, 69.9 ± 6.8 years) who underwent 68Ga-RM2 PET/MRI and 50 men (mean age, 66.6 ± 5.7 years) who underwent 68Ga-PSMA-11 PET/MRI were included. PET/MRI used a time-of-flight-enabled system with silicon photomultiplier-based detectors. The acquisition time was 4 minutes per bed position. PET data were reconstructed using acquisition times of 30 seconds, 1 minute, 2 minutes, 3 minutes, and 4 minutes. Three readers independently assessed image quality for each reconstruction using a 5-point Likert scale (with 1 denoting nondiagnostic and 5 indicating excellent quality). One reader measured SUVmax for up to six lesions per patient. Two readers independently assessed lesion conspicuity using a a 3-point Likert scale (with 1 indicating that lesions were not visualized and 3 denoting that they were definitely visualized). RESULTS. Mean image quality across readers at 30 seconds, 1 minutes, 2 minutes, 3 minutes, and 4 minutes was, for 68Ga-RM2 PET/MRI, from 1.0 ± 0.2 to 1.7 ± 0.7, 2.0 ± 0.3 to 2.6 ± 0.8, 3.1 ± 0.5 to 3.9 ± 0.8, 4.6 ± 0.6 to 4.7 ± 0.6, and 4.8 ± 0.4 to 4.8 ± 0.5, respectively, and for 68Ga-PSMA-11 PET/MRI it was from 1.2 ± 0.4 to 1.8 ± 0.6, 2.2 ± 0.4 to 2.8 ± 0.7, 3.6 ± 0.6 to 4.1± 0.8, 4.8 ± 0.4 to 4.9 ± 0.4, and 4.9 ± 0.3 to 5.0 ± 0.2, respectively. The mean lesion SUVmax for 68Ga-RM2 PET/MRI was 11.1 ± 12.4, 10.2 ± 11.7, 9.6 ± 11.3, 9.5 ± 11.6, and 9.4 ± 11.6, respectively, and for 68Ga-PSMA-11 PET/MRI it was 14.7 ± 8.2, 12.9 ± 7.4, 12.1 ± 7.8, 11.7 ± 7.9, and 11.6 ± 7.9, respectively. Mean lesion conspicuity (reader 1/reader 2) was, for 68Ga-RM2 PET/MRI, 2.4 ± 0.5/2.7 ± 0.5, 2.9 ± 0.3/2.9 ± 0.3, 3.0 ± 0.0/3.0 ± 0.0, 3.0 ± 0.0/3.0 ± 0.0, and 3.0 ± 0.0/3.0 ± 0.0, respectively, and for 68Ga-PSMA-11 PET/MRI it was 2.6 ± 0.5/2.8 ± 0.4, 3.0 ± 0.2/2.9 ± 0.3, 3.0 ± 0.1/3.0 ± 0.2, 3.0 ± 0.0/3.0 ± 0.0, and 3.0 ± 0.0/3.0 ± 0.0, respectively. CONCLUSION. Our data support routine 3-minute acquisitions, which provided results very similar to those for 4-minute acquisitions. Two-minute acquisitions, although they lowered quality somewhat, provided acceptable performance and warrant consideration. CLINICAL IMPACT. When PC is evaluated using modern PET/MRI equipment, time per bed position may be reduced compared with historically used times. TRIAL REGISTRATION. ClinicalTrials.gov NCT02624518 and NCT02678351.
Collapse
|
4
|
Seo Y, Khalighi MM, Wangerin KA, Deller TW, Wang YH, Jivan S, Kohi MP, Aggarwal R, Flavell RR, Behr SC, Evans MJ. Quantitative and Qualitative Improvement of Low-Count [ 68Ga]Citrate and [ 90Y]Microspheres PET Image Reconstructions Using Block Sequential Regularized Expectation Maximization Algorithm. Mol Imaging Biol 2020; 22:208-216. [PMID: 30993558 PMCID: PMC6800603 DOI: 10.1007/s11307-019-01347-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE There are several important positron emission tomography (PET) imaging scenarios that require imaging with very low photon statistics, for which both quantitative accuracy and visual quality should not be neglected. For example, PET imaging with the low photon statistics is closely related to active efforts to significantly reduce radiation exposure from radiopharmaceuticals. We investigated two examples of low-count PET imaging: (a) imaging [90Y]microsphere radioembolization that suffers the very small positron emission fraction of Y-90's decay processes, and (b) cancer imaging with [68Ga]citrate with uptake time of 3-4 half-lives, necessary for visualizing tumors. In particular, we investigated a type of penalized likelihood reconstruction algorithm, block sequential regularized expectation maximization (BSREM), for improving both image quality and quantitative accuracy of these low-count PET imaging cases. PROCEDURES The NEMA/IEC Body phantom filled with aqueous solution of Y-90 or Ga-68 was scanned to mimic the low-count scenarios of corresponding patient data acquisitions on a time-of-flight (TOF) PET/magnetic resonance imaging system. Contrast recovery, background variation, and signal-to-noise ratio were evaluated in different sets of count densities using both conventional TOF ordered subset expectation (TOF-OSEM) and TOF-BSREM algorithms. The regularization parameter, beta, in BSREM that controls the tradeoff between image noise and resolution was evaluated to find a value for improved confidence in image interpretation. Visual quality assessment of the images obtained from patients administered with [68Ga]citrate (n = 6) was performed. We also made preliminary visual image quality assessment for one patient with [90Y]microspheres. In Y-90 imaging, the effect of 511-keV energy window selection for minimizing the number of random events was also evaluated. RESULTS Quantitatively, phantom images reconstructed with TOF-BSREM showed improved contrast recovery, background variation, and signal-to-noise ratio values over images reconstructed with TOF-OSEM. Both phantom and patient studies of delayed imaging of [68Ga]citrate show that TOF-BSREM with beta = 500 gives the best tradeoff between image noise and image resolution based on visual assessment by the readers. The NEMA-IQ phantom study with [90Y]microspheres shows that the narrow energy window (460-562 keV) recovers activity concentrations in small spheres better than the regular energy window (425-650 keV) with the beta value of 2000 using the TOF-BSREM algorithm. For the images obtained from patients with [68Ga]citrate using TOF-BSREM with beta = 500, the visual analogue scale (VAS) was improved by 17 % and the Likert score was increased by 1 point on average, both in comparison to corresponding scores for images reconstructed using TOF-OSEM. CONCLUSION Our investigation shows that the TOF-BSREM algorithm improves the image quality and quantitative accuracy in low-count PET imaging scenarios. However, the beta value in this algorithm needed to be adjusted for each radiopharmaceutical and counting statistics at the time of scans.
Collapse
Affiliation(s)
- Youngho Seo
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, 94143-0946, USA.
- Department of Radiation Oncology, University of California, San Francisco, CA, USA.
- UC Berkeley - UCSF Graduate Program in Bioengineering, University of California, Berkeley and San Francisco, California, CA, USA.
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Mohammad Mehdi Khalighi
- GE Healthcare, Waukesha, WI, USA
- Department of Radiology, Stanford University, Stanford, CA, USA
| | | | | | | | - Salma Jivan
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, 94143-0946, USA
| | - Maureen P Kohi
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, 94143-0946, USA
| | - Rahul Aggarwal
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, CA, USA
| | - Robert R Flavell
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, 94143-0946, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Spencer C Behr
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, 94143-0946, USA
| | - Michael J Evans
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, 94143-0946, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| |
Collapse
|
5
|
Rezaei S, Ghafarian P, Bakhshayesh-Karam M, Uribe CF, Rahmim A, Sarkar S, Ay MR. The impact of iterative reconstruction protocol, signal-to-background ratio and background activity on measurement of PET spatial resolution. Jpn J Radiol 2020; 38:231-239. [PMID: 31894449 DOI: 10.1007/s11604-019-00914-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/19/2019] [Indexed: 02/04/2023]
Abstract
OBJECTIVES The present study aims to assess the impact of acquisition time, different iterative reconstruction protocols as well as image context (including contrast levels and background activities) on the measured spatial resolution in PET images. METHODS Discovery 690 PET/CT scanner was used to quantify spatial resolutions in terms of full width half maximum (FWHM) as derived (i) directly from capillary tubes embedded in air and (ii) indirectly from 10 mm-diameter sphere of the NEMA phantom. Different signal-to-background ratios (SBRs), background activity levels and acquisition times were applied. The emission data were reconstructed using iterative reconstruction protocols. Various combinations of iterations and subsets (it × sub) were evaluated. RESULTS For capillary tubes, improved FWHM values were obtained for higher it × sub, with improved performance for PSF algorithms relative to non-PSF algorithms. For the NEMA phantom, by increasing acquisition times from 1 to 5 min, intrinsic FWHM for reconstructions with it × sub 32 (54) was improved by 15.3% (13.2%), 15.1% (13.8%), 14.5% (12.8%) and 13.7% (12.7%) for OSEM, OSEM + PSF, OSEM + TOF and OSEM + PSF + TOF, respectively. Furthermore, for all reconstruction protocols, the FWHM improved with more impact for higher it × sub. CONCLUSION Our results indicate that PET spatial resolution is greatly affected by SBR, background activity and the choice of the reconstruction protocols.
Collapse
Affiliation(s)
- Sahar Rezaei
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Molecular and Cellular Imaging (RCMCI), Tehran University of Medical Sciences, Tehran, Iran
| | - Pardis Ghafarian
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, 19569-44413, Tehran, Iran. .,PET/CT and Cyclotron Center, Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mehrdad Bakhshayesh-Karam
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, 19569-44413, Tehran, Iran.,PET/CT and Cyclotron Center, Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Carlos F Uribe
- Department of Functional Imaging, BC Cancer, Vancouver, BC, Canada
| | - Arman Rahmim
- Departments of Radiology and Physics, University of British Columbia, Vancouver, Canada.,Department of Integrative Oncology, BC Cancer Research Centre, Vancouver, Canada
| | - Saeed Sarkar
- Research Center for Molecular and Cellular Imaging (RCMCI), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Ay
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Molecular and Cellular Imaging (RCMCI), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Schiller F, Frings L, Thurow J, Meyer PT, Mix M. Limits for Reduction of Acquisition Time and Administered Activity in 18F-FDG PET Studies of Alzheimer Dementia and Frontotemporal Dementia. J Nucl Med 2019; 60:1764-1770. [DOI: 10.2967/jnumed.119.227132] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 04/16/2019] [Indexed: 11/16/2022] Open
|
7
|
Vuong D, Tanadini-Lang S, Huellner MW, Veit-Haibach P, Unkelbach J, Andratschke N, Kraft J, Guckenberger M, Bogowicz M. Interchangeability of radiomic features between [18F]-FDG PET/CT and [18F]-FDG PET/MR. Med Phys 2019; 46:1677-1685. [PMID: 30714158 DOI: 10.1002/mp.13422] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 01/13/2019] [Accepted: 01/14/2019] [Indexed: 12/22/2022] Open
Abstract
PURPOSE Radiomics is a promising tool for identification of new prognostic biomarkers. However, image reconstruction settings and test-retest variability may influence the absolute values of radiomic features. Unstable radiomic features cannot be used as reliable biomarkers. PET/MR is becoming increasingly available and often replaces PET/CT for different indications. The aim of this study was to quantify to what extend [18F]-FDG PET/CT radiomics models can be transferred to [18F]-FDG PET/MR and thereby to investigate the feasibility of combined PET/CT-PET/MR models. For this purpose, we compared PET radiomic features calculated on PET/MR and PET/CT and on a 4D-gated PET/MR dataset to select radiomic features that are robust to attenuation correction differences and test-retest variability, respectively. METHODS Two cohorts of patients with lung lesions were studied. In the first cohort (n = 10), inhale and exhale phases of a 4D [18F]-FDG PET/MR (4DPETMR) scan were used as a surrogate for a test-retest dataset. In the second cohort (n = 9), patients underwent first an [18F]-FDG PET/MR scan (SIGNA PET/MR, GE Healthcare, Waukesha) followed by an [18F]-FDG PET/CT scan (Discovery 690, GE Healthcare) with a delay of 33 ± 5 min (PETCT-PETMR). Lesions were segmented on inhale and exhale 4D-PET phases and on the individual PET scans from PET/CT and PET/MR with two semi-automated methods (gradient-based and threshold-based). The scan resolution was 2.73 × 2.73 × 3.27 mm and 2.34 × 2.34 × 2.78 mm for the PET/CT and PET/MR, respectively. In total, 1355 radiomic features were calculated, i.e., shape (n = 18), intensity (n = 17), texture (n = 136), and wavelet (n = 1184). The intraclass correlation coefficient (ICC) was calculated to compare the radiomic features of the 4DPETMR (ICC(1,1)) and PETCT-PETMR (ICC(3,1)) datasets. An ICC > 0.9 was considered stable among both types of PET scans. RESULTS AND CONCLUSION The 4DPETMR showed highest stability for shape, intensity, and texture (>80%) and lower stability for wavelet features (40%). Gradient-based method showed higher stability compared to threshold-based method except from shape features. In PETCT-PETMR, more than 61% of shape and intensity features were stable for both segmentation methods. However, a reduced stability was observed for texture (50%) and wavelet (<30%) features. More wavelet features were robust in the smoothed images (low-pass filtering) compared to images with emphasized heterogeneity (high-pass filtering). Comparing stable features of both investigations, highest agreement was found for intensity and lower agreement for shape, texture, and wavelet features. Only 53.6% of stable texture features in 4DPETMR were also stable in PETCT-PETMR, and even less in case of wavelet features (40.4%). Approximately 16.9% (texture) and 43.2% (wavelet) of stable PETCT-PETMR features are unstable in 4DPETMR. To conclude, shape and intensity features were robust when comparing two types of [18F]-FDG PET scans (PET/CT and PET/MR). Reduced stability was observed for texture and wavelet features. We identified multiple origins of instability of radiomic features, such as attenuation correction differences, different uptake times, and spatial resolution. This needs to be considered when models based on PET/CT are transferred PET/MR models or when combined models are used.
Collapse
Affiliation(s)
- Diem Vuong
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, 8091, Switzerland
| | - Stephanie Tanadini-Lang
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, 8091, Switzerland
| | - Martin W Huellner
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, 8091, Switzerland
| | - Patrick Veit-Haibach
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, 8091, Switzerland
| | - Jan Unkelbach
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, 8091, Switzerland
| | - Nicolaus Andratschke
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, 8091, Switzerland
| | - Johannes Kraft
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, 8091, Switzerland
| | - Matthias Guckenberger
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, 8091, Switzerland
| | - Marta Bogowicz
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, 8091, Switzerland
| |
Collapse
|
8
|
Galgano S, Viets Z, Fowler K, Gore L, Thomas JV, McNamara M, McConathy J. Practical Considerations for Clinical PET/MR Imaging. PET Clin 2018; 13:97-112. [PMID: 29157390 DOI: 10.1016/j.cpet.2017.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Clinical PET/MR imaging is currently performed at a number of centers around the world as part of routine standard of care. This article focuses on issues and considerations for a clinical PET/MR imaging program, focusing on routine standard-of-care studies. Although local factors influence how clinical PET/MR imaging is implemented, the approaches and considerations described here intend to apply to most clinical programs. PET/MR imaging provides many more options than PET/computed tomography with diagnostic advantages for certain clinical applications but with added complexity. A recurring theme is matching the PET/MR imaging protocol to the clinical application to balance diagnostic accuracy with efficiency.
Collapse
Affiliation(s)
- Samuel Galgano
- Department of Radiology, University of Alabama at Birmingham (UAB), 619 19th Street South, Birmingham, AL 35249, USA
| | - Zachary Viets
- Department of Radiology, Washington University in St Louis, 510 South Kingshighway Boulevard, St. Louis, MO 63110, USA
| | - Kathryn Fowler
- Department of Radiology, Washington University in St Louis, 510 South Kingshighway Boulevard, St. Louis, MO 63110, USA
| | - Lael Gore
- Department of Radiology, University of Alabama at Birmingham (UAB), 619 19th Street South, Birmingham, AL 35249, USA
| | - John V Thomas
- Department of Radiology, University of Alabama at Birmingham (UAB), 619 19th Street South, Birmingham, AL 35249, USA
| | - Michelle McNamara
- Department of Radiology, University of Alabama at Birmingham (UAB), 619 19th Street South, Birmingham, AL 35249, USA
| | - Jonathan McConathy
- Department of Radiology, University of Alabama at Birmingham (UAB), 619 19th Street South, Birmingham, AL 35249, USA.
| |
Collapse
|
9
|
Sah BR, Ghafoor S, Burger IA, Ter Voert EEGW, Sekine T, Delso G, Huellner M, Dedes KJ, Boss A, Veit-Haibach P. Feasibility of 18F-FDG Dose Reductions in Breast Cancer PET/MRI. J Nucl Med 2018; 59:1817-1822. [PMID: 29880506 DOI: 10.2967/jnumed.118.209007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/27/2018] [Indexed: 12/16/2022] Open
Abstract
The goal of this study was to determine the level of clinically acceptable 18F-FDG dose reduction in time-of-flight PET/MRI in patients with breast cancer. Methods: Twenty-six consecutive women with histologically proven breast cancer were analyzed (median age, 51 y; range, 34-83 y). Simulated dose-reduced PET images were generated by unlisting the list-mode data on PET/MRI. The acquired 20-min PET frame was reconstructed in 5 ways: a reconstruction of the first 2 min with 3 iterations and 28 subsets for reference, and reconstructions simulating 100%, 20%, 10%, and 5% of the original dose. General image quality and artifacts, image sharpness, image noise, and lesion detectability were analyzed using a 4-point scale. Qualitative parameters were compared using the nonparametric Friedman test for multiple samples and the Wilcoxon signed-rank test for paired samples. Different groups of independent samples were compared using the Mann-Whitney U test. Results: Overall, 355 lesions (71 lesions with 5 different reconstructions each) were evaluated. The 20-min reconstruction with 100% injected dose showed the best results in all categories. For general image quality and artifacts, image sharpness, and noise, the reconstructions with a simulated dose of 20% and 10% were significantly better than the 2-min reconstructions (P ≤ 0.001). Furthermore, 20%, 10%, and 5% reconstructions did not yield results different from those of the 2-min reconstruction for detectability of the primary lesion. For 10% of the injected dose, a calculated mean dose of 22.6 ± 5.5 MBq (range, 17.9-36.9 MBq) would have been applied, resulting in an estimated whole-body radiation burden of 0.5 ± 0.1 mSv (range, 0.4-0.7 mSv). Conclusion: Ten percent of the standard dose of 18F-FDG (reduction of ≤90%) results in clinically acceptable PET image quality in time-of-flight PET/MRI. The calculated radiation exposure would be comparable to the effective dose of a single digital mammogram. A reduction of radiation burden to this level might justify partial-body examinations with PET/MRI for dedicated indications.
Collapse
Affiliation(s)
- Bert-Ram Sah
- Department of Nuclear Medicine, University Hospital of Zurich, Zurich, Switzerland .,Department of Cancer Imaging, King`s College London, London, United Kingdom.,Department of Diagnostic and Interventional Radiology, University Hospital of Zurich, Zurich, Switzerland.,University of Zurich, Zurich, Switzerland
| | - Soleen Ghafoor
- Department of Diagnostic and Interventional Radiology, University Hospital of Zurich, Zurich, Switzerland.,University of Zurich, Zurich, Switzerland
| | - Irene A Burger
- Department of Nuclear Medicine, University Hospital of Zurich, Zurich, Switzerland.,University of Zurich, Zurich, Switzerland.,Cancer Center Zurich, Zurich, Switzerland
| | - Edwin E G W Ter Voert
- Department of Nuclear Medicine, University Hospital of Zurich, Zurich, Switzerland.,University of Zurich, Zurich, Switzerland
| | - Tetsuro Sekine
- Department of Nuclear Medicine, University Hospital of Zurich, Zurich, Switzerland
| | - Gaspar Delso
- Department of Nuclear Medicine, University Hospital of Zurich, Zurich, Switzerland.,GE Healthcare, Waukesha, Wisconsin
| | - Martin Huellner
- Department of Nuclear Medicine, University Hospital of Zurich, Zurich, Switzerland.,University of Zurich, Zurich, Switzerland
| | - Konstantin J Dedes
- Cancer Center Zurich, Zurich, Switzerland.,Department of Gynaecology, University Hospital of Zurich, Zurich, Switzerland
| | - Andreas Boss
- Department of Diagnostic and Interventional Radiology, University Hospital of Zurich, Zurich, Switzerland.,University of Zurich, Zurich, Switzerland
| | - Patrick Veit-Haibach
- Department of Nuclear Medicine, University Hospital of Zurich, Zurich, Switzerland.,Department of Diagnostic and Interventional Radiology, University Hospital of Zurich, Zurich, Switzerland.,University of Zurich, Zurich, Switzerland.,Joint Department of Medical Imaging, University Health Network, Toronto, Ontario, Canada; and.,University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Muehlematter UJ, Nagel HW, Becker A, Mueller J, Vokinger KN, de Galiza Barbosa F, Ter Voert EEGT, Veit-Haibach P, Burger IA. Impact of time-of-flight PET on quantification accuracy and lesion detection in simultaneous 18F-choline PET/MRI for prostate cancer. EJNMMI Res 2018; 8:41. [PMID: 29855728 PMCID: PMC5981153 DOI: 10.1186/s13550-018-0390-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/18/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Accurate attenuation correction (AC) is an inherent problem of positron emission tomography magnetic resonance imaging (PET/MRI) systems. Simulation studies showed that time-of-flight (TOF) detectors can reduce PET quantification errors in MRI-based AC. However, its impact on lesion detection in a clinical setting with 18F-choline has not yet been evaluated. Therefore, we compared TOF and non-TOF 18F-choline PET for absolute and relative difference in standard uptake values (SUV) and investigated the detection rate of metastases in prostate cancer patients. RESULTS Non-TOF SUV was significantly lower compared to TOF in all osseous structures, except the skull, in primary lesions of the prostate, and in pelvic nodal and osseous metastasis. Concerning lymph node metastases, both experienced readers detected 16/19 (84%) on TOF PET, whereas on non-TOF PET readers 1 and 2 detected 11 (58%), and 14 (73%), respectively. With TOF PET readers 1 and 2 detected 14/15 (93%) and 11/15 (73%) bone metastases, respectively, whereas detection rate with non-TOF PET was 73% (11/15) for reader 1 and 53% (8/15) for reader 2. The interreader agreement was good for osseous metastasis detection on TOF (kappa 0.636, 95% confidence interval [CI] 0.453-0.810) and moderate on non-TOF (kappa = 0.600, CI 0.438-0.780). CONCLUSION TOF reconstruction for 18F-choline PET/MRI shows higher SUV measurements compared to non-TOF reconstructions in physiological osseous structures as well as pelvic malignancies. Our results suggest that addition of TOF information has a positive impact on lesion detection rate for lymph node and bone metastasis in prostate cancer patients.
Collapse
Affiliation(s)
- Urs J Muehlematter
- Department of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland.
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland.
| | - Hannes W Nagel
- Department of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Anton Becker
- Department of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Julian Mueller
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland
| | | | | | - Edwin E G T Ter Voert
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Patrick Veit-Haibach
- Department Joint Medical Imaging, Toronto General Hospital, Toronto, ON, Canada
- University of Toronto, Toronto, ON, Canada
| | - Irene A Burger
- Department of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
11
|
Mannheim JG, Schmid AM, Schwenck J, Katiyar P, Herfert K, Pichler BJ, Disselhorst JA. PET/MRI Hybrid Systems. Semin Nucl Med 2018; 48:332-347. [PMID: 29852943 DOI: 10.1053/j.semnuclmed.2018.02.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Over the last decade, the combination of PET and MRI in one system has proven to be highly successful in basic preclinical research, as well as in clinical research. Nowadays, PET/MRI systems are well established in preclinical imaging and are progressing into clinical applications to provide further insights into specific diseases, therapeutic assessments, and biological pathways. Certain challenges in terms of hardware had to be resolved concurrently with the development of new techniques to be able to reach the full potential of both combined techniques. This review provides an overview of these challenges and describes the opportunities that simultaneous PET/MRI systems can exploit in comparison with stand-alone or other combined hybrid systems. New approaches were developed for simultaneous PET/MRI systems to correct for attenuation of 511 keV photons because MRI does not provide direct information on gamma photon attenuation properties. Furthermore, new algorithms to correct for motion were developed, because MRI can accurately detect motion with high temporal resolution. The additional information gained by the MRI can be employed to correct for partial volume effects as well. The development of new detector designs in combination with fast-decaying scintillator crystal materials enabled time-of-flight detection and incorporation in the reconstruction algorithms. Furthermore, this review lists the currently commercially available systems both for preclinical and clinical imaging and provides an overview of applications in both fields. In this regard, special emphasis has been placed on data analysis and the potential for both modalities to evolve with advanced image analysis tools, such as cluster analysis and machine learning.
Collapse
Affiliation(s)
- Julia G Mannheim
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Andreas M Schmid
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Johannes Schwenck
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany; Department of Nuclear Medicine and Clinical Molecular Imaging, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Prateek Katiyar
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Kristina Herfert
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Bernd J Pichler
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany.
| | - Jonathan A Disselhorst
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University Tuebingen, Tuebingen, Germany
| |
Collapse
|
12
|
Quantitative and Visual Assessments toward Potential Sub-mSv or Ultrafast FDG PET Using High-Sensitivity TOF PET in PET/MRI. Mol Imaging Biol 2017; 20:492-500. [DOI: 10.1007/s11307-017-1145-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Quantification accuracy of neuro-oncology PET data as a function of emission scan duration in PET/MR compared to PET/CT. Eur J Radiol 2017; 95:257-264. [PMID: 28987677 DOI: 10.1016/j.ejrad.2017.08.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 08/23/2017] [Indexed: 11/27/2022]
Abstract
OBJECTIVES To evaluate and compare the effect of reduced acquisition time, as a surrogate of injected activity, on the PET quantification accuracy in PET/CT and PET/MR imaging. METHODS Twenty min 18F-FDG phantom measurements and 10min 18F-FET brain scans were acquired in a Biograph-True-Point-True-View PET/CT (n=8) and a Biograph mMR PET/MR (n=16). Listmode data were repeatedly split into frames of 1min to 10min length and reconstructed using two different reconstruction settings of a 3D-OSEM algorithm: with post-filtering ("OSEM"), and without post-filtering but with resolution recovery ("PSF"). Recovery coefficients (RCmax, RCA50) and standard uptake values (SUVmax, SUVA50) were evaluated. RESULTS RCmax (phantom) and SUVmax (patients) increased significantly when reducing the frame duration. Significantly lower deviations were observed for RCA50 and SUVA50, respectively, making them more appropriate to compare PET studies at different number of counts. No statistical significant differences were observed when using post-filtering and reducing the frame time to 4min (RCA50, reference 20min, phantom) and to 3min (SUVA50, reference 10min, patients). CONCLUSIONS For hybrid aminoacid brain imaging, frame duration (or injected activity) can potentially be reduced to 30% of the standard used in clinical routine without significant changes on the quantification accuracy of the PET images if adequate reconstruction settings and quantitative measures are used. Frame times below 4min in the NEMA phantom are not advisable to obtain quantitative and reproducible measures.
Collapse
|
14
|
Sekine T, Delso G, Zeimpekis KG, de Galiza Barbosa F, Ter Voert EEGW, Huellner M, Veit-Haibach P. Reduction of 18F-FDG Dose in Clinical PET/MR Imaging by Using Silicon Photomultiplier Detectors. Radiology 2017; 286:249-259. [PMID: 28914600 DOI: 10.1148/radiol.2017162305] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Purpose To determine the level of clinically acceptable reduction in injected fluorine 18 (18F) fluorodeoxyglucose (FDG) dose in time-of-flight (TOF)-positron emission tomography(PET)/magnetic resonance (MR) imaging by using silicon photomultiplier (SiPM) detectors compared with TOF-PET/computed tomography (CT) using Lu1.8Y0.2SiO5(Ce), or LYSO, detectors in patients with different body mass indexes (BMIs). Materials and Methods Patients were enrolled in this study as part of a larger prospective study with a different purpose than evaluated in this study (NCT02316431). All patients gave written informed consent prior to inclusion into the study. In this study, 74 patients with different malignant diseases underwent sequential whole-body TOF-PET/CT and TOF-PET/MR imaging. PET images with simulated reduction of injected 18F-FDG doses were generated by unlisting the list-mode data from PET/MR imaging. Two readers rated the image quality of whole-body data sets, as well as the image quality in each body compartment, and evaluated the conspicuity of malignant lesions. Results The image quality with 70% or 60% of the injected dose of 18F-FDG at PET/MR imaging was comparable to that at PET/CT. With 50% of the injected dose, comparable image quality was maintained among patients with a BMI of less than 25 kg/m2. PET images without TOF reconstruction showed higher artifact scores and deteriorated sharpness than those with TOF reconstruction. Conclusion Sixty percent of the usually injected 18F-FDG dose (reduction of up to 40%) in patients with a BMI of more than 25 kg/m2 results in clinically adequate PET image quality in TOF-PET/MR imaging performed by using SiPM detectors. Additionally, in patients with a BMI of less than 25 kg/m2, 50% of the injected dose may safely be used. © RSNA, 2017 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Tetsuro Sekine
- From the Departments of Nuclear Medicine (T.S., K.G.Z., F.d.G.B., E.E.G.W.t.V., M.H., P.V.), Neuroradiology (M.H.), and Diagnostic and Interventional Radiology (P.V.), University Hospital Zurich, Ramistrasse 100, 8091 Zurich, Switzerland; Department of Radiology, Nippon Medical School, Tokyo, Japan (T.S.); Applied Science Laboratory, GE Healthcare, Waukesha, Wis (G.D.); and University of Zurich, Zurich, Switzerland (E.E.G.W.t.V., M.H., P.V.)
| | - Gaspar Delso
- From the Departments of Nuclear Medicine (T.S., K.G.Z., F.d.G.B., E.E.G.W.t.V., M.H., P.V.), Neuroradiology (M.H.), and Diagnostic and Interventional Radiology (P.V.), University Hospital Zurich, Ramistrasse 100, 8091 Zurich, Switzerland; Department of Radiology, Nippon Medical School, Tokyo, Japan (T.S.); Applied Science Laboratory, GE Healthcare, Waukesha, Wis (G.D.); and University of Zurich, Zurich, Switzerland (E.E.G.W.t.V., M.H., P.V.)
| | - Konstantinos G Zeimpekis
- From the Departments of Nuclear Medicine (T.S., K.G.Z., F.d.G.B., E.E.G.W.t.V., M.H., P.V.), Neuroradiology (M.H.), and Diagnostic and Interventional Radiology (P.V.), University Hospital Zurich, Ramistrasse 100, 8091 Zurich, Switzerland; Department of Radiology, Nippon Medical School, Tokyo, Japan (T.S.); Applied Science Laboratory, GE Healthcare, Waukesha, Wis (G.D.); and University of Zurich, Zurich, Switzerland (E.E.G.W.t.V., M.H., P.V.)
| | - Felipe de Galiza Barbosa
- From the Departments of Nuclear Medicine (T.S., K.G.Z., F.d.G.B., E.E.G.W.t.V., M.H., P.V.), Neuroradiology (M.H.), and Diagnostic and Interventional Radiology (P.V.), University Hospital Zurich, Ramistrasse 100, 8091 Zurich, Switzerland; Department of Radiology, Nippon Medical School, Tokyo, Japan (T.S.); Applied Science Laboratory, GE Healthcare, Waukesha, Wis (G.D.); and University of Zurich, Zurich, Switzerland (E.E.G.W.t.V., M.H., P.V.)
| | - Edwin E G W Ter Voert
- From the Departments of Nuclear Medicine (T.S., K.G.Z., F.d.G.B., E.E.G.W.t.V., M.H., P.V.), Neuroradiology (M.H.), and Diagnostic and Interventional Radiology (P.V.), University Hospital Zurich, Ramistrasse 100, 8091 Zurich, Switzerland; Department of Radiology, Nippon Medical School, Tokyo, Japan (T.S.); Applied Science Laboratory, GE Healthcare, Waukesha, Wis (G.D.); and University of Zurich, Zurich, Switzerland (E.E.G.W.t.V., M.H., P.V.)
| | - Martin Huellner
- From the Departments of Nuclear Medicine (T.S., K.G.Z., F.d.G.B., E.E.G.W.t.V., M.H., P.V.), Neuroradiology (M.H.), and Diagnostic and Interventional Radiology (P.V.), University Hospital Zurich, Ramistrasse 100, 8091 Zurich, Switzerland; Department of Radiology, Nippon Medical School, Tokyo, Japan (T.S.); Applied Science Laboratory, GE Healthcare, Waukesha, Wis (G.D.); and University of Zurich, Zurich, Switzerland (E.E.G.W.t.V., M.H., P.V.)
| | - Patrick Veit-Haibach
- From the Departments of Nuclear Medicine (T.S., K.G.Z., F.d.G.B., E.E.G.W.t.V., M.H., P.V.), Neuroradiology (M.H.), and Diagnostic and Interventional Radiology (P.V.), University Hospital Zurich, Ramistrasse 100, 8091 Zurich, Switzerland; Department of Radiology, Nippon Medical School, Tokyo, Japan (T.S.); Applied Science Laboratory, GE Healthcare, Waukesha, Wis (G.D.); and University of Zurich, Zurich, Switzerland (E.E.G.W.t.V., M.H., P.V.)
| |
Collapse
|
15
|
Tombetti E, Mason JC. Application of imaging techniques for Takayasu arteritis. Presse Med 2017; 46:e215-e223. [PMID: 28757178 DOI: 10.1016/j.lpm.2017.03.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 03/07/2017] [Indexed: 11/26/2022] Open
Abstract
Arterial injury with subsequent remodelling and predisposition to arterial stenosis and/or dilation are the hallmarks of Takayasu arteritis. The degree of arterial damage closely aligns with prognosis and therefore its prevention is the predominant aim of therapy. Non-invasive imaging has greatly improved our ability to identify the extent and severity of disease and to monitor its progress. However, many questions remain concerning the optimal use of individual modalities at different stages of disease. Imaging methods for the quantification of arterial damage are lacking. Likewise, no single technique can accurately determine disease activity within the arterial wall or distinguish inflammatory and non-inflammatory disease progression. The aim of this review is to outline current imaging strategies in Takayasu arteritis, their individual roles in diagnosis and disease monitoring and potential future advances.
Collapse
Affiliation(s)
- Enrico Tombetti
- San Raffaele Scientific Institute, Department of Immunology, Transplantation and Infectious Diseases, Milano, Italy.
| | - Justin C Mason
- Hammersmith Hospital, Imperial College London, Rheumatology and Vascular Science, London, UK
| |
Collapse
|
16
|
Abstract
The future clinical use of the combination of positron emission tomography (PET) with 2-Fluoro[F-18]-2-Deoxy-d-Glucose (FDG)and MRI is still unclear. If a patient requires a PET and breast DCE-MRI for staging purposes, both scans can be done in the same visit. In the breast, DCE-MRI is better at lesion detection (sensitivity), margin evaluation, and has a higher specificity than CT. The potential for multiparametric qualitative and quantitative imaging is also an advantage of PET/MRI which provides opportunity to improve tumor characterization and may ultimately lead to outcome prediction. This review discusses technical and clinical aspects of this emerging technology in breast cancer patients.
Collapse
|
17
|
Galgano S, Viets Z, Fowler K, Gore L, Thomas JV, McNamara M, McConathy J. Practical Considerations for Clinical PET/MR Imaging. Magn Reson Imaging Clin N Am 2017; 25:281-296. [DOI: 10.1016/j.mric.2016.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
18
|
18F-FDG PET reveals unique features of large vessel inflammation in patients with Takayasu’s arteritis. Eur J Nucl Med Mol Imaging 2017; 44:1109-1118. [DOI: 10.1007/s00259-017-3639-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 01/25/2017] [Indexed: 12/14/2022]
|
19
|
Ter Voert EEGW, Veit-Haibach P, Ahn S, Wiesinger F, Khalighi MM, Levin CS, Iagaru AH, Zaharchuk G, Huellner M, Delso G. Clinical evaluation of TOF versus non-TOF on PET artifacts in simultaneous PET/MR: a dual centre experience. Eur J Nucl Med Mol Imaging 2017; 44:1223-1233. [PMID: 28124091 DOI: 10.1007/s00259-017-3619-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 01/04/2017] [Indexed: 12/12/2022]
Abstract
PURPOSE Our objective was to determine clinically the value of time-of-flight (TOF) information in reducing PET artifacts and improving PET image quality and accuracy in simultaneous TOF PET/MR scanning. METHODS A total 65 patients who underwent a comparative scan in a simultaneous TOF PET/MR scanner were included. TOF and non-TOF PET images were reconstructed, clinically examined, compared and scored. PET imaging artifacts were categorized as large or small implant-related artifacts, as dental implant-related artifacts, and as implant-unrelated artifacts. Differences in image quality, especially those related to (implant) artifacts, were assessed using a scale ranging from 0 (no artifact) to 4 (severe artifact). RESULTS A total of 87 image artifacts were found and evaluated. Four patients had large and eight patients small implant-related artifacts, 27 patients had dental implants/fillings, and 48 patients had implant-unrelated artifacts. The average score was 1.14 ± 0.82 for non-TOF PET images and 0.53 ± 0.66 for TOF images (p < 0.01) indicating that artifacts were less noticeable when TOF information was included. CONCLUSION Our study indicates that PET image artifacts are significantly mitigated with integration of TOF information in simultaneous PET/MR. The impact is predominantly seen in patients with significant artifacts due to metal implants.
Collapse
Affiliation(s)
- Edwin E G W Ter Voert
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, CH-8091, Zurich, Switzerland.
- University of Zurich, Zurich, Switzerland.
| | - Patrick Veit-Haibach
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, CH-8091, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
- Department of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | | | | | | | - Craig S Levin
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA
| | - Andrei H Iagaru
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Stanford University, Stanford, CA, USA
| | - Greg Zaharchuk
- Department of Radiology, Neuroradiology, Stanford University, Stanford, CA, USA
| | - Martin Huellner
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, CH-8091, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
- Department of Neuroradiology, University Hospital Zurich, Zurich, Switzerland
| | | |
Collapse
|
20
|
Hope TA, Verdin EF, Bergsland EK, Ohliger MA, Corvera CU, Nakakura EK. Correcting for respiratory motion in liver PET/MRI: preliminary evaluation of the utility of bellows and navigated hepatobiliary phase imaging. EJNMMI Phys 2015; 2:21. [PMID: 26501822 PMCID: PMC4573645 DOI: 10.1186/s40658-015-0125-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 09/11/2015] [Indexed: 12/21/2022] Open
Abstract
Background The purpose of this study was to evaluate the utility of bellows-based respiratory compensation and navigated hepatobiliary phase imaging to correct for respiratory motion in the setting of dedicated liver PET/MRI. Methods Institutional review board approval and informed consent were obtained. Six patients with metastatic neuroendocrine tumor were imaged using Ga-68 DOTA-TOC PET/MRI. Whole body imaging and a dedicated 15-min liver PET acquisition was performed, in addition to navigated and breath-held hepatobiliary phase (HBP) MRI. Liver PET data was reconstructed three ways: the entire data set (liver PET), gated using respiratory bellows (RC-liver PET), and a non-gated data set reconstructed using the same amount of data used in the RC-liver PET (shortened liver PET). Liver lesions were evaluated using SUVmax, SUVpeak, SUVmean, and Volisocontour. Additionally, the displacement of each lesion between the RC-liver PET images and the navigated and breath-held HBP images was calculated. Results Respiratory compensation resulted in a 43 % increase in SUVs compared to ungated data (liver vs RC-liver PET SUVmax 26.0 vs 37.3, p < 0.001) and a 25 % increase compared to a non-gated reconstruction using the same amount of data (RC-liver vs shortened liver PET SUVmax 26.0 vs 32.6, p < 0.001). Lesion displacement was minimized using navigated HBP MRI (1.3 ± 1.0 mm) compared to breath-held HBP MRI (23.3 ± 1.0 mm). Conclusions Respiratory bellows can provide accurate respiratory compensation when imaging liver lesions using PET/MRI, and results in increased SUVs due to a combination of increased image noise and reduced respiratory blurring. Additionally, navigated HBP MRI accurately aligns with respiratory compensated PET data.
Collapse
Affiliation(s)
- Thomas A Hope
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA. .,Department of Radiology, San Francisco VA Medical Center, San Francisco, CA, USA.
| | - Emily F Verdin
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Emily K Bergsland
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Michael A Ohliger
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA.,Department of Radiology, San Francisco General Hospital, San Francisco, CA, USA
| | - Carlos U Corvera
- Division of Surgical Oncology, Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Eric K Nakakura
- Division of Surgical Oncology, Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|