1
|
Jin C, Xue L, Zhang L, Yu L, Wu P, Qian H. Engineered Nanoparticles for Theranostic Applications in Kidney Repair. Adv Healthc Mater 2025; 14:e2402480. [PMID: 39617999 DOI: 10.1002/adhm.202402480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 11/05/2024] [Indexed: 01/03/2025]
Abstract
Kidney diseases are characterized by their intricate nature and complexity, posing significant challenges in their treatment and diagnosis. Nanoparticles (NPs), which can be further classified as synthetic and biomimetic NPs, have emerged as promising candidates for treating various diseases. In recent years, the development of engineered nanotherapeutics has focused on targeting damaged tissues and serving as drug delivery vehicles. Additionally, these NPs have shown superior sensitivity and specificity in diagnosis and imaging, thus providing valuable insights for the early detection of diseases. This review aims to focus on the application of engineered synthetic and biomimetic NPs in kidney diseases in the aspects of treatment, diagnosis, and imaging. Notably, the current perspectives and challenges are evaluated, which provide inspiration for future research directions, and encourage the clinical application of NPs in this field.
Collapse
Affiliation(s)
- Can Jin
- Department of Nephrology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, 215300, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Lingling Xue
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Leilei Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Lixia Yu
- Department of Nephrology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, 215300, China
| | - Peipei Wu
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| |
Collapse
|
2
|
Zhang WY, Wen L, Du L, Liu TT, Sun Y, Chen YZ, Lu YX, Cheng XC, Sun HY, Xiao FJ, Wang LS. S-RBD-modified and miR-486-5p-engineered exosomes derived from mesenchymal stem cells suppress ferroptosis and alleviate radiation-induced lung injury and long-term pulmonary fibrosis. J Nanobiotechnology 2024; 22:662. [PMID: 39462403 PMCID: PMC11515248 DOI: 10.1186/s12951-024-02830-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/02/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Radiation-induced lung injury (RILI) is associated with alveolar epithelial cell death and secondary fibrosis in injured lung. Mesenchymal stem cell (MSC)-derived exosomes have regenerative effect against lung injury and the potential to intervene of RILI. However, their intervention efficacy is limited because they lack lung targeting characters and do not carry sufficient specific effectors. SARS-CoV-2 spike glycoprotein (SARS-CoV-2-S-RBD) binds angiotensin-converting enzyme 2 (ACE2) receptor and mediates interaction with host cells. MiR-486-5p is a multifunctional miRNA with angiogenic and antifibrotic potential and acts as an effector in MSC-derived exosomes. Ferroptosis is a form of cell death associated with radiation injury, its roles and mechanisms in RILI remain unclear. In this study, we developed an engineered MSC-derived exosomes with SARS-CoV-2-S-RBD- and miR-486-5p- modification and investigated their intervention effects on RIPF and action mechanisms via suppression of epithelial cell ferroptosis. RESULTS Adenovirus-mediated gene modification led to miR-486-5p overexpression in human umbilical cord MSC exosomes (p < 0.05), thereby constructing miR-486-5p engineered MSC exosomes (miR-486-MSC-Exo). MiR-486-MSC-Exo promoted the proliferation and migration of irradiated mouse lung epithelial (MLE-12) cells in vitro and inhibited RILI in vivo (all p < 0.05). MiR-486-MSC-Exo suppressed ferroptosis in MLE-12 cells, and an in vitro assay revealed that the expression of fibrosis-related genes is up-regulated following ferroptosis (both p < 0.05). MiR-486-MSC-Exo reversed the up-regulated expression of fibrosis-related genes induced by TGF-β1 in vitro and improved pathological fibrosis in RIPF mice in vivo (all p < 0.05). SARS-CoV-2-S-RBD-modified and miR-486-5p-engineered MSC exosomes (miR-486-RBD-MSC-Exo) were also constructed, and the distribution of DiR dye-labeled miR-486-RBD-MSC-Exo in hACE2CKI/CKI Sftpc-Cre+ mice demonstrated long-term retention in the lung (p < 0.05). MiR-486-RBD-MSC-Exo significantly improved the survival rate and pathological changes in hACE2CKI/CKI Sftpc-Cre+ RIPF mice (all p < 0.05). Furthermore, miR-486-MSC-Exo exerted anti-fibrotic effects via targeted SMAD2 inhibition and Akt phosphorylation activation (p < 0.05). CONCLUSIONS Engineered MSC exosomes with SARS-CoV-2-S-RBD- and miR-486-5p-modification were developed. MiR-486-RBD-MSC-Exo suppressed ferroptosis and fibrosis of MLE-12 cells in vitro, and alleviated RILI and long-term RIPF in ACE2 humanized mice in vivo. MiR-486-MSC-Exo exerted anti-fibrotic effects via SMAD2 inhibition and Akt activation. This study provides a potential approach for RIPF intervention.
Collapse
Affiliation(s)
- Wei-Yuan Zhang
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, 266071, People's Republic of China
- Laboratory of Molecular Diagnosis and Regenerative Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People's Republic of China
| | - Li Wen
- School of Nursing, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Li Du
- Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Ting Ting Liu
- Department of Pulmonary and Critical Care Medicine, The Second Medical Center, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yang Sun
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, 266071, People's Republic of China
- Laboratory of Molecular Diagnosis and Regenerative Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People's Republic of China
| | - Yi-Zhu Chen
- Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Yu-Xin Lu
- Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Xiao-Chen Cheng
- Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Hui-Yan Sun
- Yanda Medical Research Institute, Hebei Yanda Hospital, Langfang, 065201, China
| | - Feng-Jun Xiao
- Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China.
| | - Li-Sheng Wang
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, 266071, People's Republic of China.
- Laboratory of Molecular Diagnosis and Regenerative Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People's Republic of China.
- School of Nursing, Jilin University, Changchun, 130021, Jilin, People's Republic of China.
| |
Collapse
|
3
|
Rosenkrans ZT, Thickens AS, Kink JA, Aluicio-Sarduy E, Engle JW, Hematti P, Hernandez R. Investigating the In Vivo Biodistribution of Extracellular Vesicles Isolated from Various Human Cell Sources Using Positron Emission Tomography. Mol Pharm 2024; 21:4324-4335. [PMID: 39164886 DOI: 10.1021/acs.molpharmaceut.4c00298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Positron emission tomography (PET) is a powerful tool for investigating the in vivo behavior of drug delivery systems. We aimed to assess the biodistribution of extracellular vesicles (EVs), nanosized vesicles secreted by cells isolated from various human cell sources using PET. EVs were isolated from mesenchymal stromal cells (MSCs) (MSC EVs), human macrophages (Mϕ EVs), and a melanoma cell line (A375 EVs) by centrifugation and were conjugated with deferoxamine for radiolabeling with Zr-89. PET using conjugated and radiolabeled EVs evaluated their in vivo biodistribution and tissue tropisms. Our study also investigated differences in mouse models, utilizing immunocompetent and immunocompromised mice and an A375 xenograft tumor model. Lastly, we investigated the impact of different labeling techniques on the observed EV biodistribution, including covalent surface modification and membrane incorporation. PET showed that all tested EVs exhibited extended in vivo circulation and generally low uptake in the liver, spleen, and lungs. However, Mϕ EVs showed high liver uptake, potentially attributable to the intrinsic tissue tropism of these EVs from the surface protein composition. MSC EV biodistribution differed between immunocompetent and immunodeficient mice, with increased spleen uptake observed in the latter. PET using A375 xenografts demonstrated efficient tumor uptake of EVs, but no preferential tissue-specific tropism of A375 EVs was found. Biodistribution differences between labeling techniques showed that surface-conjugated EVs had preferential blood circulation and low liver, spleen, and lung uptake compared to membrane integration. This study demonstrates the potential of EVs as effective drug carriers for various diseases, highlights the importance of selecting appropriate cell sources for EV-based drug delivery, and suggests that EV tropism can be harnessed to optimize therapeutic efficacy. Our findings indicate that the cellular source of EVs, labeling technique, and animal model can influence the observed biodistribution.
Collapse
Affiliation(s)
- Zachary T Rosenkrans
- Departments of Medical Physics and Radiology, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Anna S Thickens
- Departments of Medical Physics and Radiology, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, United States
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, 1685 Highland Avenue, Madison, Wisconsin 53705, United States
| | - John A Kink
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, 1685 Highland Avenue, Madison, Wisconsin 53705, United States
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, 600 Highland Avenue, Madison, Wisconsin 53792, United States
| | - Eduardo Aluicio-Sarduy
- Departments of Medical Physics and Radiology, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Jonathan W Engle
- Departments of Medical Physics and Radiology, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, United States
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, 600 Highland Avenue, Madison, Wisconsin 53792, United States
| | - Peiman Hematti
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, 1685 Highland Avenue, Madison, Wisconsin 53705, United States
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, 600 Highland Avenue, Madison, Wisconsin 53792, United States
- Division of Hematology and Oncology, Medical College of Wisconsin, 9200 W. Wisconsin Avenue, Milwaukee, Wisconsin 53226, United States
| | - Reinier Hernandez
- Departments of Medical Physics and Radiology, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, United States
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, 1685 Highland Avenue, Madison, Wisconsin 53705, United States
| |
Collapse
|
4
|
Shah S, Lucke-Wold B. Image-Guided Mesenchymal Stem Cell Sodium Iodide Symporter (NIS) Radionuclide Therapy for Glioblastoma. Cancers (Basel) 2024; 16:2892. [PMID: 39199662 PMCID: PMC11352884 DOI: 10.3390/cancers16162892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND Glioblastoma (GBM) is a highly aggressive, invasive, and growth factor-independent grade IV glioma. Survival following the diagnosis is generally poor, with a median survival of approximately 15 months, and it is considered the most aggressive and lethal central nervous system tumor. Conventional treatments based on surgery, chemotherapy, and radiation therapy only delay progression, and death is inevitable. Malignant glioma cells are resistant to traditional therapies, potentially due to a subpopulation of glioma stem cells that are invasive and capable of rapid regrowth. METHODS This is a literature review. The systematic retrieval of information was performed on PubMed, Embase, and Google Scholar. Specified keywords were used in PubMed and the articles retrieved were published in peer-reviewed scientific journals and were associated with brain GBM cancer and the sodium iodide symporter (NIS). Additionally, the words 'radionuclide therapy OR mesenchyma, OR radioiodine OR iodine-131 OR molecular imaging OR gene therapy OR translational imaging OR targeted OR theranostic OR symporter OR virus OR solid tumor OR combined therapy OR pituitary OR plasmid AND glioblastoma OR GBM OR GB OR glioma' were also used in the appropriate literature databases of PubMed and Google Scholar. A total of 68,244 articles were found in this search on Mesenchymal Stem Cell Sodium Iodide Symporter and GBM. These articles were found till 2024. To study recent advances, a filter was added to include articles only from 2014 to 2024, duplicates were removed, and articles not related to the title were excluded. These came out to be 78 articles. From these, nine were not retrieved and only seven were selected after the removal of keyword mismatched articles. Appropriate studies were isolated, and important information from each of them was understood and entered into a database from which the information was used in this article. RESULTS As a result of their natural capacity to identify malignancies, MSCs are employed as tumor therapy vehicles. Because MSCs may be transplanted using several methods, they have been proposed as the ideal vehicles for NIS gene transfer. MSCs have been used as a delivery vector for anticancer drugs in many tumor models due to their capacity to move precisely to malignancies. Also, by directly injecting radiolabeled MSCs into malignant tumors, a therapeutic dosage of beta radiation may be deposited, with the added benefit that the tumor would only localize and not spread to the surrounding healthy tissues. CONCLUSION The non-invasive imaging-based detection of glioma stem cells presents an alternate means to monitor the tumor and diagnose and evaluate recurrence. The sodium iodide symporter gene is a specific gene in a variety of human thyroid diseases that functions to move iodine into the cell. In recent years, an increasing number of studies related to the sodium iodide symporter gene have been reported in a variety of tumors and as therapeutic vectors for imaging and therapy. Gene therapy and nuclear medicine therapy for GBM provide a new direction. In all the preclinical studies reviewed, image-guided cell therapy led to greater survival benefits and, therefore, has the potential to be translated into techniques in glioblastoma treatment trials.
Collapse
Affiliation(s)
- Siddharth Shah
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA;
| | | |
Collapse
|
5
|
Friberger I, Gontu V, Harris RA, Tran TA, Lundberg J, Holmin S. Phenotyping of Macrophages After Radiolabeling and Safety of Intra-arterial Transplantation Assessed by SPECT/CT and MRI. Cell Transplant 2023; 32:9636897231212780. [PMID: 38009543 PMCID: PMC10683405 DOI: 10.1177/09636897231212780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 10/04/2023] [Accepted: 10/23/2023] [Indexed: 11/29/2023] Open
Abstract
Cell therapy is an integral modality of regenerative medicine. Macrophages are known for their sensitivity to activation stimuli and capability to recruit other immune cells to the sites of injury and healing. In addition, the route of administration can impact engraftment and efficacy of cell therapy, and modern neuro-interventional techniques provide the possibility for selective intra-arterial (IA) delivery to the central nervous system (CNS) with very low risk. The effects of radiolabelling and catheter transport on differentially activated macrophages were evaluated. Furthermore, the safety of selective IA administration of these macrophages to the rabbit brain was assessed by single-photon emission computed tomography/computed tomography (SPECT/CT) and ultra-high-field (9.4 T) magnetic resonance imaging (MRI). Cells were successfully labeled with (111In)In-(oxinate)3 and passed through a microcatheter with preserved phenotype. No cells were retained in the healthy rabbit brain after IA administration, and no adverse events could be observed either 1 h (n = 6) or 24 h (n = 2) after cell administration. The procedure affected both lipopolysaccharide/gamma interferon (LPS/IFNγ) activated cells and interleukin 4 (IL4), interleukin 10 (IL10)/transforming growth factor beta 1 (TGFβ1) activated cells to some degree. The LPS/IFNγ activated cells had a significant increase in their phagocytotic function. Overall, the major impact on the cell phenotypes was due to the radiolabeling and not passage through the catheter. Unstimulated cells were substantially affected by both radiolabeling and catheter administration and are hence not suited for this procedure, while both activated macrophages retained their initial phenotypes. In conclusion, activated macrophages are suitable candidates for targeted IA administration without adverse effects on normal, healthy brain parenchyma.
Collapse
Affiliation(s)
- Ida Friberger
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Vamsi Gontu
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Robert A Harris
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Centre for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Thuy A Tran
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Radiopharmacy, Karolinska University Hospital, Stockholm, Sweden
| | - Johan Lundberg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Staffan Holmin
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
6
|
Jiang A, Nie W, Xie H. In Vivo Imaging for the Visualization of Extracellular Vesicle-Based Tumor Therapy. ChemistryOpen 2022; 11:e202200124. [PMID: 36101512 PMCID: PMC9471060 DOI: 10.1002/open.202200124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/01/2022] [Indexed: 12/04/2022] Open
Abstract
Extracellular vesicles (EVs) exhibiting versatile biological functions provide promising prospects as natural therapeutic agents and drug delivery vehicles. For future clinical translation, revealing the fate of EVs in vivo, especially their accumulation at lesion sites, is very important. The continuous development of in vivo imaging technology has made it possible to track the real-time distribution of EVs. This article reviews the applications of mammal-, plant-, and bacteria-derived EVs in tumor therapy, the labeling methods of EVs for in vivo imaging, the advantages and disadvantages of different imaging techniques, and possible improvements for future work.
Collapse
Affiliation(s)
- Anqi Jiang
- School of Life ScienceBeijing Institute of TechnologyBeijing100081P. R. China
| | - Weidong Nie
- School of Life ScienceBeijing Institute of TechnologyBeijing100081P. R. China
| | - Hai‐Yan Xie
- School of Life ScienceBeijing Institute of TechnologyBeijing100081P. R. China
| |
Collapse
|
7
|
Arifin DR, Witwer KW, Bulte JWM. Non-Invasive imaging of extracellular vesicles: Quo vaditis in vivo? J Extracell Vesicles 2022; 11:e12241. [PMID: 35844061 PMCID: PMC9289215 DOI: 10.1002/jev2.12241] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 06/12/2022] [Accepted: 06/16/2022] [Indexed: 01/11/2023] Open
Abstract
Extracellular vesicles (EVs) are lipid-bilayer delimited vesicles released by nearly all cell types that serve as mediators of intercellular signalling. Recent evidence has shown that EVs play a key role in many normal as well as pathological cellular processes. EVs can be exploited as disease biomarkers and also as targeted, cell-free therapeutic delivery and signalling vehicles for use in regenerative medicine and other clinical settings. Despite this potential, much remains unknown about the in vivo biodistribution and pharmacokinetic profiles of EVs after administration into living subjects. The ability to non-invasively image exogeneous EVs, especially in larger animals, will allow a better understanding of their in vivo homing and retention patterns, blood and tissue half-life, and excretion pathways, all of which are needed to advance clinical diagnostic and/or therapeutic applications of EVs. We present the current state-of-the-art methods for labeling EVs with various diagnostic contrast agents and tracers and the respective imaging modalities that can be used for their in vivo visualization: magnetic resonance imaging (MRI), X-ray computed tomography (CT) imaging, magnetic particle imaging (MPI), single-photon emission computed tomography (SPECT), positron emission tomography (PET), and optical imaging (fluorescence and bioluminescence imaging). We review here the strengths and weaknesses of each of these EV imaging approaches, with special emphasis on clinical translation.
Collapse
Affiliation(s)
- Dian R. Arifin
- Russell H. Morgan Department of Radiology and Radiological ScienceDivision of MR Researchthe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
- Cellular Imaging Section and Vascular Biology ProgramInstitute for Cell Engineeringthe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Kenneth W. Witwer
- Department of Molecular and Comparative Pathobiologythe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Neurologythe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Jeff W. M. Bulte
- Russell H. Morgan Department of Radiology and Radiological ScienceDivision of MR Researchthe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
- Cellular Imaging Section and Vascular Biology ProgramInstitute for Cell Engineeringthe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Oncologythe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Chemical & Biomolecular Engineeringthe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Biomedical Engineeringthe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
8
|
Lu CH, Chen YA, Ke CC, Chiu SJ, Jeng FS, Chen CC, Hsieh YJ, Yang BH, Chang CW, Wang FS, Liu RS. Multiplexed Molecular Imaging Strategy Integrated with RNA Sequencing in the Assessment of the Therapeutic Effect of Wharton's Jelly Mesenchymal Stem Cell-Derived Extracellular Vesicles for Osteoporosis. Int J Nanomedicine 2021; 16:7813-7830. [PMID: 34880610 PMCID: PMC8646890 DOI: 10.2147/ijn.s335757] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/05/2021] [Indexed: 11/25/2022] Open
Abstract
Introduction Osteoporosis is a result of an imbalance in bone remodeling. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have been considered as a potentially promising treatment for osteoporosis. However, the therapeutic effect, genetic alterations, and in vivo behavior of exogenous EVs for osteoporosis in mice models remain poorly understood. Methods A multiplexed molecular imaging strategy was constructed by micro-positron emission tomography (µPET)/computed tomography (CT), µCT, and optical imaging modality which reflected the osteoblastic activity, microstructure, and in vivo behavior of EVs, respectively. RNA sequencing was used to analyze the cargo of EVs, and the bone tissues of ovariectomized (OVX) mice post EV treatment. Results The result of [18F]NaF µPET showed an increase in osteoblastic activity in the distal femur of EV-treated mice, and the bone structural parameters derived from µCT were also improved. In terms of in vivo behavior of exogenous EVs, fluorescent dye-labeled EVs could target the distal femur of mice, whereas the uptakes of bone tissues were not significantly different between OVX mice and healthy mice. RNA sequencing demonstrated upregulation of ECM-related genes, which might associate with the PI3K/AKT signaling pathway, in line with the results of microRNA analysis showing that mir-21, mir-29, mir-221, and let-7a were enriched in Wharton’s jelly-MSC-EVs and correlated to the BMP and PI3K/AKT signaling pathways. Conclusion The therapeutic effect of exogenous WJ-MSC-EVs in the treatment of osteoporosis was successfully assessed by a multiplexed molecular imaging strategy. The RNA sequencing demonstrated the possible molecular targets in the regulation of bone remodeling. The results highlight the novelty of diagnostic and therapeutic strategies of EV-based treatment for osteoporosis.
Collapse
Affiliation(s)
- Cheng-Hsiu Lu
- Industrial Ph.D. Program of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Core Facility for Phenomics and Diagnostics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yi-An Chen
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Molecular and Genetic Imaging Core/Taiwan Mouse Clinic, National Comprehensive Mouse Phenotyping and Drug Testing Center, Taipei, Taiwan
| | - Chien-Chih Ke
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan.,Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Sain-Jhih Chiu
- Molecular and Genetic Imaging Core/Taiwan Mouse Clinic, National Comprehensive Mouse Phenotyping and Drug Testing Center, Taipei, Taiwan
| | - Fong-Shya Jeng
- Molecular and Genetic Imaging Core/Taiwan Mouse Clinic, National Comprehensive Mouse Phenotyping and Drug Testing Center, Taipei, Taiwan
| | - Chao-Cheng Chen
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ya-Ju Hsieh
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan.,Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Bang-Hung Yang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan.,PET Center, Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chi-Wei Chang
- PET Center, Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Feng-Sheng Wang
- Core Facility for Phenomics and Diagnostics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ren-Shyan Liu
- Industrial Ph.D. Program of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan.,PET Center, Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Nuclear Medicine, Cheng Hsin Hospital, Taipei, Taiwan
| |
Collapse
|
9
|
Mesenchymal Stem Cell-Derived Extracellular Vesicle-Based Therapy for Alzheimer's Disease: Progress and Opportunity. MEMBRANES 2021; 11:membranes11100796. [PMID: 34677562 PMCID: PMC8540094 DOI: 10.3390/membranes11100796] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/16/2021] [Accepted: 10/16/2021] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD), as a neurodegenerative disorder, is characterized by mass neuronal and synaptic loss and, currently, there are no successful curative therapies. Extracellular vesicles (EVs) are an emerging approach to intercellular communication via transferring cellular materials such as proteins, lipids, mRNAs, and miRNAs from parental cells to recipient cells, leading to the reprogramming of the molecular machinery. Numerous studies have suggested the therapeutic potential of EVs derived from mesenchymal stem cells (MSCs) in the treatment of AD, based on the neuroprotective, regenerative and immunomodulatory effects as effective as MSCs. In this review, we focus on the biology and function of EVs, the potential of MSC-derived EVs for AD therapy in preclinical and clinical studies, as well as the potent mechanisms of MSC-derived EVs actions. Finally, we highlight the modification strategies and diagnosis utilities in order to make advance in this field.
Collapse
|