1
|
McNeal KC, Reeves KM, Song PN, Lapi SE, Sorace AG, Larimer BM. [ 18F]FMISO-PET imaging reveals the role of hypoxia severity in checkpoint blockade response. Nucl Med Biol 2024; 134-135:108918. [PMID: 38772123 PMCID: PMC11180552 DOI: 10.1016/j.nucmedbio.2024.108918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/09/2024] [Accepted: 05/07/2024] [Indexed: 05/23/2024]
Abstract
CONTEXT Hypoxia within the tumor microenvironment is a critical factor influencing the efficacy of immunotherapy, including immune checkpoint inhibition. Insufficient oxygen supply, characteristic of hypoxia, has been recognized as a central determinant in the progression of various cancers. The reemergence of evofosfamide, a hypoxia-activated prodrug, as a potential treatment strategy has sparked interest in addressing the role of hypoxia in immunotherapy response. This investigation sought to understand the kinetics and heterogeneity of tumor hypoxia and their implications in affecting responses to immunotherapeutic interventions with and without evofosfamide. PURPOSE This study aimed to investigate the influence of hypoxia on immune checkpoint inhibition, evofosfamide monotherapy, and their combination on colorectal cancer (CRC). Employing positron emission tomography (PET) imaging, we developed novel analytical methods to quantify and characterize tumor hypoxia severity and distribution. PROCEDURES Murine CRC models were longitudinally imaged with [18F]-fluoromisonidazole (FMISO)-PET to quantify tumor hypoxia during checkpoint blockade (anti-CTLA-4 + and anti-PD1 +/- evofosfamide). Metrics including maximum tumor [18F]FMISO uptake (FMISOmax) and mean tumor [18F]FMISO uptake (FMISOmean) were quantified and compared with normal muscle tissue (average muscle FMISO uptake (mAvg) and muscle standard deviation (mSD)). Histogram distributions were used to evaluate heterogeneity of tumor hypoxia. FINDINGS Severe hypoxia significantly impeded immunotherapy effectiveness consistent with an immunosuppressive microenvironment. Hypoxia-specific PET imaging revealed a striking degree of spatial heterogeneity in tumor hypoxia, with some regions exhibiting significantly more severe hypoxia than others. The study identified FMISOmax as a robust predictor of immunotherapy response, emphasizing the impact of localized severe hypoxia on tumor volume control during therapy. Interestingly, evofosfamide did not directly reduce hypoxia but markedly improved the response to immunotherapy, uncovering an alternative mechanism for its efficacy. CONCLUSIONS These results enhance our comprehension of the interplay between hypoxia and immune checkpoint inhibition within the tumor microenvironment, offering crucial insights for the development of personalized cancer treatment strategies. Non-invasive hypoxia quantification through molecular imaging evaluating hypoxia severity may be an effective tool in guiding treatment planning, predicting therapy response, and ultimately improving patient outcomes across diverse cancer types and tumor microenvironments. It sets the stage for the translation of these findings into clinical practice, facilitating the optimization of immunotherapy regimens by addressing tumor hypoxia and thereby enhancing the efficacy of cancer treatments.
Collapse
Affiliation(s)
- Kaytlyn C McNeal
- Department of Radiology, The University of Alabama at Birmingham, Birmingham, AL, United States of America; O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, AL, United States of America; Graduate Biomedical Science Program, The University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Kirsten M Reeves
- Department of Radiology, The University of Alabama at Birmingham, Birmingham, AL, United States of America; O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, AL, United States of America; Graduate Biomedical Science Program, The University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Patrick N Song
- Department of Radiology, The University of Alabama at Birmingham, Birmingham, AL, United States of America; Graduate Biomedical Science Program, The University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Suzanne E Lapi
- Department of Radiology, The University of Alabama at Birmingham, Birmingham, AL, United States of America; O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Anna G Sorace
- Department of Radiology, The University of Alabama at Birmingham, Birmingham, AL, United States of America; O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, AL, United States of America; Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Benjamin M Larimer
- Department of Radiology, The University of Alabama at Birmingham, Birmingham, AL, United States of America; O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, AL, United States of America.
| |
Collapse
|
2
|
Costin IC, Marcu LG. Affinity of PET-MRI Tracers for Hypoxic Cells in Breast Cancer: A Systematic Review. Cells 2024; 13:1048. [PMID: 38920676 PMCID: PMC11202228 DOI: 10.3390/cells13121048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/04/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
Tumour hypoxia is a known microenvironmental culprit for treatment resistance, tumour recurrence and promotion of metastatic spread. Despite the long-known existence of this factor within the tumour milieu, hypoxia is still one of the greatest challenges in cancer management. The transition from invasive and less reliable detection methods to more accurate and non-invasive ways to identify and quantify hypoxia was a long process that eventually led to the promising results showed by functional imaging techniques. Hybrid imaging, such as PET-CT, has the great advantage of combining the structural or anatomical image (offered by CT) with the functional or metabolic one (offered by PET). However, in the context of hypoxia, it is only the PET image taken after appropriate radiotracer administration that would supply hypoxia-specific information. To overcome this limitation, the development of the latest hybrid imaging systems, such as PET-MRI, enables a synergistic approach towards hypoxia imaging, with both methods having the potential to provide functional information on the tumour microenvironment. This study is designed as a systematic review of the literature on the newest developments of PET-MRI for the imaging of hypoxic cells in breast cancer. The analysis includes the affinity of various PET-MRI tracers for hypoxia in this patient group as well as the correlations between PET-specific and MRI-specific parameters, to offer a broader view on the potential for the widespread clinical implementation of this hybrid imaging technique.
Collapse
Affiliation(s)
- Ioana-Claudia Costin
- Faculty of Physics, West University of Timisoara, 300223 Timisoara, Romania;
- Bihor County Emergency Clinical Hospital, 410167 Oradea, Romania
| | - Loredana G. Marcu
- Faculty of Informatics & Science, University of Oradea, 410087 Oradea, Romania
- UniSA Allied Health & Human Performance, University of South Australia, Adelaide, SA 5001, Australia
| |
Collapse
|
3
|
Choen S, Kent MS, Loucks FA, Winger JA, Zwingenberger AL. Assessment of tumor hypoxia in spontaneous canine tumors after treatment with OMX, a novel H-NOX oxygen carrier, with [ 18F]FMISO PET/CT. BMC Vet Res 2024; 20:196. [PMID: 38741109 PMCID: PMC11089780 DOI: 10.1186/s12917-024-04061-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 05/06/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Hypoxia is a detrimental factor in solid tumors, leading to aggressiveness and therapy resistance. OMX, a tunable oxygen carrier from the heme nitric oxide/oxygen-binding (H-NOX) protein family, has the potential to reduce tumor hypoxia. [18F]Fluoromisonidazole ([18F]FMISO) positron emission tomography (PET) is the most widely used and investigated method for non-invasive imaging of tumor hypoxia. In this study, we used [18F]FMISO PET/CT (computed tomography) to assess the effect of OMX on tumor hypoxia in spontaneous canine tumors. RESULTS Thirteen canine patients with various tumors (n = 14) were randomly divided into blocks of two, with the treatment groups alternating between receiving intratumoral (IT) OMX injection (OMX IT group) and intravenous (IV) OMX injection (OMX IV group). Tumors were regarded as hypoxic if maximum tumor-to-muscle ratio (TMRmax) was greater than 1.4. In addition, hypoxic volume (HV) was defined as the region with tumor-to-muscle ratio greater than 1.4 on [18F]FMISO PET images. Hypoxia was detected in 6/7 tumors in the OMX IT group and 5/7 tumors in the OMX IV injection group. Although there was no significant difference in baseline hypoxia between the OMX IT and IV groups, the two groups showed different responses to OMX. In the OMX IV group, hypoxic tumors (n = 5) exhibited significant reductions in tumor hypoxia, as indicated by decreased TMRmax and HV in [18F]FMISO PET imaging after treatment. In contrast, hypoxic tumors in the OMX IT group (n = 6) displayed a significant increase in [18F]FMISO uptake and variable changes in TMRmax and HV. CONCLUSIONS [18F]FMISO PET/CT imaging presents a promising non-invasive procedure for monitoring tumor hypoxia and assessing the efficacy of hypoxia-modulating therapies in canine patients. OMX has shown promising outcomes in reducing tumor hypoxia, especially when administered intravenously, as evident from reductions in both TMRmax and HV in [18F]FMISO PET imaging.
Collapse
Affiliation(s)
- Sangkyung Choen
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, 1 Shields Ave, 2112 Tupper Hall, Davis, CA, 95616, USA
| | - Michael S Kent
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, 1 Shields Ave, 2112 Tupper Hall, Davis, CA, 95616, USA
| | | | | | - Allison L Zwingenberger
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, 1 Shields Ave, 2112 Tupper Hall, Davis, CA, 95616, USA.
| |
Collapse
|
4
|
Song PN, Lynch SE, DeMellier CT, Mansur A, Gallegos CA, Wright BD, Hartman YE, Minton LE, Lapi SE, Warram JM, Sorace AG. Dual anti-HER2/EGFR inhibition synergistically increases therapeutic effects and alters tumor oxygenation in HNSCC. Sci Rep 2024; 14:3771. [PMID: 38355949 PMCID: PMC10866896 DOI: 10.1038/s41598-024-52897-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 01/24/2024] [Indexed: 02/16/2024] Open
Abstract
Epidermal growth factor receptor (EGFR), human epidermal growth factor receptor 2 (HER2), and hypoxia are associated with radioresistance. The goal of this study is to study the synergy of anti-HER2, trastuzumab, and anti-EGFR, cetuximab, and characterize the tumor microenvironment components that may lead to increased radiation sensitivity with dual anti-HER2/EGFR therapy in head and neck squamous cell carcinoma (HNSCC). Positron emission tomography (PET) imaging ([89Zr]-panitumumab and [89Zr]-pertuzumab) was used to characterize EGFR and HER2 in HNSCC cell line tumors. HNSCC cells were treated with trastuzumab, cetuximab, or combination followed by radiation to assess for viability and radiosensitivity (colony forming assay, immunofluorescence, and flow cytometry). In vivo, [18F]-FMISO-PET imaging was used to quantify changes in oxygenation during treatment. Bliss Test of Synergy was used to identify combination treatment synergy. Quantifying EGFR and HER2 receptor expression revealed a 50% increase in heterogeneity of HER2 relative to EGFR. In vitro, dual trastuzumab-cetuximab therapy shows significant decreases in DNA damage response and increased response to radiation therapy (p < 0.05). In vivo, tumors treated with dual anti-HER2/EGFR demonstrated decreased tumor hypoxia, when compared to single agent therapies. Dual trastuzumab-cetuximab demonstrates synergy and can affect tumor oxygenation in HNSCC. Combination trastuzumab-cetuximab modulates the tumor microenvironment through reductions in tumor hypoxia and induces sustained treatment synergy.
Collapse
Affiliation(s)
- Patrick N Song
- Department of Radiology, The University of Alabama at Birmingham, 1670 University Blvd, Birmingham, AL, 35233, USA
- Graduate Biomedical Sciences, The University of Alabama at Birmingham, Birmingham, USA
| | - Shannon E Lynch
- Department of Radiology, The University of Alabama at Birmingham, 1670 University Blvd, Birmingham, AL, 35233, USA
- Graduate Biomedical Sciences, The University of Alabama at Birmingham, Birmingham, USA
| | - Chloe T DeMellier
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, USA
| | - Ameer Mansur
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, USA
| | - Carlos A Gallegos
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, USA
| | - Brian D Wright
- Department of Radiology, The University of Alabama at Birmingham, 1670 University Blvd, Birmingham, AL, 35233, USA
| | - Yolanda E Hartman
- Department of Otolaryngology, The University of Alabama at Birmingham, Birmingham, USA
| | - Laura E Minton
- Department of Otolaryngology, The University of Alabama at Birmingham, Birmingham, USA
| | - Suzanne E Lapi
- Department of Radiology, The University of Alabama at Birmingham, 1670 University Blvd, Birmingham, AL, 35233, USA
- O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, USA
| | - Jason M Warram
- Department of Radiology, The University of Alabama at Birmingham, 1670 University Blvd, Birmingham, AL, 35233, USA
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, USA
- Department of Otolaryngology, The University of Alabama at Birmingham, Birmingham, USA
- O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, USA
| | - Anna G Sorace
- Department of Radiology, The University of Alabama at Birmingham, 1670 University Blvd, Birmingham, AL, 35233, USA.
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, USA.
- O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, USA.
| |
Collapse
|
5
|
Jarrett AM, Song PN, Reeves K, Lima EABF, Larimer B, Yankeelov TE, Sorace AG. Investigating tumor-host response dynamics in preclinical immunotherapy experiments using a stepwise mathematical modeling strategy. Math Biosci 2023; 366:109106. [PMID: 37931781 PMCID: PMC10841996 DOI: 10.1016/j.mbs.2023.109106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 10/20/2023] [Accepted: 10/31/2023] [Indexed: 11/08/2023]
Abstract
Immunotherapies such as checkpoint blockade to PD1 and CTLA4 can have varied effects on individual tumors. To quantify the successes and failures of these therapeutics, we developed a stepwise mathematical modeling strategy and applied it to mouse models of colorectal and breast cancer that displayed a range of therapeutic responses. Using longitudinal tumor volume data, an exponential growth model was utilized to designate response groups for each tumor type. The exponential growth model was then extended to describe the dynamics of the quality of vasculature in the tumors via [18F] fluoromisonidazole (FMISO)-positron emission tomography (PET) data estimating tumor hypoxia over time. By calibrating the mathematical system to the PET data, several biological drivers of the observed deterioration of the vasculature were quantified. The mathematical model was then further expanded to explicitly include both the immune response and drug dosing, so that model simulations are able to systematically investigate biological hypotheses about immunotherapy failure and to generate experimentally testable predictions of immune response. The modeling results suggest elevated immune response fractions (> 30 %) in tumors unresponsive to immunotherapy is due to a functional immune response that wanes over time. This experimental-mathematical approach provides a means to evaluate dynamics of the system that could not have been explored using the data alone, including tumor aggressiveness, immune exhaustion, and immune cell functionality.
Collapse
Affiliation(s)
- Angela M Jarrett
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, USA; Livestrong Cancer Institutes, The University of Texas at Austin, USA
| | - Patrick N Song
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama USA
| | - Kirsten Reeves
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama USA; Graduate Biomedical Sciences, University of Alabama at Birmingham, Birmingham, Alabama USA
| | - Ernesto A B F Lima
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, USA; Livestrong Cancer Institutes, The University of Texas at Austin, USA
| | - Benjamin Larimer
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama USA; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama USA
| | - Thomas E Yankeelov
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, USA; Livestrong Cancer Institutes, The University of Texas at Austin, USA; Departments of Biomedical Engineering, The University of Texas at Austin, USA; Diagnostic Medicine, The University of Texas at Austin, USA; Oncology, The University of Texas at Austin, USA; Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | - Anna G Sorace
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama USA; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama USA; Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama USA.
| |
Collapse
|
6
|
Application of Metabolic Reprogramming to Cancer Imaging and Diagnosis. Int J Mol Sci 2022; 23:ijms232415831. [PMID: 36555470 PMCID: PMC9782057 DOI: 10.3390/ijms232415831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Cellular metabolism governs the signaling that supports physiological mechanisms and homeostasis in an individual, including neuronal transmission, wound healing, and circadian clock manipulation. Various factors have been linked to abnormal metabolic reprogramming, including gene mutations, epigenetic modifications, altered protein epitopes, and their involvement in the development of disease, including cancer. The presence of multiple distinct hallmarks and the resulting cellular reprogramming process have gradually revealed that these metabolism-related molecules may be able to be used to track or prevent the progression of cancer. Consequently, translational medicines have been developed using metabolic substrates, precursors, and other products depending on their biochemical mechanism of action. It is important to note that these metabolic analogs can also be used for imaging and therapeutic purposes in addition to competing for metabolic functions. In particular, due to their isotopic labeling, these compounds may also be used to localize and visualize tumor cells after uptake. In this review, the current development status, applicability, and limitations of compounds targeting metabolic reprogramming are described, as well as the imaging platforms that are most suitable for each compound and the types of cancer to which they are most appropriate.
Collapse
|
7
|
Bloom MJ, Song PN, Virostko J, Yankeelov TE, Sorace AG. Quantifying the Effects of Combination Trastuzumab and Radiation Therapy in Human Epidermal Growth Factor Receptor 2-Positive Breast Cancer. Cancers (Basel) 2022; 14:cancers14174234. [PMID: 36077773 PMCID: PMC9454606 DOI: 10.3390/cancers14174234] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Trastuzumab induces cell cycle arrest in HER2-overexpressing cells and demonstrates potential in radiosensitizing cancer cells. The purpose of this study is to quantify combination trastuzumab and radiotherapy to determine their synergy. Methods: In vitro, HER2+ cancer cells were treated with trastuzumab, radiation, or their combination, and imaged to evaluate treatment kinetics. In vivo, HER2+ tumor-bearing mice were treated with trastuzumab and radiation, and assessed longitudinally. An additional cohort was treated and sacrificed to quantify CD45, CD31, α-SMA, and hypoxia. Results: The interaction index revealed the additive effects of trastuzumab and radiation in vitro in HER2+ cell lines. Furthermore, the results revealed significant differences in tumor response when treated with radiation (p < 0.001); however, no difference was seen in the combination groups when trastuzumab was added to radiotherapy (p = 0.56). Histology revealed increases in CD45 staining in tumors receiving trastuzumab (p < 0.05), indicating potential increases in immune infiltration. Conclusions: The in vitro results showed the additive effect of combination trastuzumab and radiotherapy. The in vivo results showed the potential to achieve similar efficacy of radiotherapy with a reduced dose when combined with trastuzumab. If trastuzumab and low-dose radiotherapy induce greater tumor kill than a higher dose of radiotherapy, combination therapy can achieve a similar reduction in tumor burden.
Collapse
Affiliation(s)
- Meghan J. Bloom
- Department of Biomedical Engineering, The University of Texas, Austin, TX 78712, USA
| | - Patrick N. Song
- Department of Radiology, The University of Alabama, Birmingham, AL 35294, USA
| | - John Virostko
- LiveSTRONG Cancer Institutes, The University of Texas, Austin, TX 78713, USA
- Department of Oncology, The University of Texas Dell Medical School, Austin, TX 78701, USA
- Department of Diagnostic Medicine, The University of Texas, Austin, TX 78712, USA
| | - Thomas E. Yankeelov
- Department of Biomedical Engineering, The University of Texas, Austin, TX 78712, USA
- LiveSTRONG Cancer Institutes, The University of Texas, Austin, TX 78713, USA
- Department of Oncology, The University of Texas Dell Medical School, Austin, TX 78701, USA
- Department of Diagnostic Medicine, The University of Texas, Austin, TX 78712, USA
- Oden Institute for Computational and Engineering Sciences, The University of Texas, Austin, TX 78712, USA
- Department of Imaging Physics, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Anna G. Sorace
- Department of Radiology, The University of Alabama, Birmingham, AL 35294, USA
- Department of Biomedical Engineering, The University of Alabama, Birmingham, AL 35294, USA
- O’Neal Comprehensive Cancer Center, The University of Alabama, Birmingham, AL 35233, USA
- Correspondence:
| |
Collapse
|
8
|
Kazerouni AS, Hormuth DA, Davis T, Bloom MJ, Mounho S, Rahman G, Virostko J, Yankeelov TE, Sorace AG. Quantifying Tumor Heterogeneity via MRI Habitats to Characterize Microenvironmental Alterations in HER2+ Breast Cancer. Cancers (Basel) 2022; 14:1837. [PMID: 35406609 PMCID: PMC8997932 DOI: 10.3390/cancers14071837] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/02/2022] [Accepted: 04/02/2022] [Indexed: 01/27/2023] Open
Abstract
This study identifies physiological habitats using quantitative magnetic resonance imaging (MRI) to elucidate intertumoral differences and characterize microenvironmental response to targeted and cytotoxic therapy. BT-474 human epidermal growth factor receptor 2 (HER2+) breast tumors were imaged before and during treatment (trastuzumab, paclitaxel) with diffusion-weighted MRI and dynamic contrast-enhanced MRI to measure tumor cellularity and vascularity, respectively. Tumors were stained for anti-CD31, anti-ɑSMA, anti-CD45, anti-F4/80, anti-pimonidazole, and H&E. MRI data was clustered to identify and label each habitat in terms of vascularity and cellularity. Pre-treatment habitat composition was used stratify tumors into two "tumor imaging phenotypes" (Type 1, Type 2). Type 1 tumors showed significantly higher percent tumor volume of the high-vascularity high-cellularity (HV-HC) habitat compared to Type 2 tumors, and significantly lower volume of low-vascularity high-cellularity (LV-HC) and low-vascularity low-cellularity (LV-LC) habitats. Tumor phenotypes showed significant differences in treatment response, in both changes in tumor volume and physiological composition. Significant positive correlations were found between histological stains and tumor habitats. These findings suggest that the differential baseline imaging phenotypes can predict response to therapy. Specifically, the Type 1 phenotype indicates increased sensitivity to targeted or cytotoxic therapy compared to Type 2 tumors.
Collapse
Affiliation(s)
- Anum S. Kazerouni
- Department of Radiology, The University of Washington, Seattle, WA 98104, USA;
| | - David A. Hormuth
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712, USA;
- Livestrong Cancer Institutes, The University of Texas at Austin, Austin, TX 78712, USA;
| | - Tessa Davis
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA; (T.D.); (M.J.B.); (S.M.); (G.R.)
| | - Meghan J. Bloom
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA; (T.D.); (M.J.B.); (S.M.); (G.R.)
| | - Sarah Mounho
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA; (T.D.); (M.J.B.); (S.M.); (G.R.)
| | - Gibraan Rahman
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA; (T.D.); (M.J.B.); (S.M.); (G.R.)
| | - John Virostko
- Livestrong Cancer Institutes, The University of Texas at Austin, Austin, TX 78712, USA;
- Department of Diagnostic Medicine, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Oncology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Thomas E. Yankeelov
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712, USA;
- Livestrong Cancer Institutes, The University of Texas at Austin, Austin, TX 78712, USA;
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA; (T.D.); (M.J.B.); (S.M.); (G.R.)
- Department of Diagnostic Medicine, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Oncology, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Imaging Physics, MD Anderson Cancer Center, The University of Texas, Houston, TX 77030, USA
| | - Anna G. Sorace
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Radiology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- O’Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
9
|
Napier TS, Hunter CL, Song PN, Larimer BM, Sorace AG. Preclinical PET Imaging of Granzyme B Shows Promotion of Immunological Response Following Combination Paclitaxel and Immune Checkpoint Inhibition in Triple Negative Breast Cancer. Pharmaceutics 2022; 14:pharmaceutics14020440. [PMID: 35214172 PMCID: PMC8875418 DOI: 10.3390/pharmaceutics14020440] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 12/18/2022] Open
Abstract
Advancements in monitoring and predicting of patient-specific response of triple negative breast cancer (TNBC) to immunotherapy (IMT) with and without chemotherapy are needed. Using granzyme B-specific positron emission tomography (GZP-PET) imaging, we aimed to monitor changes in effector cell activation in response to IMT with chemotherapy in TNBC. TNBC mouse models received the paclitaxel (PTX) ± immune checkpoint inhibitors anti-programmed death 1 (anti-PD1) and anti-cytotoxic T-lymphocyte 4 (anti-CTLA4). GZP-PET imaging was performed on treatment days 0, 3, and 6. Mean standard uptake value (SUVmean), effector cell fractions, and SUV histograms were compared. Mice were sacrificed at early imaging timepoints for cytokine and histological analyses. GZP-PET imaging data revealed differences prior to tumor volume changes. By day six, responders had SUVmean ≥ 2.2-fold higher (p < 0.0037) and effector cell fractions ≥ 1.9-fold higher (p = 0.03) compared to non-responders. IMT/PTX resulted in a significantly different SUV distribution compared to control, indicating broader distribution of activated intratumoral T-cells. IMT/PTX resulted in significantly more necrotic tumor tissue and increased levels of IL-2, 4, and 12 compared to control. Results implicate immunogenic cell death through upregulation of key Th1/Th2 cytokines by IMT/PTX. Noninvasive PET imaging can provide data on the TNBC tumor microenvironment, specifically intratumoral effector cell activation, predicting response to IMT plus chemotherapy.
Collapse
Affiliation(s)
- Tiara S. Napier
- Graduate Biomedical Sciences Cancer Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.S.N.); (C.L.H.); (P.N.S.)
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Chanelle L. Hunter
- Graduate Biomedical Sciences Cancer Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.S.N.); (C.L.H.); (P.N.S.)
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Patrick N. Song
- Graduate Biomedical Sciences Cancer Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.S.N.); (C.L.H.); (P.N.S.)
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Benjamin M. Larimer
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Anna G. Sorace
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Correspondence: ; Tel.: +1-(205)-934-3116, Fax: +1-(205)-975-6522
| |
Collapse
|
10
|
Song PN, Mansur A, Lu Y, Della Manna D, Burns A, Samuel S, Heinzman K, Lapi SE, Yang ES, Sorace AG. Modulation of the Tumor Microenvironment with Trastuzumab Enables Radiosensitization in HER2+ Breast Cancer. Cancers (Basel) 2022; 14:cancers14041015. [PMID: 35205763 PMCID: PMC8869800 DOI: 10.3390/cancers14041015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/04/2022] [Accepted: 02/09/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Trastuzumab and radiation are used clinically to treat HER2-overexpressing breast cancers; however, the mechanistic synergy of anti-HER2 and radiation therapy has not been investigated. In this study, we identify that a subtherapeutic dose of trastuzumab sensitizes the tumor microenvironment to fractionated radiation. This results in longitudinal sustained response by triggering a state of innate immune activation through reduced DNA damage repair and increased tumor oxygenation. As positron emission tomography imaging can be used to longitudinally evaluate changes in tumor hypoxia, synergy of combination therapies is the result of both cellular and molecular changes in the tumor microenvironment. Abstract DNA damage repair and tumor hypoxia contribute to intratumoral cellular and molecular heterogeneity and affect radiation response. The goal of this study is to investigate anti-HER2-induced radiosensitization of the tumor microenvironment to enhance fractionated radiotherapy in models of HER2+ breast cancer. This is monitored through in vitro and in vivo studies of phosphorylated γ-H2AX, [18F]-fluoromisonidazole (FMISO)-PET, and transcriptomic analysis. In vitro, HER2+ breast cancer cell lines were treated with trastuzumab prior to radiation and DNA double-strand breaks (DSB) were quantified. In vivo, HER2+ human cell line or patient-derived xenograft models were treated with trastuzumab, fractionated radiation, or a combination and monitored longitudinally with [18F]-FMISO-PET. In vitro DSB analysis revealed that trastuzumab administered prior to fractionated radiation increased DSB. In vivo, trastuzumab prior to fractionated radiation significantly reduced hypoxia, as detected through decreased [18F]-FMISO SUV, synergistically improving long-term tumor response. Significant changes in IL-2, IFN-gamma, and THBS-4 were observed in combination-treated tumors. Trastuzumab prior to fractionated radiation synergistically increases radiotherapy in vitro and in vivo in HER2+ breast cancer which is independent of anti-HER2 response alone. Modulation of the tumor microenvironment, through increased tumor oxygenation and decreased DNA damage response, can be translated to other cancers with first-line radiation therapy.
Collapse
Affiliation(s)
- Patrick N. Song
- Department of Radiology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (P.N.S.); (Y.L.); (S.S.); (S.E.L.)
- Graduate Biomedical Sciences, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ameer Mansur
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (A.M.); (A.B.); (K.H.)
| | - Yun Lu
- Department of Radiology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (P.N.S.); (Y.L.); (S.S.); (S.E.L.)
- Graduate Biomedical Sciences, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Deborah Della Manna
- Department of Radiation Oncology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (D.D.M.); (E.S.Y.)
| | - Andrew Burns
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (A.M.); (A.B.); (K.H.)
| | - Sharon Samuel
- Department of Radiology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (P.N.S.); (Y.L.); (S.S.); (S.E.L.)
| | - Katherine Heinzman
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (A.M.); (A.B.); (K.H.)
| | - Suzanne E. Lapi
- Department of Radiology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (P.N.S.); (Y.L.); (S.S.); (S.E.L.)
- O’Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Eddy S. Yang
- Department of Radiation Oncology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (D.D.M.); (E.S.Y.)
- O’Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Anna G. Sorace
- Department of Radiology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (P.N.S.); (Y.L.); (S.S.); (S.E.L.)
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (A.M.); (A.B.); (K.H.)
- O’Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Correspondence:
| |
Collapse
|
11
|
Reeves KM, Song PN, Angermeier A, Della Manna D, Li Y, Wang J, Yang ES, Sorace AG, Larimer BM. 18F-FMISO PET Imaging Identifies Hypoxia and Immunosuppressive Tumor Microenvironments and Guides Targeted Evofosfamide Therapy in Tumors Refractory to PD-1 and CTLA-4 Inhibition. Clin Cancer Res 2021; 28:327-337. [PMID: 34615724 DOI: 10.1158/1078-0432.ccr-21-2394] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/25/2021] [Accepted: 10/04/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Hypoxia is a common characteristic of many tumor microenvironments, and it has been shown to promote suppression of anti-tumor immunity. Despite strong biological rationale, longitudinal correlation of hypoxia and response to immunotherapy has not been investigated. EXPERIMENTAL DESIGN In this study, we probed the tumor and its surrounding microenvironment with 18F-FMISO PET imaging to non-invasively quantify tumor hypoxia in vivo prior to and during PD-1 and CTLA-4 checkpoint blockade in preclinical models of breast and colon cancer. RESULTS Longitudinal imaging identified hypoxia as an early predictive biomarker of therapeutic response (prior to anatomic changes in tumor volume) with a decreasing standard uptake value (SUV) ratio in tumors that effectively respond to therapy. PET signal correlated with ex vivo markers of tumor immune response including cytokines (Ifng, Gzmb, and Tnf), damage-associated molecular pattern receptors (Tlr2/4) and immune cell populations (macrophages, dendritic cells, and cytotoxic T cells). Responding tumors were marked by increased inflammation that were spatially distinct from hypoxic regions, providing a mechanistic understanding of the immune signaling pathways activated. To exploit image-guided combination therapy, hypoxia signal from PET imaging was used to guide the addition of a hypoxia targeted treatment to non-responsive tumors, which ultimately provided therapeutic synergy and rescued response as determined by longitudinal changes in tumor volume. CONCLUSIONS The results generated from this work provide an immediately translatable paradigm for measuring and targeting hypoxia to increase response to immune checkpoint therapy and using hypoxia imaging to guide combinatory therapies.
Collapse
Affiliation(s)
| | | | - Allyson Angermeier
- Cellular, Molecular, and Developmental Biology, University of Alabama at Birmingham
| | | | - Yufeng Li
- Division of Preventive Medicine, University of Alabama at Birmingham
| | - Jianbo Wang
- Cellular, Developmental and Integrative Biology, University of Alabama at Birmingham
| | - Eddy S Yang
- Department of Radiation Oncology, University of Alabama at Birmingham
| | - Anna G Sorace
- Radiology and Biomedical Engineering, University of Alabama at Birmingham
| | | |
Collapse
|
12
|
Liu Y, Zhou Q, Song S, Tang S. Integrating metabolic reprogramming and metabolic imaging to predict breast cancer therapeutic responses. Trends Endocrinol Metab 2021; 32:762-775. [PMID: 34340886 DOI: 10.1016/j.tem.2021.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/26/2021] [Accepted: 07/04/2021] [Indexed: 01/10/2023]
Abstract
Metabolic reprogramming is not only an emerging hallmark of cancer, but also an essential regulator of cancer cell adaptation to the microenvironment. Metabolic imaging targeting metabolic signatures has been widely used for breast cancer diagnosis. However, limited implications have been explored for monitoring breast cancer therapy response, although metabolic plasticity is notably associated with therapy resistance. In this review, we focus on the metabolic alterations upon breast cancer therapy and their potential for evaluating breast cancer therapeutic responses. We summarize the metabolic network and regulatory changes upon breast cancer therapy in terms of cancer pathological and genetic differences and discuss the implications of metabolic imaging with various probes in selecting target beneficiaries for precision treatment.
Collapse
Affiliation(s)
- Yi Liu
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai 200032, PR China; Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, PR China
| | - Qian Zhou
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai 200032, PR China
| | - Shaoli Song
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, PR China.
| | - Shuang Tang
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai 200032, PR China; Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, PR China; Shanghai Key Laboratory of Radiation Oncology, Shanghai 201321, PR China.
| |
Collapse
|
13
|
Lama-Sherpa TD, Das S, Hinshaw DC, Kammerud SC, Song PN, Alsheikh HA, Sorace AG, Samant RS, Shevde LA. Quantitative Longitudinal Imaging Reveals that Inhibiting Hedgehog Activity Alleviates the Hypoxic Tumor Landscape. Mol Cancer Res 2021; 20:150-160. [PMID: 34593607 DOI: 10.1158/1541-7786.mcr-21-0257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/03/2021] [Accepted: 09/23/2021] [Indexed: 11/16/2022]
Abstract
Metastases account for the majority of mortalities related to breast cancer. The onset and sustained presence of hypoxia strongly correlates with increased incidence of metastasis and unfavorable prognosis in patients with breast cancer. The Hedgehog (Hh) signaling pathway is dysregulated in breast cancer, and its abnormal activity enables tumor progression and metastasis. In addition to programming tumor cell behavior, Hh activity enables tumor cells to craft a metastasis-conducive microenvironment. Hypoxia is a prominent feature of growing tumors that impacts multiple signaling circuits that converge upon malignant progression. We investigated the role of Hh activity in crafting a hypoxic environment of breast cancer. We used radioactive tracer [18F]-fluoromisonidazole (FMISO) positron emission tomography (PET) to image tumor hypoxia. We show that tumors competent for Hh activity are able to establish a hypoxic milieu; pharmacologic inhibition of Hh signaling in a syngeneic mammary tumor model mitigates tumor hypoxia. Furthermore, in hypoxia, Hh activity is robustly activated in tumor cells and institutes increased HIF signaling in a VHL-dependent manner. The findings establish a novel perspective on Hh activity in crafting a hypoxic tumor landscape and molecularly navigating the tumor cells to adapt to hypoxic conditions. IMPLICATIONS: Importantly, we present a translational strategy of utilizing longitudinal hypoxia imaging to measure the efficacy of vismodegib in a preclinical model of triple-negative breast cancer.
Collapse
Affiliation(s)
| | - Shamik Das
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Dominique C Hinshaw
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Sarah C Kammerud
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Patrick N Song
- Department of Radiology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Heba A Alsheikh
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Anna G Sorace
- Department of Radiology, The University of Alabama at Birmingham, Birmingham, Alabama.,O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Rajeev S Samant
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama.,O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama.,Birmingham VA Medical Center, Birmingham, Alabama
| | - Lalita A Shevde
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama. .,O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
14
|
Bo T, Yasui H, Shiga T, Shibata Y, Fujimoto M, Suzuki M, Higashikawa K, Miyamoto N, Inanami O, Kuge Y. Eribulin improves tumor oxygenation demonstrated by 18F-DiFA hypoxia imaging, leading to radio-sensitization in human cancer xenograft models. Eur J Nucl Med Mol Imaging 2021; 49:821-833. [PMID: 34468781 DOI: 10.1007/s00259-021-05544-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 08/24/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE Eribulin, an inhibitor of microtubule dynamics, is known to show antitumor effects through its remodeling activity in the tumor vasculature. However, the extent to which the improvement of tumor hypoxia by eribulin affects radio-sensitivity remains unclear. We utilized 1-(2,2-dihydroxymethyl-3-18F-fluoropropyl)-2-nitroimidazole (18F-DiFA), a new PET probe for hypoxia, to investigate the effects of eribulin on tumor hypoxia and evaluate the radio-sensitivity during eribulin treatment. METHODS Mice bearing human breast cancer MDA-MB-231 cells or human lung cancer NCI-H1975 cells were administered a single dose of eribulin. After administration, mice were injected with 18F-DiFA and pimonidazole, and tumor hypoxia regions were analyzed. For the group that received combined treatment with radiation, 18F-DiFA PET/CT imaging was performed before tumors were locally X-irradiated. Tumor size was measured every other day after irradiation. RESULTS Eribulin significantly reduced 18F-DiFA accumulation levels in a dose-dependent manner. Furthermore, the reduction in 18F-DiFA accumulation levels by eribulin was most significant 7 days after treatment. These results were also supported by reduction of the pimonidazole-positive hypoxic region. The combined treatment showed significant retardation of tumor growth in comparison with the control, radiation-alone, and drug-alone groups. Importantly, tumor growth after irradiation was inversely correlated with 18F-DiFA accumulation. CONCLUSION These results demonstrated that 18F-DiFA PET/CT clearly detected eribulin-induced tumor oxygenation and that eribulin efficiently enhanced the antitumor activity of radiation by improving tumor oxygenation.
Collapse
Affiliation(s)
- Tomoki Bo
- Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan.,Laboratory Animal Center, Institute for Promotion of Medical Science Research, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Hironobu Yasui
- Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan. .,Central Institute of Isotope Science, Hokkaido University, Sapporo, Japan.
| | - Tohru Shiga
- Advanced Clinical Research Center, Fukushima Medical University, Fukushima, Japan
| | - Yuki Shibata
- Central Institute of Isotope Science, Hokkaido University, Sapporo, Japan
| | - Masaki Fujimoto
- Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
| | - Motofumi Suzuki
- Laboratory of Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Kei Higashikawa
- Central Institute of Isotope Science, Hokkaido University, Sapporo, Japan
| | - Naoki Miyamoto
- Division of Quantum Science and Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Japan
| | - Osamu Inanami
- Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
| | - Yuji Kuge
- Central Institute of Isotope Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
15
|
Ruiz de Garibay G, García de Jalón E, Stigen E, Lund KB, Popa M, Davidson B, Safont MM, Rygh CB, Espedal H, Barrett TM, Haug BE, McCormack E. Repurposing 18F-FMISO as a PET tracer for translational imaging of nitroreductase-based gene directed enzyme prodrug therapy. Am J Cancer Res 2021; 11:6044-6057. [PMID: 33897898 PMCID: PMC8058731 DOI: 10.7150/thno.55092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/25/2021] [Indexed: 12/25/2022] Open
Abstract
Nitroreductases (NTR) are a family of bacterial enzymes used in gene directed enzyme prodrug therapy (GDEPT) that selectively activate prodrugs containing aromatic nitro groups to exert cytotoxic effects following gene transduction in tumours. The clinical development of NTR-based GDEPT has, in part, been hampered by the lack of translational imaging modalities to assess gene transduction and drug cytotoxicity, non-invasively. This study presents translational preclinical PET imaging to validate and report NTR activity using the clinically approved radiotracer, 18F-FMISO, as substrate for the NTR enzyme. Methods: The efficacy with which 18F-FMISO could be used to report NfsB NTR activity in vivo was investigated using the MDA-MB-231 mammary carcinoma xenograft model. For validation, subcutaneous xenografts of cells constitutively expressing NTR were imaged using 18F-FMISO PET/CT and fluorescence imaging with CytoCy5S, a validated fluorescent NTR substrate. Further, examination of the non-invasive functionality of 18F-FMISO PET/CT in reporting NfsB NTR activity in vivo was assessed in metastatic orthotopic NfsB NTR expressing xenografts and metastasis confirmed by bioluminescence imaging. 18F-FMISO biodistribution was acquired ex vivo by an automatic gamma counter measuring radiotracer retention to confirm in vivo results. To assess the functional imaging of NTR-based GDEPT with 18F-FMISO, PET/CT was performed to assess both gene transduction and cytotoxicity effects of prodrug therapy (CB1954) in subcutaneous models. Results:18F-FMISO retention was detected in NTR+ subcutaneous xenografts, displaying significantly higher PET contrast than NTR- xenografts (p < 0.0001). Substantial 18F-FMISO retention was evident in metastases of orthotopic xenografts (p < 0.05). Accordingly, higher 18F-FMISO biodistribution was prevalent ex vivo in NTR+ xenografts. 18F-FMISO NfsB NTR PET/CT imaging proved useful for monitoring in vivo NTR transduction and the cytotoxic effect of prodrug therapy. Conclusions:18F-FMISO NfsB NTR PET/CT imaging offered significant contrast between NTR+ and NTR- tumours and effective resolution of metastatic progression. Furthermore, 18F-FMISO NfsB NTR PET/CT imaging proved efficient in monitoring the two steps of GDEPT, in vivo NfsB NTR transduction and response to CB1954 prodrug therapy. These results support the repurposing of 18F-FMISO as a readily implementable PET imaging probe to be employed as companion diagnostic test for NTR-based GDEPT systems.
Collapse
|
16
|
Lan D, Jin X, Li M, He L. The expression and clinical significance of signal transducer and activator of transcription 3, tumor necrosis factor α induced protein 8-like 2, and runt-related transcription factor 1 in breast cancer patients. Gland Surg 2021; 10:1125-1134. [PMID: 33842256 PMCID: PMC8033044 DOI: 10.21037/gs-21-108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/16/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND This study explored the expression and clinical significance of signal transducer and activator of transcription 3 (STAT3), tumor necrosis factor α induced protein 8-like 2 (TIPE2), and runt-related transcription factor 1 (RUNX1) in breast cancer tissue. METHODS From October 2014 to October 2017, 68 breast cancer patients (68 breast cancer tissue specimens) who underwent a radical mastectomy in our hospital were set as the observation group and the corresponding normal tissue 3 cm away from the cancer tissue was selected as the control group. The expression levels of STAT3, TIPE2, and RUNX1 in the two groups were compared via immunohistochemical staining. Multiple logistic regression was then used to analyze the related risk factors affecting the 2-year prognosis of breast cancer patients. The receiver operating characteristic (ROC) curve was then plotted and the area under the ROC curve was calculated. The predictive values of STAT3, TIPE2, and RUNX1, and the predictive value of the three transcription factors combined on the 2-year prognostic survival of breast cancer patients were determined. RESULTS (I) In the observation group, the positive expression of STAT3 and the negative expression of TIPE2 and RUNX1 were significantly higher than those in the control group (P<0.05). (II) Of the 68 patients, 51 survived within 2 years and 17 patients died. Positive STAT3 expression, negative TIPE2 expression, negative RUNX1 expression, poor histological differentiation, TNM stage III-IV, and distant metastasis were all identified as factors that can affect the 2-year prognosis of breast cancer patients (P<0.05). (III) The ROC curve analysis examining the 2-year prognostic survival of breast cancer patients showed that the area under the curve achieved the largest value when the predictive values of STAT3, TIPE2, RUNX1 were combined. CONCLUSIONS The levels of STAT3, TIPE2, and RUNX1 expression in breast cancer tissues were significantly different from that in adjacent normal tissues. This suggested that the combined detection of STAT3, TIPE2, and RUNX1 may improve the rate of early breast cancer diagnosis. Furthermore, STAT3, TIPE2, and RUNX1 may be useful in evaluating the prognosis of the patients with breast cancer.
Collapse
Affiliation(s)
- Daitian Lan
- Department of Hepatobiliary and Pancreatic Surgery, Sichuan Provincial People’s Hospital (East Hospital), University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences, Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Xuchu Jin
- Chinese Academy of Sciences, Sichuan Translational Medicine Research Hospital, Chengdu, China
- Department of Thyroid and Breast Surgery, Sichuan Provincial People’s Hospital (East Hospital), University of Electronic Science and Technology of China, Chengdu, China
| | - Maode Li
- Department of Hepatobiliary and Pancreatic Surgery, Sichuan Provincial People’s Hospital (East Hospital), University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences, Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Li He
- Chinese Academy of Sciences, Sichuan Translational Medicine Research Hospital, Chengdu, China
- Department of Thyroid and Breast Surgery, Sichuan Provincial People’s Hospital (East Hospital), University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
17
|
Jarrett AM, Bloom MJ, Godfrey W, Syed AK, Ekrut DA, Ehrlich LI, Yankeelov TE, Sorace AG. Mathematical modelling of trastuzumab-induced immune response in an in vivo murine model of HER2+ breast cancer. MATHEMATICAL MEDICINE AND BIOLOGY-A JOURNAL OF THE IMA 2020; 36:381-410. [PMID: 30239754 DOI: 10.1093/imammb/dqy014] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 06/14/2018] [Accepted: 08/24/2018] [Indexed: 02/06/2023]
Abstract
The goal of this study is to develop an integrated, mathematical-experimental approach for understanding the interactions between the immune system and the effects of trastuzumab on breast cancer that overexpresses the human epidermal growth factor receptor 2 (HER2+). A system of coupled, ordinary differential equations was constructed to describe the temporal changes in tumour growth, along with intratumoural changes in the immune response, vascularity, necrosis and hypoxia. The mathematical model is calibrated with serially acquired experimental data of tumour volume, vascularity, necrosis and hypoxia obtained from either imaging or histology from a murine model of HER2+ breast cancer. Sensitivity analysis shows that model components are sensitive for 12 of 13 parameters, but accounting for uncertainty in the parameter values, model simulations still agree with the experimental data. Given theinitial conditions, the mathematical model predicts an increase in the immune infiltrates over time in the treated animals. Immunofluorescent staining results are presented that validate this prediction by showing an increased co-staining of CD11c and F4/80 (proteins expressed by dendritic cells and/or macrophages) in the total tissue for the treated tumours compared to the controls ($p < 0.03$). We posit that the proposed mathematical-experimental approach can be used to elucidate driving interactions between the trastuzumab-induced responses in the tumour and the immune system that drive the stabilization of vasculature while simultaneously decreasing tumour growth-conclusions revealed by the mathematical model that were not deducible from the experimental data alone.
Collapse
Affiliation(s)
- Angela M Jarrett
- Institute for Computational Engineering and Sciences, University of Texas, Austin, TX, USA.,Livestrong Cancer Institutes, University of Texas, Austin, TX, USA
| | - Meghan J Bloom
- Department of Biomedical Engineering, University of Texas, Austin, TX, USA
| | - Wesley Godfrey
- Department of Molecular Biosciences, University of Texas, Austin, TX, USA
| | - Anum K Syed
- Department of Biomedical Engineering, University of Texas, Austin, TX, USA
| | - David A Ekrut
- Institute for Computational Engineering and Sciences, University of Texas, Austin, TX, USA
| | - Lauren I Ehrlich
- Department of Molecular Biosciences, University of Texas, Austin, TX, USA.,Institute for Cellular and Molecular Biology, University of Texas, Austin, TX, USA.,Livestrong Cancer Institutes, University of Texas, Austin, TX, USA
| | - Thomas E Yankeelov
- Institute for Computational Engineering and Sciences, University of Texas, Austin, TX, USA.,Department of Biomedical Engineering, University of Texas, Austin, TX, USA.,Department of Diagnostic Medicine, University of Texas, Austin, TX, USA.,Livestrong Cancer Institutes, University of Texas, Austin, TX, USA
| | - Anna G Sorace
- Department of Biomedical Engineering, University of Texas, Austin, TX, USA.,Department of Diagnostic Medicine, University of Texas, Austin, TX, USA.,Department of Oncology, University of Texas, Austin, TX, USA.,Livestrong Cancer Institutes, University of Texas, Austin, TX, USA
| |
Collapse
|
18
|
Syed AK, Whisenant JG, Barnes SL, Sorace AG, Yankeelov TE. Multiparametric Analysis of Longitudinal Quantitative MRI data to Identify Distinct Tumor Habitats in Preclinical Models of Breast Cancer. Cancers (Basel) 2020; 12:cancers12061682. [PMID: 32599906 PMCID: PMC7352623 DOI: 10.3390/cancers12061682] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022] Open
Abstract
This study identifies physiological tumor habitats from quantitative magnetic resonance imaging (MRI) data and evaluates their alterations in response to therapy. Two models of breast cancer (BT-474 and MDA-MB-231) were imaged longitudinally with diffusion-weighted MRI and dynamic contrast-enhanced MRI to quantify tumor cellularity and vascularity, respectively, during treatment with trastuzumab or albumin-bound paclitaxel. Tumors were stained for anti-CD31, anti-Ki-67, and H&E. Imaging and histology data were clustered to identify tumor habitats and percent tumor volume (MRI) or area (histology) of each habitat was quantified. Histological habitats were correlated with MRI habitats. Clustering of both the MRI and histology data yielded three clusters: high-vascularity high-cellularity (HV-HC), low-vascularity high-cellularity (LV-HC), and low-vascularity low-cellularity (LV-LC). At day 4, BT-474 tumors treated with trastuzumab showed a decrease in LV-HC (p = 0.03) and increase in HV-HC (p = 0.03) percent tumor volume compared to control. MDA-MB-231 tumors treated with low-dose albumin-bound paclitaxel showed a longitudinal decrease in LV-HC percent tumor volume at day 3 (p = 0.01). Positive correlations were found between histological and imaging-derived habitats: HV-HC (BT-474: p = 0.03), LV-HC (MDA-MB-231: p = 0.04), LV-LC (BT-474: p = 0.04; MDA-MB-231: p < 0.01). Physiologically distinct tumor habitats associated with therapeutic response were identified with MRI and histology data in preclinical models of breast cancer.
Collapse
Affiliation(s)
- Anum K Syed
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jennifer G Whisenant
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Stephanie L Barnes
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Anna G Sorace
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Radiology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Thomas E Yankeelov
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Diagnostic Medicine, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Oncology, The University of Texas at Austin, Austin, TX 78712, USA
- Livestrong Cancer Institutes, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
19
|
Huang H, Zhang C, Wang X, Shao J, Chen C, Li H, Ju C, He J, Gu H, Xia D. Overcoming Hypoxia-Restrained Radiotherapy Using an Erythrocyte-Inspired and Glucose-Activatable Platform. NANO LETTERS 2020; 20:4211-4219. [PMID: 32352796 DOI: 10.1021/acs.nanolett.0c00650] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Radiotherapy (RT) as one of the most powerful cancer treatment strategies has been greatly restricted by tumor hypoxia. A mounting effort has been devoted to develop oxygen delivery systems for boosting the RT effect. Unluckily, those systems only supplied modest oxygen, which could not afford more than once and long-time RT. Herein, we describe the development of a glucose-regulated drug release platform, allowing for a long-term tumor normoxic microenvironment and repeated RT for a long time. The repeated cycles resulted in sustained high Endostar plasma levels, which dramatically normalized the tumor vasculature and chronically reversed tumor hypoxia. Taking advantage of the inexhaustible supply of oxygen, Endo@GOx-ER enabled RT achieved an impressive cancer treatment output. To the best of our knowledge, our strategy is the initial attempt to overcome tumor-hypoxia-limited RT through the normalization of tumor vasculature by using an erythrocyte-inspired and glucose-activatable platform and it visually casts a light on the clinical development.
Collapse
Affiliation(s)
- Hao Huang
- School of Public Health, Nantong University, Nantong, Jiangsu 226019, P.R. China
| | - Chao Zhang
- Institute of Materials Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210093, P.R. China
| | - Xiaolin Wang
- Nantong Tumor Hospital, Nantong, Jiangsu 226362, P.R. China
| | - Jinsong Shao
- School of Public Health, Nantong University, Nantong, Jiangsu 226019, P.R. China
| | - Chao Chen
- School of Public Health, Nantong University, Nantong, Jiangsu 226019, P.R. China
| | - Haoming Li
- Medical School of Nantong University, Nantong, Jiangsu 226019, P.R. China
| | - Chunmei Ju
- Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Jian He
- Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Haiying Gu
- School of Public Health, Nantong University, Nantong, Jiangsu 226019, P.R. China
| | - Donglin Xia
- School of Public Health, Nantong University, Nantong, Jiangsu 226019, P.R. China
| |
Collapse
|
20
|
Hormuth DA, Jarrett AM, Lima EA, McKenna MT, Fuentes DT, Yankeelov TE. Mechanism-Based Modeling of Tumor Growth and Treatment Response Constrained by Multiparametric Imaging Data. JCO Clin Cancer Inform 2019; 3:1-10. [PMID: 30807209 PMCID: PMC6535803 DOI: 10.1200/cci.18.00055] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2018] [Indexed: 12/19/2022] Open
Abstract
Multiparametric imaging is a critical tool in the noninvasive study and assessment of cancer. Imaging methods have evolved over the past several decades to provide quantitative measures of tumor and healthy tissue characteristics related to, for example, cell number, blood volume fraction, blood flow, hypoxia, and metabolism. Mechanistic models of tumor growth also have matured to a point where the incorporation of patient-specific measures could provide clinically relevant predictions of tumor growth and response. In this review, we identify and discuss approaches that use multiparametric imaging data, including diffusion-weighted magnetic resonance imaging, dynamic contrast-enhanced magnetic resonance imaging, diffusion tensor imaging, contrast-enhanced computed tomography, [18F]fluorodeoxyglucose positron emission tomography, and [18F]fluoromisonidazole positron emission tomography to initialize and calibrate mechanistic models of tumor growth and response. We focus the discussion on brain and breast cancers; however, we also identify three emerging areas of application in kidney, pancreatic, and lung cancers. We conclude with a discussion of the future directions for incorporating multiparametric imaging data and mechanistic modeling into clinical decision making for patients with cancer.
Collapse
|
21
|
Syed AK, Woodall R, Whisenant JG, Yankeelov TE, Sorace AG. Characterizing Trastuzumab-Induced Alterations in Intratumoral Heterogeneity with Quantitative Imaging and Immunohistochemistry in HER2+ Breast Cancer. Neoplasia 2019; 21:17-29. [PMID: 30472501 PMCID: PMC6260456 DOI: 10.1016/j.neo.2018.10.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/24/2018] [Accepted: 10/29/2018] [Indexed: 12/21/2022]
Abstract
The purpose of this study is to investigate imaging and histology-based measurements of intratumoral heterogeneity to evaluate early treatment response to targeted therapy in a murine model of HER2+ breast cancer. BT474 tumor-bearing mice (N = 30) were treated with trastuzumab or saline and imaged longitudinally with either dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) or 18F-fluoromisonidazole (FMISO) positron emission tomography (PET). At the imaging study end point (day 4 for MRI or 7 for PET), each tumor was excised for immunohistochemistry analysis. Voxel-based histogram analysis was performed on imaging-derived parametric maps (i.e., Ktrans and ve from DCE-MRI, SUV from 18F-FMISO-PET) of the tumor region of interest to measure heterogeneity. Image processing and histogram analysis of whole tumor slice immunohistochemistry data were performed to validate the in vivo imaging findings. Trastuzumab-treated tumors had increased heterogeneity in quantitative imaging measures of cellularity (ve), with a mean Kolmogorov-Smirnov (K-S) distance of 0.32 (P = .05) between baseline and end point distributions. Trastuzumab-treated tumors had increased vascular heterogeneity (Ktrans) and decreased hypoxic heterogeneity (SUV), with a mean K-S distance of 0.42 (P < .01) and 0.46 (P = .047), respectively, between baseline and study end points. These observations were validated by whole-slice immunohistochemistry analysis with mean interquartile range of CD31 distributions of 1.72 for treated and 0.95 for control groups (P = .02). Quantitative longitudinal changes in tumor cellular and vascular heterogeneity in response to therapy may provide evidence for early prediction of response and guide therapy for patients with HER2+ breast cancer.
Collapse
Affiliation(s)
- Anum K Syed
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712
| | - Ryan Woodall
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712
| | - Jennifer G Whisenant
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Thomas E Yankeelov
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712; Department of Diagnostic Medicine, The University of Texas at Austin, Austin, TX 78712; Department of Oncology, The University of Texas at Austin, Austin, TX 78712; Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712; Livestrong Cancer Institutes, The University of Texas at Austin, Austin, TX 78712
| | - Anna G Sorace
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712; Department of Diagnostic Medicine, The University of Texas at Austin, Austin, TX 78712; Department of Oncology, The University of Texas at Austin, Austin, TX 78712; Livestrong Cancer Institutes, The University of Texas at Austin, Austin, TX 78712.
| |
Collapse
|
22
|
Changes in Tumor Biology During Chemoradiation of Cervix Cancer Assessed by Multiparametric MRI and Hypoxia PET. Mol Imaging Biol 2018; 20:160-169. [PMID: 28540524 PMCID: PMC5775363 DOI: 10.1007/s11307-017-1087-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE Imaging biomarkers assessed with magnetic resonance imaging (MRI) and/or positron emission tomography (PET) enable non-invasive tumor characterization in cervix cancer patients. We investigated the spatio-temporal stability of hypoxia, perfusion, and the cell density of tumors over time by repetitive imaging prior to, during, and after radio-chemotherapy. PROCEDURES Thirteen patients were included in this prospective study. The imaging protocol included the following: [18F]fluoromisonidazole ([18F]FMISO)-PET/x-ray computed tomography (CT) and multiparametric (mp)-MRI at four time-points (TP): baseline (BL); and weeks 2 (TP1), 5 (TP2), and 19 after treatment start (follow-up FU). Complete datasets for six patients could be assessed for tumor volume, enhancement kinetics, diffusivity, and [18F]FMISO-avidity (P1-P6). In addition, two patients completed all PET/CT examinations (P7-P8) but not all MR scans; however, one of them had no hypoxia (P8). Descriptive statistics, correlations, and voxel-by-voxel analysis were performed. For various, independent reasons, five patients could not complete the study according to the protocol with all imaging sequences. RESULTS Median tumor ADCs (in ×10-3 mm2/s) were 0.99 ± 0.10 at BL, 1.20 ± 0.12 at TP1, 1.33 ± 0.14 at TP2, and 1.38 ± 0.21 at FU. The median TBRpeak (tumor-to-background) was 2.7 ± 0.8 at BL, 1.6 ± 0.2 at TP1, 1.8 ± 0.3 at TP2, and 1.7 ± 0.3 at FU. The voxel-by-voxel analysis of the [18F]FMISO uptake at BL and TP1 showed no correlation. Between TP2 and TP1 and FU and TP2, weak correlations were found for two patients. CONCLUSIONS Longitudinal mp-MR and PET imaging enables the in vivo tumor characterization over time. While perfusion and cell density decreased, there was a non-uniform change of hypoxia observed during radiotherapy. To assess the potential impact with regard to more personalized treatment approaches, hypoxia imaging-based dose painting for cervix cancer requires further research.
Collapse
|
23
|
Phytol isolated from watermelon (Citrullus lanatus) sprouts induces cell death in human T-lymphoid cell line Jurkat cells via S-phase cell cycle arrest. Food Chem Toxicol 2018; 115:425-435. [DOI: 10.1016/j.fct.2018.03.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 02/22/2018] [Accepted: 03/23/2018] [Indexed: 12/12/2022]
|
24
|
Zhao H, Li L, Zheng C, Hao Y, Niu M, Hu Y, Chang J, Zhang Z, Wang L. An intelligent dual stimuli-responsive photosensitizer delivery system with O 2-supplying for efficient photodynamic therapy. Colloids Surf B Biointerfaces 2018; 167:299-309. [PMID: 29679806 DOI: 10.1016/j.colsurfb.2018.04.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 03/21/2018] [Accepted: 04/04/2018] [Indexed: 12/18/2022]
Abstract
The effects of photodynamic therapy (PDT) are limited by the hypoxic tumor microenvironment (TME). In this paper, a new type of biocompatible multifunctional photosensitizer delivery system was fabricated to relieve tumor hypoxia and improve the efficacy of PDT. The photosensitizer hematoporphyrin monomethyl ether (HMME) and catalase (CAT) were encapsulated in the pores of mesoporous graphitic-phase carbon nitride nanosheets (mpg-C3N4). Next, hyaluronic (HA) was coated on the surface of the mpg-C3N4 via an amide linkage to construct the tumor-targeting HAase/CAT dual activatable and mpg-C3N4/HMME response photosensitizer delivery system (HA@mpg-C3N4-HMME/CAT). Upon intravenous injection, HA@mpg-C3N4-HMME/CAT shows high tumor accumulation owing to the tumor-targeting HA coating. Meanwhile, CAT within mpg-C3N4 could trigger decomposition of endogenic TME H2O2 to increase oxygen supply in-situ to relieve tumor hypoxia. This effect together with mpg-C3N4/HMME dual response is able to dramatically improve PDT efficiency. The hypoxia status of tumors was evaluated in vivo to demonstrate the success of the O2-supplying. And the in vitro and in vivo results showed the excellent therapeutic effect of the HA@mpg-C3N4-HMME/CAT photosensitizer delivery system. O2-supplying PDT may enable the enhancement of traditional PDT and future PDT design.
Collapse
Affiliation(s)
- Hongjuan Zhao
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou 450001, PR China
| | - Li Li
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou 450001, PR China
| | - Cuixia Zheng
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou 450001, PR China
| | - Yongwei Hao
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou 450001, PR China
| | - Mengya Niu
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou 450001, PR China
| | - Yujie Hu
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou 450001, PR China
| | - Junbiao Chang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou 450001, PR China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, Zhengzhou 450001, PR China; School of chemistry and molecular engineering, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, PR China
| | - Zhenzhong Zhang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou 450001, PR China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, Zhengzhou 450001, PR China.
| | - Lei Wang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou 450001, PR China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, Zhengzhou 450001, PR China.
| |
Collapse
|
25
|
Salem A, Asselin MC, Reymen B, Jackson A, Lambin P, West CML, O'Connor JPB, Faivre-Finn C. Targeting Hypoxia to Improve Non-Small Cell Lung Cancer Outcome. J Natl Cancer Inst 2018; 110:4096546. [PMID: 28922791 DOI: 10.1093/jnci/djx160] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 07/03/2017] [Indexed: 12/18/2022] Open
Abstract
Oxygen deprivation (hypoxia) in non-small cell lung cancer (NSCLC) is an important factor in treatment resistance and poor survival. Hypoxia is an attractive therapeutic target, particularly in the context of radiotherapy, which is delivered to more than half of NSCLC patients. However, NSCLC hypoxia-targeted therapy trials have not yet translated into patient benefit. Recently, early termination of promising evofosfamide and tarloxotinib bromide studies due to futility highlighted the need for a paradigm shift in our approach to avoid disappointments in future trials. Radiotherapy dose painting strategies based on hypoxia imaging require careful refinement prior to clinical investigation. This review will summarize the role of hypoxia, highlight the potential of hypoxia as a therapeutic target, and outline past and ongoing hypoxia-targeted therapy trials in NSCLC. Evidence supporting radiotherapy dose painting based on hypoxia imaging will be critically appraised. Carefully selected hypoxia biomarkers suitable for integration within future NSCLC hypoxia-targeted therapy trials will be examined. Research gaps will be identified to guide future investigation. Although this review will focus on NSCLC hypoxia, more general discussions (eg, obstacles of hypoxia biomarker research and developing a framework for future hypoxia trials) are applicable to other tumor sites.
Collapse
Affiliation(s)
- Ahmed Salem
- Division of Cancer Sciences and Division of Informatics, Imaging and Data Sciences, University of Manchester, Manchester, UK; Department of Radiation Oncology (MAASTRO Lab), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Marie-Claude Asselin
- Division of Cancer Sciences and Division of Informatics, Imaging and Data Sciences, University of Manchester, Manchester, UK; Department of Radiation Oncology (MAASTRO Lab), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Bart Reymen
- Division of Cancer Sciences and Division of Informatics, Imaging and Data Sciences, University of Manchester, Manchester, UK; Department of Radiation Oncology (MAASTRO Lab), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Alan Jackson
- Division of Cancer Sciences and Division of Informatics, Imaging and Data Sciences, University of Manchester, Manchester, UK; Department of Radiation Oncology (MAASTRO Lab), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Philippe Lambin
- Division of Cancer Sciences and Division of Informatics, Imaging and Data Sciences, University of Manchester, Manchester, UK; Department of Radiation Oncology (MAASTRO Lab), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Catharine M L West
- Division of Cancer Sciences and Division of Informatics, Imaging and Data Sciences, University of Manchester, Manchester, UK; Department of Radiation Oncology (MAASTRO Lab), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - James P B O'Connor
- Division of Cancer Sciences and Division of Informatics, Imaging and Data Sciences, University of Manchester, Manchester, UK; Department of Radiation Oncology (MAASTRO Lab), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Corinne Faivre-Finn
- Division of Cancer Sciences and Division of Informatics, Imaging and Data Sciences, University of Manchester, Manchester, UK; Department of Radiation Oncology (MAASTRO Lab), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands
| |
Collapse
|