1
|
Layton ME, Kern JC, Hartingh TJ, Shipe WD, Raheem I, Kandebo M, Hayes RP, Huszar S, Eddins D, Ma B, Fuerst J, Wollenberg GK, Li J, Fritzen J, McGaughey GB, Uslaner JM, Smith SM, Coleman PJ, Cox CD. Discovery of MK-8189, a Highly Potent and Selective PDE10A Inhibitor for the Treatment of Schizophrenia. J Med Chem 2023; 66:1157-1171. [PMID: 36624931 PMCID: PMC9884086 DOI: 10.1021/acs.jmedchem.2c01521] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Indexed: 01/11/2023]
Abstract
PDE10A is an important regulator of striatal signaling that, when inhibited, can normalize dysfunctional activity. Given the involvement of dysfunctional striatal activity with schizophrenia, PDE10A inhibition represents a potentially novel means for its treatment. With the goal of developing PDE10A inhibitors, early optimization of a fragment hit through rational design led to a series of potent pyrimidine PDE10A inhibitors that required further improvements in physicochemical properties, off-target activities, and pharmacokinetics. Herein we describe the discovery of an isomeric pyrimidine series that addresses the liabilities seen with earlier compounds and resulted in the invention of compound 18 (MK-8189), which is currently in Phase 2b clinical development for the treatment of schizophrenia.
Collapse
Affiliation(s)
- Mark E. Layton
- Discovery
Chemistry, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Jeffrey C. Kern
- Discovery
Chemistry, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Timothy J. Hartingh
- Discovery
Chemistry, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - William D. Shipe
- Discovery
Chemistry, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Izzat Raheem
- Discovery
Chemistry, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Monika Kandebo
- Neuroscience, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Robert P. Hayes
- Structural
Chemistry, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Sarah Huszar
- In
Vivo Pharmacology, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Donnie Eddins
- In
Vivo Pharmacology, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Bennett Ma
- Pharmacokinetics, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Joy Fuerst
- Discovery
Pharmaceutical Sciences, Merck & Co.,
Inc., West Point, Pennsylvania 19486, United States
| | - Gordon K. Wollenberg
- Nonclinical
Drug Safety, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Jing Li
- Discovery
Process Chemistry, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Jeff Fritzen
- Discovery
Process Chemistry, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Georgia B. McGaughey
- Chemistry
Modeling and Informatics, Merck & Co.,
Inc., West Point, Pennsylvania 19486, United States
| | - Jason M. Uslaner
- Neuroscience, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Sean M. Smith
- Neuroscience, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Paul J. Coleman
- Discovery
Chemistry, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Christopher D. Cox
- Discovery
Chemistry, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| |
Collapse
|
2
|
Brumberg J, Varrone A. New PET radiopharmaceuticals for imaging CNS diseases. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00002-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
3
|
Sun J, Xiao Z, Haider A, Gebhard C, Xu H, Luo HB, Zhang HT, Josephson L, Wang L, Liang SH. Advances in Cyclic Nucleotide Phosphodiesterase-Targeted PET Imaging and Drug Discovery. J Med Chem 2021; 64:7083-7109. [PMID: 34042442 DOI: 10.1021/acs.jmedchem.1c00115] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) control the intracellular concentrations of cAMP and cGMP in virtually all mammalian cells. Accordingly, the PDE family regulates a myriad of physiological functions, including cell proliferation, differentiation and apoptosis, gene expression, central nervous system function, and muscle contraction. Along this line, dysfunction of PDEs has been implicated in neurodegenerative disorders, coronary artery diseases, chronic obstructive pulmonary disease, and cancer development. To date, 11 PDE families have been identified; however, their distinct roles in the various pathologies are largely unexplored and subject to contemporary research efforts. Indeed, there is growing interest for the development of isoform-selective PDE inhibitors as potential therapeutic agents. Similarly, the evolving knowledge on the various PDE isoforms has channeled the identification of new PET probes, allowing isoform-selective imaging. This review highlights recent advances in PDE-targeted PET tracer development, thereby focusing on efforts to assess disease-related PDE pathophysiology and to support isoform-selective drug discovery.
Collapse
Affiliation(s)
- Jiyun Sun
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
| | - Zhiwei Xiao
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
| | - Ahmed Haider
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
| | - Catherine Gebhard
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, Zurich 8006, Switzerland.,Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, Schlieren 8952, Switzerland
| | - Hao Xu
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, 613 West Huangpu Road, Tianhe District, Guangzhou 510630, China
| | - Hai-Bin Luo
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Han-Ting Zhang
- Departments of Neuroscience, Behavioral Medicine & Psychiatry, and Physiology & Pharmacology, the Rockefeller Neuroscience Institute, West Virginia University Health Sciences Center, Morgantown, West Virginia 26506, United States
| | - Lee Josephson
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
| | - Lu Wang
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States.,Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, 613 West Huangpu Road, Tianhe District, Guangzhou 510630, China
| | - Steven H Liang
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
| |
Collapse
|
4
|
Amin HS, Parikh PK, Ghate MD. Medicinal chemistry strategies for the development of phosphodiesterase 10A (PDE10A) inhibitors - An update of recent progress. Eur J Med Chem 2021; 214:113155. [PMID: 33581555 DOI: 10.1016/j.ejmech.2021.113155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/27/2020] [Accepted: 01/03/2021] [Indexed: 11/26/2022]
Abstract
Phosphodiesterase 10A is a member of Phosphodiesterase (PDE)-superfamily of the enzyme which is responsible for hydrolysis of cAMP and cGMP to their inactive forms 5'-AMP and 5'-GMP, respectively. PDE10A is highly expressed in the brain, particularly in the putamen and caudate nucleus. PDE10A plays an important role in the regulation of localization, duration, and amplitude of the cyclic nucleotide signalling within the subcellular domain of these regions, and thereby modulation of PDE10A enzyme can give rise to a new therapeutic approach in the treatment of schizophrenia and other neurodegenerative disorders. Limitation of the conventional therapy of schizophrenia forced the pharmaceutical industry to move their efforts to develop a novel treatment approach with reduced side effects. In the past decade, considerable developments have been made in pursuit of PDE10A centric antipsychotic agents by several pharmaceutical industries due to the distribution of PDE10A in the brain and the ability of PDE10A inhibitors to mimic the effect of D2 antagonists and D1 agonists. However, no selective PDE10A inhibitor is currently available in the market for the treatment of schizophrenia. The present compilation concisely describes the role of PDE10A inhibitors in the therapy of neurodegenerative disorders mainly in psychosis, the structure of PDE10A enzyme, key interaction of different PDE10A inhibitors with human PDE10A enzyme and recent medicinal chemistry developments in designing of safe and effective PDE10A inhibitors for the treatment of schizophrenia. The present compilation also provides useful information and future direction to bring further improvements in the discovery of PDE10A inhibitors.
Collapse
Affiliation(s)
- Harsh S Amin
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, 382 481, Gujarat, India
| | - Palak K Parikh
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, 382 481, Gujarat, India; Department of Pharmaceutical Chemistry, L. M. College of Pharmacy, Navrangpura, Ahmedabad, 380 009, Gujarat, India.
| | - Manjunath D Ghate
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, 382 481, Gujarat, India
| |
Collapse
|
5
|
PET Radioligands for imaging of the PDE10A in human: current status. Neurosci Lett 2019; 691:11-17. [DOI: 10.1016/j.neulet.2018.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 07/19/2018] [Accepted: 08/08/2018] [Indexed: 01/26/2023]
|
6
|
Campbell BR, Gonzalez Trotter D, Hines CDG, Li W, Patel M, Zhang W, Evelhoch JL. In Vivo Imaging in Pharmaceutical Development and Its Impact on the 3Rs. ILAR J 2017; 57:212-220. [PMID: 28053073 PMCID: PMC5886324 DOI: 10.1093/ilar/ilw019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 06/28/2016] [Accepted: 08/04/2016] [Indexed: 12/17/2022] Open
Abstract
It is well understood that the biopharmaceutical industry must improve efficiency along the path from laboratory concept to commercial product. In vivo imaging is recognized as a useful method to provide biomarkers for target engagement, treatment response, safety, and mechanism of action. Imaging biomarkers have the potential to inform the selection of drugs that are more likely to be safe and effective. Most of the imaging modalities for biopharmaceutical research are translatable to the clinic. In vivo imaging does not require removal of tissue to provide biomarkers, thus reducing the number of valuable preclinical subjects required for a study. Longitudinal imaging allows for quantitative intra-subject comparisons, enhancing statistical power, and further reducing the number of subjects needed for the evaluation of treatment effects in animal models. The noninvasive nature of in vivo imaging also provides a valuable approach to alleviate or minimize potential pain, suffering or distress.
Collapse
Affiliation(s)
- Barry R Campbell
- Barry R. Campbell is an Associate Principal Scientist in Translational Biomarkers at Merck Research Laboratories in Kenilworth, New Jersey. Dinko Gonzalez Trotter, PhD, is a Senior Director in Early Clinical Development at Regeneron Pharmaceuticals, Inc., in Tarrytown, New York. Catherine D. Hines, PhD is a Director in Translational Biomarkers at Merck Research Laboratories in West Point, Pennsylvania. Manishkumar Patel, PhD is a Principal Scientist in Translational Biomarkers at Merck Research Laboratories in West Point, Pennsylvania. Weisheng Zhang is a Senior Principal Scientist in Translational Biomarkers at Merck Research Laboratories in Boston, Massachusetts. Jeffrey L. Evelhoch, PhD, is Vice President of Translational Biomarkers at Merck Research Laboratories in West Point, Pennsylvania
| | - Dinko Gonzalez Trotter
- Barry R. Campbell is an Associate Principal Scientist in Translational Biomarkers at Merck Research Laboratories in Kenilworth, New Jersey. Dinko Gonzalez Trotter, PhD, is a Senior Director in Early Clinical Development at Regeneron Pharmaceuticals, Inc., in Tarrytown, New York. Catherine D. Hines, PhD is a Director in Translational Biomarkers at Merck Research Laboratories in West Point, Pennsylvania. Manishkumar Patel, PhD is a Principal Scientist in Translational Biomarkers at Merck Research Laboratories in West Point, Pennsylvania. Weisheng Zhang is a Senior Principal Scientist in Translational Biomarkers at Merck Research Laboratories in Boston, Massachusetts. Jeffrey L. Evelhoch, PhD, is Vice President of Translational Biomarkers at Merck Research Laboratories in West Point, Pennsylvania
| | - Catherine D G Hines
- Barry R. Campbell is an Associate Principal Scientist in Translational Biomarkers at Merck Research Laboratories in Kenilworth, New Jersey. Dinko Gonzalez Trotter, PhD, is a Senior Director in Early Clinical Development at Regeneron Pharmaceuticals, Inc., in Tarrytown, New York. Catherine D. Hines, PhD is a Director in Translational Biomarkers at Merck Research Laboratories in West Point, Pennsylvania. Manishkumar Patel, PhD is a Principal Scientist in Translational Biomarkers at Merck Research Laboratories in West Point, Pennsylvania. Weisheng Zhang is a Senior Principal Scientist in Translational Biomarkers at Merck Research Laboratories in Boston, Massachusetts. Jeffrey L. Evelhoch, PhD, is Vice President of Translational Biomarkers at Merck Research Laboratories in West Point, Pennsylvania
| | - Wenping Li
- Barry R. Campbell is an Associate Principal Scientist in Translational Biomarkers at Merck Research Laboratories in Kenilworth, New Jersey. Dinko Gonzalez Trotter, PhD, is a Senior Director in Early Clinical Development at Regeneron Pharmaceuticals, Inc., in Tarrytown, New York. Catherine D. Hines, PhD is a Director in Translational Biomarkers at Merck Research Laboratories in West Point, Pennsylvania. Manishkumar Patel, PhD is a Principal Scientist in Translational Biomarkers at Merck Research Laboratories in West Point, Pennsylvania. Weisheng Zhang is a Senior Principal Scientist in Translational Biomarkers at Merck Research Laboratories in Boston, Massachusetts. Jeffrey L. Evelhoch, PhD, is Vice President of Translational Biomarkers at Merck Research Laboratories in West Point, Pennsylvania
| | - Manishkumar Patel
- Barry R. Campbell is an Associate Principal Scientist in Translational Biomarkers at Merck Research Laboratories in Kenilworth, New Jersey. Dinko Gonzalez Trotter, PhD, is a Senior Director in Early Clinical Development at Regeneron Pharmaceuticals, Inc., in Tarrytown, New York. Catherine D. Hines, PhD is a Director in Translational Biomarkers at Merck Research Laboratories in West Point, Pennsylvania. Manishkumar Patel, PhD is a Principal Scientist in Translational Biomarkers at Merck Research Laboratories in West Point, Pennsylvania. Weisheng Zhang is a Senior Principal Scientist in Translational Biomarkers at Merck Research Laboratories in Boston, Massachusetts. Jeffrey L. Evelhoch, PhD, is Vice President of Translational Biomarkers at Merck Research Laboratories in West Point, Pennsylvania
| | - Weisheng Zhang
- Barry R. Campbell is an Associate Principal Scientist in Translational Biomarkers at Merck Research Laboratories in Kenilworth, New Jersey. Dinko Gonzalez Trotter, PhD, is a Senior Director in Early Clinical Development at Regeneron Pharmaceuticals, Inc., in Tarrytown, New York. Catherine D. Hines, PhD is a Director in Translational Biomarkers at Merck Research Laboratories in West Point, Pennsylvania. Manishkumar Patel, PhD is a Principal Scientist in Translational Biomarkers at Merck Research Laboratories in West Point, Pennsylvania. Weisheng Zhang is a Senior Principal Scientist in Translational Biomarkers at Merck Research Laboratories in Boston, Massachusetts. Jeffrey L. Evelhoch, PhD, is Vice President of Translational Biomarkers at Merck Research Laboratories in West Point, Pennsylvania
| | - Jeffrey L Evelhoch
- Barry R. Campbell is an Associate Principal Scientist in Translational Biomarkers at Merck Research Laboratories in Kenilworth, New Jersey. Dinko Gonzalez Trotter, PhD, is a Senior Director in Early Clinical Development at Regeneron Pharmaceuticals, Inc., in Tarrytown, New York. Catherine D. Hines, PhD is a Director in Translational Biomarkers at Merck Research Laboratories in West Point, Pennsylvania. Manishkumar Patel, PhD is a Principal Scientist in Translational Biomarkers at Merck Research Laboratories in West Point, Pennsylvania. Weisheng Zhang is a Senior Principal Scientist in Translational Biomarkers at Merck Research Laboratories in Boston, Massachusetts. Jeffrey L. Evelhoch, PhD, is Vice President of Translational Biomarkers at Merck Research Laboratories in West Point, Pennsylvania
| |
Collapse
|
7
|
Geerts H, Spiros A, Roberts P. Phosphodiesterase 10 inhibitors in clinical development for CNS disorders. Expert Rev Neurother 2016; 17:553-560. [DOI: 10.1080/14737175.2017.1268531] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hugo Geerts
- In Silico Biosciences Perelman School of Medicine, University of Pennsylvania, Berwyn, PA, USA
| | - Athan Spiros
- In Silico Biosciences Perelman School of Medicine, University of Pennsylvania, Berwyn, PA, USA
| | - Patrick Roberts
- In Silico Biosciences Perelman School of Medicine, University of Pennsylvania, Berwyn, PA, USA
| |
Collapse
|
8
|
Liu H, Jin H, Yue X, Han J, Yang H, Flores H, Su Y, Alagille D, Perlmutter JS, Tamagnan G, Tu Z. Comparison of [ 11C]TZ1964B and [ 18F]MNI659 for PET imaging brain PDE10A in nonhuman primates. Pharmacol Res Perspect 2016; 4:e00253. [PMID: 27713824 PMCID: PMC5045939 DOI: 10.1002/prp2.253] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/21/2016] [Accepted: 07/24/2016] [Indexed: 12/26/2022] Open
Abstract
Phosphodiesterase 10A (PDE10A) inhibitors show therapeutic effects for diseases with striatal pathology. PET radiotracers have been developed to quantify in vivo PDE10A levels and target engagement for therapeutic interventions. The aim of this study was to compare two potent and selective PDE10A radiotracers, [11C]TZ1964B and [18F]MNI659 in the nonhuman primate (NHP) brain. Double scans in the same cynomolgus monkey on the same day were performed after injection of [11C]TZ1964B and [18F]MNI659. Specific uptake was determined in two ways: nondisplaceable binding potential (BPND) was calculated using cerebellum as the reference region and the PDE‐10A enriched striatum as the target region of interest (ROI); the area under the time–activity curve (AUC) for the striatum to cerebellum ratio was also calculated. High‐performance liquid chromatography (HPLC) analysis of solvent‐extracted NHP plasma identified the percentage of intact tracer versus radiolabeled metabolites samples post injection of each radiotracer. Both radiotracers showed high specific accumulation in NHP striatum. [11C]TZ1964B has higher striatal retention and lower specific striatal uptake than [18F]MNI659. The BPND estimates of [11C]TZ1964B were 3.72 by Logan Reference model (LoganREF) and 4.39 by simplified reference tissue model (SRTM); the BPND estimates for [18F]MNI659 were 5.08 (LoganREF) and 5.33 (SRTM). AUC ratios were 5.87 for [11C]TZ1964B and 7.60 for [18F]MNI659. Based on BPND values in NHP striatum, coefficients of variation were ~10% for [11C]TZ1964B and ~30% for [18F]MNI659. Moreover, the metabolism study showed the percentage of parent compounds were ~70% for [11C]TZ1964B and ~50% for [18F]MNI659 60 min post injection. These data indicate that either [11C]TZ1964B or [18F]MNI659 could serve as suitable PDE10A PET radiotracers with distinguishing features for particular clinical application.
Collapse
Affiliation(s)
- Hui Liu
- Department of Radiology Washington University School of Medicine St. Louis Missouri
| | - Hongjun Jin
- Department of Radiology Washington University School of Medicine St. Louis Missouri
| | - Xuyi Yue
- Department of Radiology Washington University School of Medicine St. Louis Missouri
| | - Junbin Han
- Department of Radiology Washington University School of Medicine St. Louis Missouri
| | - Hao Yang
- Department of Radiology Washington University School of Medicine St. Louis Missouri
| | - Hubert Flores
- Department of Neurology Washington University School of Medicine St. Louis Missouri
| | - Yi Su
- Department of Radiology Washington University School of Medicine St. Louis Missouri
| | | | - Joel S Perlmutter
- Department of Radiology Washington University School of Medicine St. Louis Missouri; Department of Neurology Washington University School of Medicine St. Louis Missouri; Department of Neuroscience Physical Therapy and Occupational Therapy Washington University School of Medicine St. Louis Missouri
| | | | - Zhude Tu
- Department of Radiology Washington University School of Medicine St. Louis Missouri
| |
Collapse
|
9
|
Novel Radioligands for Cyclic Nucleotide Phosphodiesterase Imaging with Positron Emission Tomography: An Update on Developments Since 2012. Molecules 2016; 21:molecules21050650. [PMID: 27213312 PMCID: PMC6273803 DOI: 10.3390/molecules21050650] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 05/09/2016] [Accepted: 05/10/2016] [Indexed: 12/19/2022] Open
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) are a class of intracellular enzymes that inactivate the secondary messenger molecules, cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). Thus, PDEs regulate the signaling cascades mediated by these cyclic nucleotides and affect fundamental intracellular processes. Pharmacological inhibition of PDE activity is a promising strategy for treatment of several diseases. However, the role of the different PDEs in related pathologies is not completely clarified yet. PDE-specific radioligands enable non-invasive visualization and quantification of these enzymes by positron emission tomography (PET) in vivo and provide an important translational tool for elucidation of the relationship between altered expression of PDEs and pathophysiological effects as well as (pre-)clinical evaluation of novel PDE inhibitors developed as therapeutics. Herein we present an overview of novel PDE radioligands for PET published since 2012.
Collapse
|