1
|
Gaspar N, Handula M, Stroet MCM, Marella-Panth K, Haeck J, Kirkland TA, Hall MP, Encell LP, Dalm S, Lowik C, Seimbille Y, Mezzanotte L. A Novel Luciferase-Based Reporter Gene Technology for Simultaneous Optical and Radionuclide Imaging of Cells. Int J Mol Sci 2024; 25:8206. [PMID: 39125775 PMCID: PMC11312113 DOI: 10.3390/ijms25158206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024] Open
Abstract
Multimodality reporter gene imaging combines the sensitivity, resolution and translational potential of two or more signals. The approach has not been widely adopted by the animal imaging community, mainly because its utility in this area is unproven. We developed a new complementation-based reporter gene system where the large component of split NanoLuc luciferase (LgBiT) presented on the surface of cells (TM-LgBiT) interacts with a radiotracer consisting of the high-affinity complementary HiBiT peptide labeled with a radionuclide. Radiotracer uptake could be imaged in mice using SPECT/CT and bioluminescence within two hours of implanting reporter-gene-expressing cells. Imaging data were validated by ex vivo biodistribution studies. Following the demonstration of complementation between the TM-LgBiT protein and HiBiT radiotracer, we validated the use of the technology in the highly specific in vivo multimodal imaging of cells. These findings highlight the potential of this new approach to facilitate the advancement of cell and gene therapies from bench to clinic.
Collapse
Affiliation(s)
- Natasa Gaspar
- Department of Radiology and Nuclear Medicine, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 CE Rotterdam, The Netherlands
- Department of Molecular Genetics, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 CE Rotterdam, The Netherlands
| | - Maryana Handula
- Department of Radiology and Nuclear Medicine, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 CE Rotterdam, The Netherlands
| | - Marcus C. M. Stroet
- Department of Radiology and Nuclear Medicine, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 CE Rotterdam, The Netherlands
- Department of Molecular Genetics, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 CE Rotterdam, The Netherlands
| | - Kranthi Marella-Panth
- Department of Radiology and Nuclear Medicine, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 CE Rotterdam, The Netherlands
- Department of Molecular Genetics, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 CE Rotterdam, The Netherlands
| | - Joost Haeck
- Department of Radiology and Nuclear Medicine, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 CE Rotterdam, The Netherlands
| | | | | | | | - Simone Dalm
- Department of Radiology and Nuclear Medicine, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 CE Rotterdam, The Netherlands
| | - Clemens Lowik
- Department of Radiology and Nuclear Medicine, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 CE Rotterdam, The Netherlands
| | - Yann Seimbille
- Department of Radiology and Nuclear Medicine, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 CE Rotterdam, The Netherlands
| | - Laura Mezzanotte
- Department of Radiology and Nuclear Medicine, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 CE Rotterdam, The Netherlands
- Department of Molecular Genetics, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 CE Rotterdam, The Netherlands
| |
Collapse
|
2
|
Song Y, Zou J, Castellanos EA, Matsuura N, Ronald JA, Shuhendler A, Weber WA, Gilad AA, Müller C, Witney TH, Chen X. Theranostics - a sure cure for cancer after 100 years? Theranostics 2024; 14:2464-2488. [PMID: 38646648 PMCID: PMC11024861 DOI: 10.7150/thno.96675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/23/2024] Open
Abstract
Cancer has remained a formidable challenge in medicine and has claimed an enormous number of lives worldwide. Theranostics, combining diagnostic methods with personalized therapeutic approaches, shows huge potential to advance the battle against cancer. This review aims to provide an overview of theranostics in oncology: exploring its history, current advances, challenges, and prospects. We present the fundamental evolution of theranostics from radiotherapeutics, cellular therapeutics, and nanotherapeutics, showcasing critical milestones in the last decade. From the early concept of targeted drug delivery to the emergence of personalized medicine, theranostics has benefited from advances in imaging technologies, molecular biology, and nanomedicine. Furthermore, we emphasize pertinent illustrations showcasing that revolutionary strategies in cancer management enhance diagnostic accuracy and provide targeted therapies customized for individual patients, thereby facilitating the implementation of personalized medicine. Finally, we describe future perspectives on current challenges, emerging topics, and advances in the field.
Collapse
Affiliation(s)
- Yangmeihui Song
- Department of Nuclear Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, 81675, Germany
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 43000, China
| | - Jianhua Zou
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | | | - Naomi Matsuura
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Department of Materials Science & Engineering, University of Toronto, Toronto, ON, Canada
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - John A. Ronald
- Imaging Laboratories, Department of Medical Biophysics, Robarts Research Institute, University of Western Ontario, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
| | - Adam Shuhendler
- University of Ottawa Heart Institute, Ottawa, ON, Canada
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Wolfgang A Weber
- Department of Nuclear Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, 81675, Germany
| | - Assaf A. Gilad
- Department of Chemical Engineering and Materials Sciences, Michigan State University, East Lansing, MI, USA
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, USA
| | - Cristina Müller
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Timothy H. Witney
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| |
Collapse
|
3
|
Das S, Dey MK, Devireddy R, Gartia MR. Biomarkers in Cancer Detection, Diagnosis, and Prognosis. SENSORS (BASEL, SWITZERLAND) 2023; 24:37. [PMID: 38202898 PMCID: PMC10780704 DOI: 10.3390/s24010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/27/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024]
Abstract
Biomarkers are vital in healthcare as they provide valuable insights into disease diagnosis, prognosis, treatment response, and personalized medicine. They serve as objective indicators, enabling early detection and intervention, leading to improved patient outcomes and reduced costs. Biomarkers also guide treatment decisions by predicting disease outcomes and facilitating individualized treatment plans. They play a role in monitoring disease progression, adjusting treatments, and detecting early signs of recurrence. Furthermore, biomarkers enhance drug development and clinical trials by identifying suitable patients and accelerating the approval process. In this review paper, we described a variety of biomarkers applicable for cancer detection and diagnosis, such as imaging-based diagnosis (CT, SPECT, MRI, and PET), blood-based biomarkers (proteins, genes, mRNA, and peptides), cell imaging-based diagnosis (needle biopsy and CTC), tissue imaging-based diagnosis (IHC), and genetic-based biomarkers (RNAseq, scRNAseq, and spatial transcriptomics).
Collapse
Affiliation(s)
| | | | | | - Manas Ranjan Gartia
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA; (S.D.); (M.K.D.); (R.D.)
| |
Collapse
|
4
|
Chowdhury R, Wan J, Gardier R, Rafael-Patino J, Thiran JP, Gibou F, Mukherjee A. Molecular Imaging with Aquaporin-Based Reporter Genes: Quantitative Considerations from Monte Carlo Diffusion Simulations. ACS Synth Biol 2023; 12:3041-3049. [PMID: 37793076 PMCID: PMC11604347 DOI: 10.1021/acssynbio.3c00372] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Aquaporins provide a unique approach for imaging genetic activity in deep tissues by increasing the rate of cellular water diffusion, which generates a magnetic resonance contrast. However, distinguishing aquaporin signals from the tissue background is challenging because water diffusion is influenced by structural factors, such as cell size and packing density. Here, we developed a Monte Carlo model to analyze how cell radius and intracellular volume fraction quantitatively affect aquaporin signals. We demonstrated that a differential imaging approach based on subtracting signals at two diffusion times can improve specificity by unambiguously isolating aquaporin signals from the tissue background. We further used Monte Carlo simulations to analyze the connection between diffusivity and the percentage of cells engineered to express aquaporin and established a mapping that accurately determined the volume fraction of aquaporin-expressing cells in mixed populations. The quantitative framework developed in this study will enable a broad range of applications in biomedical synthetic biology, requiring the use of aquaporins to noninvasively monitor the location and function of genetically engineered devices in live animals.
Collapse
Affiliation(s)
- Rochishnu Chowdhury
- Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106, USA
| | - Jinyang Wan
- Department of Chemistry, University of California, Santa Barbara, CA 93106, USA
| | - Remy Gardier
- Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Jonathan Rafael-Patino
- Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Radiology Department, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Jean-Philippe Thiran
- Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Radiology Department, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Frederic Gibou
- Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106, USA
- Department of Computer Science, University of California, Santa Barbara, CA 93106, USA
| | - Arnab Mukherjee
- Department of Chemistry, University of California, Santa Barbara, CA 93106, USA
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA
- Biomolecular Science and Engineering, University of California, Santa Barbara, CA 93106, USA
- Biological Engineering, University of California, Santa Barbara, CA 93106, USA
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
5
|
Chowdhury R, Wan J, Gardier R, Rafael-Patino J, Thiran JP, Gibou F, Mukherjee A. Molecular imaging with aquaporin-based reporter genes: quantitative considerations from Monte Carlo diffusion simulations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.09.544324. [PMID: 37333205 PMCID: PMC10274877 DOI: 10.1101/2023.06.09.544324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Aquaporins provide a new class of genetic tools for imaging molecular activity in deep tissues by increasing the rate of cellular water diffusion, which generates magnetic resonance contrast. However, distinguishing aquaporin contrast from the tissue background is challenging because water diffusion is also influenced by structural factors such as cell size and packing density. Here, we developed and experimentally validated a Monte Carlo model to analyze how cell radius and intracellular volume fraction quantitatively affect aquaporin signals. We demonstrated that a differential imaging approach based on time-dependent changes in diffusivity can improve specificity by unambiguously isolating aquaporin-driven contrast from the tissue background. Finally, we used Monte Carlo simulations to analyze the connection between diffusivity and the percentage of cells engineered to express aquaporin, and established a simple mapping that accurately determined the volume fraction of aquaporin-expressing cells in mixed populations. This study creates a framework for broad applications of aquaporins, particularly in biomedicine and in vivo synthetic biology, where quantitative methods to measure the location and performance of genetic devices in whole vertebrates are necessary.
Collapse
Affiliation(s)
- Rochishnu Chowdhury
- Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106, USA
| | - Jinyang Wan
- Department of Chemistry, University of California, Santa Barbara, CA 93106, USA
| | - Remy Gardier
- Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Jonathan Rafael-Patino
- Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Radiology Department, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Jean-Philippe Thiran
- Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Radiology Department, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Frederic Gibou
- Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106, USA
- Department of Computer Science, University of California, Santa Barbara, CA 93106, USA
| | - Arnab Mukherjee
- Department of Chemistry, University of California, Santa Barbara, CA 93106, USA
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA
- Biomolecular Science and Engineering, University of California, Santa Barbara, CA 93106, USA
- Biological Engineering, University of California, Santa Barbara, CA 93106, USA
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
6
|
Gilad AA, Bar-Shir A, Bricco AR, Mohanta Z, McMahon MT. Protein and peptide engineering for chemical exchange saturation transfer imaging in the age of synthetic biology. NMR IN BIOMEDICINE 2023; 36:e4712. [PMID: 35150021 PMCID: PMC10642350 DOI: 10.1002/nbm.4712] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 05/23/2023]
Abstract
At the beginning of the millennium, the first chemical exchange saturation transfer (CEST) contrast agents were bio-organic molecules. However, later, metal-based CEST agents (paraCEST agents) took center stage. This did not last too long as paraCEST agents showed limited translational potential. By contrast, the CEST field gradually became dominated by metal-free CEST agents. One branch of research stemming from the original work by van Zijl and colleagues is the development of CEST agents based on polypeptides. Indeed, in the last 2 decades, tremendous progress has been achieved in this field. This includes the design of novel peptides as biosensors, genetically encoded recombinant as well as synthetic reporters. This was a result of extensive characterization and elucidation of the theoretical requirements for rational designing and engineering of such agents. Here, we provide an extensive overview of the evolution of more precise protein-based CEST agents, review the rationalization of enzyme-substrate pairs as CEST contrast enhancers, discuss the theoretical considerations to improve peptide selectivity, specificity and enhance CEST contrast. Moreover, we discuss the strong influence of synthetic biology on the development of the next generation of protein-based CEST contrast agents.
Collapse
Affiliation(s)
- Assaf A. Gilad
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan, USA
- Department of Radiology, Michigan State University, East Lansing, Michigan, USA
| | - Amnon Bar-Shir
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, Israel
| | - Alexander R. Bricco
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Zinia Mohanta
- Division of MR Research, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Michael T. McMahon
- Division of MR Research, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Yun J, Baldini M, Chowdhury R, Mukherjee A. Designing Protein-Based Probes for Sensing Biological Analytes with Magnetic Resonance Imaging. ANALYSIS & SENSING 2022; 2:e202200019. [PMID: 37409177 PMCID: PMC10321474 DOI: 10.1002/anse.202200019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Genetically encoded sensors provide unique advantages for monitoring biological analytes with molecular and cellular-level specificity. While sensors derived from fluorescent proteins represent staple tools in biological imaging, these probes are limited to optically accessible preparations owing to physical curbs on light penetration. In contrast to optical methods, magnetic resonance imaging (MRI) may be used to noninvasively look inside intact organisms at any arbitrary depth and over large fields of view. These capabilities have spurred the development of innovative methods to connect MRI readouts with biological targets using protein-based probes that are in principle genetically encodable. Here, we highlight the state-of-the-art in MRI-based biomolecular sensors, focusing on their physical mechanisms, quantitative characteristics, and biological applications. We also describe how innovations in reporter gene technology are creating new opportunities to engineer MRI sensors that are sensitive to dilute biological targets.
Collapse
Affiliation(s)
- Jason Yun
- Department of Chemistry, University of California, Santa Barbara, CA 93106, USA
| | - Michelle Baldini
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA
| | - Rochishnu Chowdhury
- Mechanical Engineering, University of California, Santa Barbara, CA 93106, USA
| | - Arnab Mukherjee
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA
- Department of Chemistry, University of California, Santa Barbara, CA 93106, USA
- Biomolecular Science and Engineering, University of California, Santa Barbara, CA 93106, USA
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
- Center for BioEngineering, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
8
|
Chee WKD, Yeoh JW, Dao VL, Poh CL. Thermogenetics: Applications come of age. Biotechnol Adv 2022; 55:107907. [PMID: 35041863 DOI: 10.1016/j.biotechadv.2022.107907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/13/2021] [Accepted: 01/09/2022] [Indexed: 12/20/2022]
Abstract
Temperature is a ubiquitous physical cue that is non-invasive, penetrative and easy to apply. In the growing field of thermogenetics, through beneficial repurposing of natural thermosensing mechanisms, synthetic biology is bringing new opportunities to design and build robust temperature-sensitive (TS) sensors which forms a thermogenetic toolbox of well characterised biological parts. Recent advancements in technological platforms available have expedited the discovery of novel or de novo thermosensors which are increasingly deployed in many practical temperature-dependent biomedical, industrial and biosafety applications. In all, the review aims to convey both the exhilarating recent technological developments underlying the advancement of thermosensors and the exciting opportunities the nascent thermogenetic field holds for biomedical and biotechnology applications.
Collapse
Affiliation(s)
- Wai Kit David Chee
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| | - Jing Wui Yeoh
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| | - Viet Linh Dao
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| | - Chueh Loo Poh
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore.
| |
Collapse
|
9
|
Total-body PET. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00118-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
10
|
Kwong GA, Ghosh S, Gamboa L, Patriotis C, Srivastava S, Bhatia SN. Synthetic biomarkers: a twenty-first century path to early cancer detection. Nat Rev Cancer 2021; 21:655-668. [PMID: 34489588 PMCID: PMC8791024 DOI: 10.1038/s41568-021-00389-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/14/2021] [Indexed: 02/08/2023]
Abstract
Detection of cancer at an early stage when it is still localized improves patient response to medical interventions for most cancer types. The success of screening tools such as cervical cytology to reduce mortality has spurred significant interest in new methods for early detection (for example, using non-invasive blood-based or biofluid-based biomarkers). Yet biomarkers shed from early lesions are limited by fundamental biological and mass transport barriers - such as short circulation times and blood dilution - that limit early detection. To address this issue, synthetic biomarkers are being developed. These represent an emerging class of diagnostics that deploy bioengineered sensors inside the body to query early-stage tumours and amplify disease signals to levels that could potentially exceed those of shed biomarkers. These strategies leverage design principles and advances from chemistry, synthetic biology and cell engineering. In this Review, we discuss the rationale for development of biofluid-based synthetic biomarkers. We examine how these strategies harness dysregulated features of tumours to amplify detection signals, use tumour-selective activation to increase specificity and leverage natural processing of bodily fluids (for example, blood, urine and proximal fluids) for easy detection. Finally, we highlight the challenges that exist for preclinical development and clinical translation of synthetic biomarker diagnostics.
Collapse
Affiliation(s)
- Gabriel A Kwong
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA, USA.
- Parker H. Petit Institute of Bioengineering and Bioscience, Atlanta, GA, USA.
- Institute for Electronics and Nanotechnology, Georgia Tech, Atlanta, GA, USA.
- The Georgia Immunoengineering Consortium, Emory University and Georgia Tech, Atlanta, GA, USA.
- Winship Cancer Institute, Emory University, Atlanta, GA, USA.
| | - Sharmistha Ghosh
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Lena Gamboa
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA, USA
| | - Christos Patriotis
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sudhir Srivastava
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Sangeeta N Bhatia
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
11
|
Filippi L, Bagni O, Spinelli GP. Letter to the Editor Regarding " 18F-DOPA Positron Emission Tomography in Medulloblastoma: 2 Case Reports". World Neurosurg 2021; 150:253-254. [PMID: 34098659 DOI: 10.1016/j.wneu.2021.04.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 01/09/2023]
Affiliation(s)
- Luca Filippi
- Department of Nuclear Medicine, "Santa Maria Goretti" Hospital, Latina, Italy.
| | - Oreste Bagni
- Department of Nuclear Medicine, "Santa Maria Goretti" Hospital, Latina, Italy
| | - Gian Paolo Spinelli
- UOC Territorial Oncology AUSL Latina-CdS Aprilia-University of Rome "Sapienza", Rome, Italy
| |
Collapse
|
12
|
Farhadi A, Sigmund F, Westmeyer GG, Shapiro MG. Genetically encodable materials for non-invasive biological imaging. NATURE MATERIALS 2021; 20:585-592. [PMID: 33526879 PMCID: PMC8606175 DOI: 10.1038/s41563-020-00883-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 11/18/2020] [Indexed: 05/04/2023]
Abstract
Many questions in basic biology and medicine require the ability to visualize the function of specific cells and molecules inside living organisms. In this context, technologies such as ultrasound, optoacoustics and magnetic resonance provide non-invasive imaging access to deep-tissue regions, as used in many laboratories and clinics to visualize anatomy and physiology. In addition, recent work has enabled these technologies to image the location and function of specific cells and molecules inside the body by coupling the physics of sound waves, nuclear spins and light absorption to unique protein-based materials. These materials, which include air-filled gas vesicles, capsid-like nanocompartments, pigment-producing enzymes and transmembrane transporters, enable new forms of biomolecular and cellular contrast. The ability of these protein-based contrast agents to be genetically encoded and produced by cells creates opportunities for unprecedented in vivo studies of cellular function, while their amenability to genetic engineering enables atomic-level design of their physical, chemical and biological properties.
Collapse
Affiliation(s)
- Arash Farhadi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Felix Sigmund
- Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
- Institute for Synthetic Biomedicine, Helmholtz Zentrum Muenchen, Neuherberg, Germany
| | - Gil Gregor Westmeyer
- Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany.
- Institute for Synthetic Biomedicine, Helmholtz Zentrum Muenchen, Neuherberg, Germany.
| | - Mikhail G Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
13
|
Desmet NM, Dhusia K, Qi W, Doseff AI, Bhattacharya S, Gilad AA. Bioengineering of Genetically Encoded Gene Promoter Repressed by the Flavonoid Apigenin for Constructing Intracellular Sensor for Molecular Events. BIOSENSORS-BASEL 2021; 11:bios11050137. [PMID: 33924783 PMCID: PMC8147076 DOI: 10.3390/bios11050137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 12/21/2022]
Abstract
In recent years, Synthetic Biology has emerged as a new discipline where functions that were traditionally performed by electronic devices are replaced by "cellular devices"; genetically encoded circuits constructed of DNA that are built from biological parts (aka bio-parts). The cellular devices can be used for sensing and responding to natural and artificial signals. However, a major challenge in the field is that the crosstalk between many cellular signaling pathways use the same signaling endogenous molecules that can result in undesired activation. To overcome this problem, we utilized a specific promoter that can activate genes with a natural, non-toxic ligand at a highly-induced transcription level with low background or undesirable off-target expression. Here we used the orphan aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor that upon activation binds to specific AHR response elements (AHRE) of the Cytochrome P450, family 1, subfamily A, polypeptide 1 (CYP1A1) promoter. Flavonoids have been identified as AHR ligands. Data presented here show the successful creation of a synthetic gene "off" switch that can be monitored directly using an optical reporter gene. This is the first step towards bioengineering of a synthetic, nanoscale bio-part for constructing a sensor for molecular events.
Collapse
Affiliation(s)
- Nicole M. Desmet
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA; (N.M.D.); (K.D.); (W.Q.); (S.B.)
- Division of Synthetic Biology and Regenerative Medicine, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Kalyani Dhusia
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA; (N.M.D.); (K.D.); (W.Q.); (S.B.)
| | - Wenjie Qi
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA; (N.M.D.); (K.D.); (W.Q.); (S.B.)
| | - Andrea I. Doseff
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA;
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Sudin Bhattacharya
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA; (N.M.D.); (K.D.); (W.Q.); (S.B.)
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Assaf A. Gilad
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA; (N.M.D.); (K.D.); (W.Q.); (S.B.)
- Division of Synthetic Biology and Regenerative Medicine, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
- Department of Radiology, Michigan State University, East Lansing, MI 48824, USA
- Correspondence:
| |
Collapse
|
14
|
Yáñez Feliú G, Earle Gómez B, Codoceo Berrocal V, Muñoz Silva M, Nuñez IN, Matute TF, Arce Medina A, Vidal G, Vitalis C, Dahlin J, Federici F, Rudge TJ. Flapjack: Data Management and Analysis for Genetic Circuit Characterization. ACS Synth Biol 2021; 10:183-191. [PMID: 33382586 DOI: 10.1021/acssynbio.0c00554] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Characterization is fundamental to the design, build, test, learn (DBTL) cycle for engineering synthetic genetic circuits. Components must be described in such a way as to account for their behavior in a range of contexts. Measurements and associated metadata, including part composition, constitute the test phase of the DBTL cycle. These data may consist of measurements of thousands of circuits, measured in hundreds of conditions, in multiple assays potentially performed in different laboratories and using different techniques. In order to inform the learn phase this large volume of data must be filtered, collated, and analyzed. Characterization consists of using this data to parametrize models of component function in different contexts, and combining them to predict behaviors of novel circuits. Tools to store, organize, share, and analyze large volumes of measurement and metadata are therefore essential to linking the test phase to the build and learn phases, closing the loop of the DBTL cycle. Here we present such a system, implemented as a web app with a backend data registry and analysis engine. An interactive frontend provides powerful querying, plotting, and analysis tools, and we provide a REST API and Python package for full integration with external build and learn software. All measurements are associated with circuit part composition via SBOL (Synthetic Biology Open Language). We demonstrate our tool by characterizing a range of genetic components and circuits according to composition and context.
Collapse
Affiliation(s)
- Guillermo Yáñez Feliú
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago 7820244, Chile
| | - Benjamín Earle Gómez
- Institute for Biological and Medical Engineering, Schools of Engineering, Biology and Medicine, Pontificia Universidad Católica de Chile, Santiago 7820244, Chile
| | - Verner Codoceo Berrocal
- Institute for Biological and Medical Engineering, Schools of Engineering, Biology and Medicine, Pontificia Universidad Católica de Chile, Santiago 7820244, Chile
| | - Macarena Muñoz Silva
- Institute for Biological and Medical Engineering, Schools of Engineering, Biology and Medicine, Pontificia Universidad Católica de Chile, Santiago 7820244, Chile
| | - Isaac N Nuñez
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago 7820244, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Biology and Medicine, Pontificia Universidad Católica de Chile, Santiago 7820244, Chile
- ANID - Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBio), Pontificia Universidad Católica de Chile, Santiago 8330005, Chile
| | - Tamara F Matute
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago 7820244, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Biology and Medicine, Pontificia Universidad Católica de Chile, Santiago 7820244, Chile
- ANID - Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBio), Pontificia Universidad Católica de Chile, Santiago 8330005, Chile
| | - Anibal Arce Medina
- ANID - Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBio), Pontificia Universidad Católica de Chile, Santiago 8330005, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8330005, Chile
| | - Gonzalo Vidal
- Institute for Biological and Medical Engineering, Schools of Engineering, Biology and Medicine, Pontificia Universidad Católica de Chile, Santiago 7820244, Chile
| | - Carlos Vitalis
- Institute for Biological and Medical Engineering, Schools of Engineering, Biology and Medicine, Pontificia Universidad Católica de Chile, Santiago 7820244, Chile
| | - Jonathan Dahlin
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Fernán Federici
- Institute for Biological and Medical Engineering, Schools of Engineering, Biology and Medicine, Pontificia Universidad Católica de Chile, Santiago 7820244, Chile
- ANID - Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBio), Pontificia Universidad Católica de Chile, Santiago 8330005, Chile
- FONDAP, Center for Genome Regulation, Pontificia Universidad Católica de Chile, Santiago 8330005, Chile
| | - Timothy J Rudge
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago 7820244, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Biology and Medicine, Pontificia Universidad Católica de Chile, Santiago 7820244, Chile
| |
Collapse
|
15
|
Kelly JJ, Saee-Marand M, Nyström NN, Evans MM, Chen Y, Martinez FM, Hamilton AM, Ronald JA. Safe harbor-targeted CRISPR-Cas9 homology-independent targeted integration for multimodality reporter gene-based cell tracking. SCIENCE ADVANCES 2021; 7:eabc3791. [PMID: 33523917 PMCID: PMC7817109 DOI: 10.1126/sciadv.abc3791] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 11/25/2020] [Indexed: 05/12/2023]
Abstract
Imaging reporter genes provides longitudinal information on the biodistribution, growth, and survival of engineered cells in vivo. A translational bottleneck to using reporter genes is the necessity to engineer cells with randomly integrating vectors. Here, we built homology-independent targeted integration (HITI) CRISPR-Cas9 minicircle donors for precise safe harbor-targeted knock-in of fluorescence, bioluminescence, and MRI (Oatp1a1) reporter genes. Our results showed greater knock-in efficiency using HITI vectors compared to homology-directed repair vectors. HITI clones demonstrated functional fluorescence and bioluminescence reporter activity as well as significant Oatp1a1-mediated uptake of the clinically approved MRI agent gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid. Contrast-enhanced MRI improved the conspicuity of both subcutaneous and metastatic Oatp1a1-expressing tumors before they became palpable or even readily visible on precontrast images. Our work demonstrates the first CRISPR-Cas9 HITI system for knock-in of large DNA donor constructs at a safe harbor locus, enabling multimodal longitudinal in vivo imaging of cells.
Collapse
Affiliation(s)
- John J Kelly
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | - Moe Saee-Marand
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Nivin N Nyström
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | - Melissa M Evans
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Yuanxin Chen
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Francisco M Martinez
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Amanda M Hamilton
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | - John A Ronald
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada.
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
| |
Collapse
|
16
|
Liu G, van Zijl PC. CEST (Chemical Exchange Saturation Transfer) MR Molecular Imaging. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00012-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
17
|
|
18
|
Perlman O, Ito H, Gilad AA, McMahon MT, Chiocca EA, Nakashima H, Farrar CT. Redesigned reporter gene for improved proton exchange-based molecular MRI contrast. Sci Rep 2020; 10:20664. [PMID: 33244130 PMCID: PMC7692519 DOI: 10.1038/s41598-020-77576-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023] Open
Abstract
Reporter gene imaging allows for non-invasive monitoring of molecular processes in living cells, providing insights on the mechanisms underlying pathology and therapy. A lysine-rich protein (LRP) chemical exchange saturation transfer (CEST) MRI reporter gene has previously been developed and used to image tumor cells, cardiac viral gene transfer, and oncolytic virotherapy. However, the highly repetitive nature of the LRP reporter gene sequence leads to DNA recombination events and the expression of a range of truncated LRP protein fragments, thereby greatly limiting the CEST sensitivity. Here we report the use of a redesigned LRP reporter (rdLRP), aimed to provide excellent stability and CEST sensitivity. The rdLRP contains no DNA repeats or GC rich regions and 30% less positively charged amino-acids. RT-PCR of cell lysates transfected with rdLRP demonstrated a stable reporter gene with a single distinct band corresponding to full-length DNA. A distinct increase in CEST-MRI contrast was obtained in cell lysates of rdLRP transfected cells and in in vivo LRP expressing mouse brain tumors ([Formula: see text], n = 10).
Collapse
Affiliation(s)
- Or Perlman
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Suite 2301, Charlestown, MA, 02129, USA
| | - Hirotaka Ito
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Assaf A Gilad
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
- The Institute of Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
- Department of Radiology, Michigan State University, East Lansing, MI, USA
| | - Michael T McMahon
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
- Division of MR Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - E Antonio Chiocca
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Hiroshi Nakashima
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Christian T Farrar
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Suite 2301, Charlestown, MA, 02129, USA.
| |
Collapse
|
19
|
Schuerle S, Furubayashi M, Soleimany AP, Gwisai T, Huang W, Voigt C, Bhatia SN. Genetic Encoding of Targeted Magnetic Resonance Imaging Contrast Agents for Tumor Imaging. ACS Synth Biol 2020; 9:392-401. [PMID: 31922737 DOI: 10.1021/acssynbio.9b00416] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Tumor-selective contrast agents have the potential to aid in the diagnosis and treatment of cancer using noninvasive imaging modalities such as magnetic resonance imaging (MRI). Such contrast agents can consist of magnetic nanoparticles incorporating functionalities that respond to cues specific to tumor environments. Genetically engineering magnetotactic bacteria to display peptides has been investigated as a means to produce contrast agents that combine the robust image contrast effects of magnetosomes with the transgenic-targeting peptides displayed on their surface. This work reports the first use of magnetic nanoparticles that display genetically encoded pH low insertion peptide (pHLIP), a long peptide intended to enhance MRI contrast by targeting the extracellular acidity associated with the tumors. To demonstrate the modularity of this versatile platform to incorporate diverse targeting ligands by genetic engineering, we also incorporated the cyclic αv integrin-binding peptide iRGD into separate magnetosomes. Specifically, we investigate their potential for enhanced binding and tumor imaging both in vitro and in vivo. Our experiments indicate that these tailored magnetosomes retain their magnetic properties, making them well suited as T2 contrast agents, while exhibiting an increased binding compared to the binding in wild-type magnetosomes.
Collapse
Affiliation(s)
- Simone Schuerle
- Institute for Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Maiko Furubayashi
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo 062-8517, Japan
| | - Ava P. Soleimany
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Harvard Graduate Program in Biophysics, Harvard University, Boston, Massachusetts 02115, United States
- Harvard-MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Tinotenda Gwisai
- Institute for Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Wei Huang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Christopher Voigt
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Sangeeta N. Bhatia
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Harvard-MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Marble Center for Cancer Nanomedicine, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
20
|
Mukherjee A, Davis HC, Ramesh P, Lu GJ, Shapiro MG. Biomolecular MRI reporters: Evolution of new mechanisms. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2017; 102-103:32-42. [PMID: 29157492 PMCID: PMC5726449 DOI: 10.1016/j.pnmrs.2017.05.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 05/23/2017] [Accepted: 05/28/2017] [Indexed: 05/08/2023]
Abstract
Magnetic resonance imaging (MRI) is a powerful technique for observing the function of specific cells and molecules inside living organisms. However, compared to optical microscopy, in which fluorescent protein reporters are available to visualize hundreds of cellular functions ranging from gene expression and chemical signaling to biomechanics, to date relatively few such reporters are available for MRI. Efforts to develop MRI-detectable biomolecules have mainly focused on proteins transporting paramagnetic metals for T1 and T2 relaxation enhancement or containing large numbers of exchangeable protons for chemical exchange saturation transfer. While these pioneering developments established several key uses of biomolecular MRI, such as imaging of gene expression and functional biosensing, they also revealed that low molecular sensitivity poses a major challenge for broader adoption in biology and medicine. Recently, new classes of biomolecular reporters have been developed based on alternative contrast mechanisms, including enhancement of spin diffusivity, interactions with hyperpolarized nuclei, and modulation of blood flow. These novel reporters promise to improve sensitivity and enable new forms of multiplexed and functional imaging.
Collapse
Affiliation(s)
- Arnab Mukherjee
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Hunter C Davis
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Pradeep Ramesh
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - George J Lu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Mikhail G Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
21
|
Lakshmanan A, Lu GJ, Farhadi A, Nety SP, Kunth M, Lee-Gosselin A, Maresca D, Bourdeau RW, Yin M, Yan J, Witte C, Malounda D, Foster FS, Schröder L, Shapiro MG. Preparation of biogenic gas vesicle nanostructures for use as contrast agents for ultrasound and MRI. Nat Protoc 2017; 12:2050-2080. [PMID: 28880278 DOI: 10.1038/nprot.2017.081] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Gas vesicles (GVs) are a unique class of gas-filled protein nanostructures that are detectable at subnanomolar concentrations and whose physical properties allow them to serve as highly sensitive imaging agents for ultrasound and MRI. Here we provide a protocol for isolating GVs from native and heterologous host organisms, functionalizing these nanostructures with moieties for targeting and fluorescence, characterizing their biophysical properties and imaging them using ultrasound and MRI. GVs can be isolated from natural cyanobacterial and haloarchaeal host organisms or from Escherichia coli expressing a heterologous GV gene cluster and purified using buoyancy-assisted techniques. They can then be modified by replacing surface-bound proteins with engineered, heterologously expressed variants or through chemical conjugation, resulting in altered mechanical, surface and targeting properties. Pressurized absorbance spectroscopy is used to characterize their mechanical properties, whereas dynamic light scattering (DLS)and transmission electron microscopy (TEM) are used to determine nanoparticle size and morphology, respectively. GVs can then be imaged with ultrasound in vitro and in vivo using pulse sequences optimized for their detection versus background. They can also be imaged with hyperpolarized xenon MRI using chemical exchange saturation transfer between GV-bound and dissolved xenon-a technique currently implemented in vitro. Taking 3-8 d to prepare, these genetically encodable nanostructures enable multimodal, noninvasive biological imaging with high sensitivity and potential for molecular targeting.
Collapse
Affiliation(s)
- Anupama Lakshmanan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - George J Lu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, USA
| | - Arash Farhadi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Suchita P Nety
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, USA
| | - Martin Kunth
- Molecular Imaging, Department of Structural Biology, Leibniz-Forschungsinstitute für Molekulare Pharmakologie, Berlin, Germany
| | - Audrey Lee-Gosselin
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, USA
| | - David Maresca
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, USA
| | - Raymond W Bourdeau
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, USA
| | - Melissa Yin
- Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Judy Yan
- Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Christopher Witte
- Molecular Imaging, Department of Structural Biology, Leibniz-Forschungsinstitute für Molekulare Pharmakologie, Berlin, Germany
| | - Dina Malounda
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, USA
| | - F Stuart Foster
- Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Leif Schröder
- Molecular Imaging, Department of Structural Biology, Leibniz-Forschungsinstitute für Molekulare Pharmakologie, Berlin, Germany
| | - Mikhail G Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|