1
|
Liao N, Li F, Huang X, Zhang Y. Synthesis of ZIF-8/chitosan composites for Cu 2+ removal from water. ENVIRONMENTAL TECHNOLOGY 2024:1-13. [PMID: 39258839 DOI: 10.1080/09593330.2024.2401158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/08/2024] [Indexed: 09/12/2024]
Abstract
In this work, a kind of novel Chitosan (Cs)-doped zeolite imidazole framework (ZIF-8@Cs) with a larger surface area and a smaller pore size was synthesised via a facial solvothermal approach and applied to remove Cu2+ from mine wastewater. Compared to nondoped ZIF-8, ZIF-8@Cs exhibited a stronger adsorption performance and removal efficiency. The reason was that ZIF-8@Cs doped by the Cs could suppress the aggregation and increase the monodispersity of ZIF-8. Using the high-performance ZIF-8@Cs, as a novel adsorbent, was successfully developed for the efficient removal of Cu2+ from mine wastewater. Various parameters, such as contact time, initial Cu2+ concentration, adsorbent dosage, and pH, were investigated. The results showed that a removal efficiency of 85% was obtained at 4 h contact time for a Cu2+ concentration of 30 mg/L at the optimum pH of 6.0. Equilibrium data were analysed using different isothermal models and kinetic models, analytic results indicated that the capture of Cu2+ by ZIF-8@Cs could favourably comply with the pseudo-first-order kinetic model and Langmuir isotherm model. The single-layer adsorption of Cu2+ on ZIF-8@Cs was dominated by diffusional mass transfer. Additionally, the results of the thermodynamic analysis indicated that the adsorption of Cu2+ by ZIF-8/Cs was a spontaneous, exothermic, and ordered process. Overall, the results reported herein indicated that ZIF-8/Cs with high adsorption efficiency are very attractive and imply a potential practical application for the removal of potentially toxic elements in wastewater.
Collapse
Affiliation(s)
- Ni Liao
- College of Biological and Chemical Engineering, Panzhihua University, Panzhihua, People's Republic of China
| | - Furong Li
- College of Biological and Chemical Engineering, Panzhihua University, Panzhihua, People's Republic of China
| | - Xiuli Huang
- College of Biological and Chemical Engineering, Panzhihua University, Panzhihua, People's Republic of China
| | - Yi Zhang
- College of Biological and Chemical Engineering, Panzhihua University, Panzhihua, People's Republic of China
| |
Collapse
|
2
|
Ahmed S, Shahriar A, Rahman N, Alam MZ, Nurnabi M. Synthesis of gamma irradiated acrylic acid-grafted-sawdust (SD-g-AAc) for trivalent chromium adsorption from aqueous solution. JOURNAL OF HAZARDOUS MATERIALS ADVANCES 2024; 14:None. [PMID: 38933367 PMCID: PMC11200213 DOI: 10.1016/j.hazadv.2024.100427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/08/2024] [Accepted: 04/14/2024] [Indexed: 06/28/2024]
Abstract
Water pollution caused by chromium released from tannery is a serious concern to the environment and public health. Chromium removal from tannery effluent is a crying need before discharging to the surface water. In this study, acrylic acid-grafted sawdust was prepared by Tectona grandis sawdust grafting with acrylic acid employing gamma irradiation in the presence of air and Mohr's salt. It was treated with NaOH and the characterization of surface morphology and functional groups of modified sawdust was studied by SEM and FTIR.. The effects of solution pH, adsorbent dosage, adsorption time, and initial Cr(III) ion concentration were investigated by batch sorption studies. The process was found to be pH, temperature and concentration dependent. Langmuir and Freundlich isotherms were applied to realize the adsorption process in depth, and it was found that the Langmuir isotherm model fitted well with experimental data (R2 value of 0.983). The maximum monolayer adsorption capacity of acrylic acid-grafted sawdust for Cr(III) from aquous solution was found to be 21.55 mg g-1 at 25 °C. Pseudo-first-order and pseudo-second-order kinetic models were employed to analyze the kinetics of the process, and it was found that the experimental process followed the pseudo-second-order kinetic model, i.e. chemisorption. This study revealed that acrylic acid-grafted sawdust has a decent potential for the removal of Cr(III) from tannery effluents.
Collapse
Affiliation(s)
- Sobur Ahmed
- Institute of Leather Engineering and Technology, University of Dhaka, 44-50, Hazaribagh, Dhaka, 1209, Bangladesh
| | - Abrar Shahriar
- Institute of Leather Engineering and Technology, University of Dhaka, 44-50, Hazaribagh, Dhaka, 1209, Bangladesh
| | - Nazia Rahman
- Institute of Nuclear Science and Technology, Bangladesh Atomic Energy Commission, Dhaka, 3787, Bangladesh
| | - Md. Zahangir Alam
- Department of Applied Chemistry and Chemical Engineering, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Mohammad Nurnabi
- Department of Applied Chemistry and Chemical Engineering, University of Dhaka, Dhaka, 1000, Bangladesh
| |
Collapse
|
3
|
Wei S, Chen W, Li Z, Liu Z, Xu A. Synthesis of cationic biomass lignosulfonate hydrogel for the efficient adsorption of Cr(VI) in wastewater with low pH. ENVIRONMENTAL TECHNOLOGY 2023; 44:2134-2147. [PMID: 34962213 DOI: 10.1080/09593330.2021.2024274] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/14/2021] [Indexed: 05/30/2023]
Abstract
In the present study, we synthesized a cationic lignosulfonate hydrogel (LS-g-P (AM-co-DAC)) by grafting acrylamide (AM) and acryloxyethyl trimethyl ammonium chloride (DAC) onto sodium lignosulfonate (LS) via free radical copolymerization. The solution pH, contact time, initial concentration, and temperature were comprehensively investigated through the static adsorption method for the adsorption behaviours of Cr(VI) by the hydrogel. The experimental results show that the best conditions were a temperature of 30°C, a dosage of 0.1 g, pH = 3, a concentration of 50 mg / L, and contact time = 2 h with removal efficiencies of above 70% and adsorption capacity of 18.14 mg·g-1. The adsorption process followed the Langmuir isothermal model, indicating monolayer adsorption, and the maximum adsorption capacity was 58.86 mg·g-1. Adsorption kinetics results show that the pseudo-second-order kinetic model dominated the adsorption process, and the adsorption activation energy was 5.489 kJ·mol-1. In addition, the adsorption involved spontaneous exothermic and entropy reduction. The combination of FT-IR, SEM, and XRD was used to characterize the structure and properties of the prepared hydrogel, and the adsorption mechanism was the result of electrostatic attraction, physical and chemical adsorption, and hydrogen bond. The hydrogel has good regenerative properties after desorption. Overall, this work synthesized an environmentally friendly biomass lignin-based hydrogel, which can be used as an adsorbent for the treatment of anionic pollutants, and explored a new method for the high-value utilization of industrial lignin.HighlightsNovel cationic lignosulfonate hydrogel (LS-g-P (AM-co-DAC)) was synthesized by a free radical method.SEM and XRD results confirmed the surface of the obtained hydrogel shows a 3D network structure and does not have a crystal structure.LS-g-P (AM-co-DAC) hydrogel adsorbent can selectively adsorb Cr6+ at pH 3.0.The adsorption conditions and the adsorption mechanism were studied in detail.Electrostatic interaction plays a key role in the adsorption of Cr6+.
Collapse
Affiliation(s)
- Shuxia Wei
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning People's Republic of China
| | - Wu Chen
- School of Chemistry and Environmental Engineering, Yangtze University, Jingzhou People's Republic of China
| | - Zhili Li
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning People's Republic of China
| | - Zhuozhuang Liu
- School of Chemistry and Environmental Engineering, Yangtze University, Jingzhou People's Republic of China
| | - Ao Xu
- School of Chemistry and Environmental Engineering, Yangtze University, Jingzhou People's Republic of China
| |
Collapse
|
4
|
Liu B, Xin YN, Zou J, Khoso FM, Liu YP, Jiang XY, Peng S, Yu JG. Removal of Chromium Species by Adsorption: Fundamental Principles, Newly Developed Adsorbents and Future Perspectives. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020639. [PMID: 36677697 PMCID: PMC9861687 DOI: 10.3390/molecules28020639] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/24/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
Emerging chromium (Cr) species have attracted increasing concern. A majority of Cr species, especially hexavalent chromium (Cr(VI)), could lead to lethal effects on human beings, animals, and aquatic lives even at low concentrations. One of the conventional water-treatment methodologies, adsorption, could remove these toxic Cr species efficiently. Additionally, adsorption possesses many advantages, such as being cost-saving, easy to implement, highly efficient and facile to design. Previous research has shown that the application of different adsorbents, such as carbon nanotubes (carbon nanotubes (CNTs) and graphene oxide (GO) and its derivatives), activated carbons (ACs), biochars (BCs), metal-based composites, polymers and others, is being used for Cr species removal from contaminated water and wastewater. The research progress and application of adsorption for Cr removal in recent years are reviewed, the mechanisms of adsorption are also discussed and the development trend of Cr treatment by adsorption is proposed.
Collapse
Affiliation(s)
- Bo Liu
- State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization, Panzhihua 617000, China
| | - Ya-Nan Xin
- State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization, Panzhihua 617000, China
| | - Jiao Zou
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou 516007, China
| | - Fazal Muhammad Khoso
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yi-Ping Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Xin-Yu Jiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Sui Peng
- State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization, Panzhihua 617000, China
- Correspondence: (S.P.); (J.-G.Y.); Tel./Fax: +86-731-88879616 (J.-G.Y.)
| | - Jin-Gang Yu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
- Correspondence: (S.P.); (J.-G.Y.); Tel./Fax: +86-731-88879616 (J.-G.Y.)
| |
Collapse
|
5
|
Akl MA, Hashem MA, Ismail MA, Abdelgalil DA. Novel diaminoguanidine functionalized cellulose: synthesis, characterization, adsorption characteristics and application for ICP-AES determination of copper(II), mercury(II), lead(II) and cadmium(II) from aqueous solutions. BMC Chem 2022; 16:65. [PMID: 36042477 PMCID: PMC9426243 DOI: 10.1186/s13065-022-00857-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022] Open
Abstract
In this study, the novel adsorbent diaminoguanidine-modified cellulose (DiGu.MC) was synthesized to extract mercury, copper, lead and cadmium ions from aqueous solutions and environmental water samples. The synthetic strategy involved oxidizing cellulose powder into dialdehyde cellulose (DAC) and reacting DAC with diaminoguanidine to create an imine linkage between the two reactants to form diaminoguanidine-modified cellulose (DiGu.MC). The structure and morphology of the adsorbent were studied using a variety of analytical techniques including Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM) and Brunauer–Emmett–Teller (BET) surface area measurements. Adsorption of mercury, copper, lead, and cadmium ions was optimized by examining the effects of pH, initial concentration, contact time, dose, temperature and competing ions. Under optimal adsorption conditions, the adsorption capacities of Cu2+, Hg2+, Pb2+, and Cd2+ were 66, 55, 70 and 41 mg g−1, respectively. The adsorption isotherm is in very good agreement with the Langmuir isotherm model, indicating that a monomolecular layer is formed on the surface of DiGu.MC. The kinetics of adsorption are in good agreement with the pseudo-second kinetics model that proposes the chemical adsorption of metal ions via the nitrogen functional groups of the adsorbent. Thermodynamic studies have confirmed that the adsorption of heavy metals by DiGu.MC is exothermic and spontaneous. Regeneration studies have shown that the adsorbent can be recycled multiple times by removing metal ions with 0.2 M nitric acid. The removal efficiency for regeneration was over 99%. DiGu.MC is introduced as a unique adsorbent in removing mercury, copper, lead and cadmium with a simple synthetic strategy, with cheap starting materials, a unique chemical structure and fast adsorption kinetics leading to excellent removal efficiency and excellent regeneration. The mechanism of adsorption of the investigated heavy metals, is probably based on the chelation between the metal ions and the N donors of DiCu.MC.
Collapse
Affiliation(s)
- Magda A Akl
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt.
| | - Mohammed A Hashem
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Mohammed A Ismail
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Dina A Abdelgalil
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
6
|
Bahsaine K, Mekhzoum MEM, Benzeid H, Qaiss AEK, Bouhfid R. Recent Progress in Heavy Metals Extraction From Phosphoric Acid: A Short Review. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
7
|
Nguyen QH, Tran ATK, Hoang NTT, Tran YTH, Nguyen PX, Pham TT, Nguyen MK, Van der Bruggen B. Plastic waste as a valuable resource: strategy to remove heavy metals from wastewater in bench scale application. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:42074-42089. [PMID: 35129745 DOI: 10.1007/s11356-022-19013-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
Single-use plastic waste is gradually considered a potential material for circular economy. Ion exchange resin obtained from polystyrene waste by sulfonating with H2SO4 was used for heavy metal removal from electroplating wastewater. Batch mode experiments of Cu2+, Zn2+, and Cd2+ were carried out to determine effect of pH, initial concentration, equilibrium time, and the isotherm and kinetic parameters; the stability of the resin in continuous operation was then evaluated. Finally, the longevity of the resin after being exhausted was explored. The results indicated that at pH 6, a pseudo-second-order kinetic model was applicable to describe adsorption of studied heavy metals by sulfonated polystyrene with adsorption capacities of 7.48 mg Cu2+/g, 7.23 mg Zn2+/g, and 6.50 mg Cd2+/g, respectively. Moreover, the ion exchange process between sulfonated polystyrene resin and Cu2+, Zn2+, Cd2+ ions followed the Langmuir isotherm adsorption model with R2 higher than 96%. The continuous fixed-bed column in conditions of a sulfonated polystyrene mass of 500 g, and a flow rate of 2.2 L/h was investigated for an influent solution with known initial concentration of 20 mg/L. Thomas and Yoon-Nelson models were tested with regression analysis. When being exhausted, the sulfonated polystyrene was regenerated by NaCl in 10 min with ratio 5 mL of NaCl 2 M per 1 g saturated resins. After 4 times regeneration, the heavy metal removal efficiency of sulfonated polystyrene was reduced to 50%. These aforementioned results can figure out that by sulfonating polystyrene waste to synthesize ion exchanging materials, this method is technically efficient and environmentally friendly to achieve sustainability.
Collapse
Affiliation(s)
- Quoc Hung Nguyen
- Faculty of Environmental Sciences, University of Science, Viet Nam National University, Hanoi, Vietnam
- Laboratory for Process Engineering for Sustainable Systems, Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Anh T K Tran
- Faculty of Chemical and Food Technology, HCM University of Technology and Education, Ho Chi Minh City, Vietnam.
| | - Nhung T T Hoang
- Faculty of Chemical and Food Technology, HCM University of Technology and Education, Ho Chi Minh City, Vietnam
| | - Yen T H Tran
- Faculty of Chemical and Food Technology, HCM University of Technology and Education, Ho Chi Minh City, Vietnam
| | - Phu X Nguyen
- Faculty of Chemical and Food Technology, HCM University of Technology and Education, Ho Chi Minh City, Vietnam
| | - Thi Thuy Pham
- Faculty of Environmental Sciences, University of Science, Viet Nam National University, Hanoi, Vietnam
| | - Manh Khai Nguyen
- Faculty of Environmental Sciences, University of Science, Viet Nam National University, Hanoi, Vietnam
| | - Bart Van der Bruggen
- Laboratory for Process Engineering for Sustainable Systems, Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| |
Collapse
|
8
|
Ghafoori M, Cheraghi M, Sadr MK, Lorestani B, Sobhanardakani S. Magnetite graphene oxide modified with β-cyclodextrin as an effective adsorbent for the removal of methotrexate and doxorubicin hydrochloride from water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:35012-35024. [PMID: 35044605 DOI: 10.1007/s11356-022-18725-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 01/13/2022] [Indexed: 05/27/2023]
Abstract
The purpose of this investigation was to analyze the performance of magnetite graphene oxide modified with β-cyclodextrin (GO@Fe3O4@β-CD) for adsorption of methotrexate (MTX) and doxorubicin (DOX) from aqueous solutions. Characterization of GO@Fe3O4@β-CD was carried out using some methods. The perfect conditions for the adsorption of MTX and DOX were 7.0, 45 min, 20 mg, and 25 °C for solution pH, contact time, adsorbent dose, and temperature, respectively, with removal efficiency values of 97.8% and 98.5% for MTX and DOX, respectively. The adsorption kinetic of MTX and DOX via GO@Fe3O4@β-CD followed pseudo second-order (PSO) model, while the adsorption isotherm obeyed Langmuir model by monolayer adsorption with maximum adsorption capacities of 198.5 and 204.5 mg g-1 for MTX and DOX, respectively. Therefore, it could be argued that HCl and 0.1 mol L-1 NaOH would reflect adequate elution properties for GO@Fe3O4@β-CD recovery.
Collapse
Affiliation(s)
- Mohammad Ghafoori
- Department of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| | - Mehrdad Cheraghi
- Department of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran.
| | - Maryam Kiani Sadr
- Department of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| | - Bahareh Lorestani
- Department of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| | - Soheil Sobhanardakani
- Department of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| |
Collapse
|
9
|
Syeda HI, Yap PS. A review on three-dimensional cellulose-based aerogels for the removal of heavy metals from water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150606. [PMID: 34592292 DOI: 10.1016/j.scitotenv.2021.150606] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Contamination of the aquatic ecosystem by heavy metals is a growing concern that has yet to be addressed with an efficient, cost-effective and environmentally-friendly solution. Heavy metals occur naturally in the earth's crust and also result from anthropogenic activities. Due to the rapid increase in industrialization, there is an increase in consumer demands across various industries such as metal processing, mining sector, agricultural activities, etc. and this has led to an increase in heavy metal concentrations in the aqueous environment. Cellulose-based aerogels are a novel third-generation of aerogels that have recently attracted a lot of attention due to their high adsorption efficiency, eco-friendly prospects and cost effectiveness. In this review, recent literature on cellulose-based aerogel adsorbents used for the removal of heavy metals from aqueous solution has been compiled. The preparation of cellulose-based aerogels, adsorption mechanisms, effects of experimental factors such as pH, temperature, contact time, initial metal concentration and adsorbent dose have been discussed. In addition, cost analysis of cellulose-based adsorbents and some challenges in this research field along with recommendations of improvements have been presented. It can be concluded that functionalizing of cellulose-based aerogels with amine groups, thiol groups, other compounds such as nanobentonite and chitosan results in very high adsorption capacities. The adsorption studies revealed that pseudo-second-order kinetic model was the most commonly encountered adsorption kinetic model, and the most commonly encountered adsorption isotherm model was the Langmuir isotherm model. The main adsorption mechanisms were electrostatic interaction, complexation and ion exchange.
Collapse
Affiliation(s)
- Hina Iqbal Syeda
- Faculty of Science, Engineering and Built Environment, Deakin University, Victoria 3216, Australia.
| | - Pow-Seng Yap
- Department of Civil Engineering, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| |
Collapse
|
10
|
Mahour S, Kumar Verma S, Kumar Arora J, Srivastava S. Carboxyl appended polymerized seed composite with controlled structural properties for enhanced heavy metal capture. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Jahin HS, Kandil MI, Nassar MY. Facile auto-combustion synthesis of calcium aluminate nanoparticles for efficient removal of Ni(II) and As(III) ions from wastewater. ENVIRONMENTAL TECHNOLOGY 2022:1-16. [PMID: 35094670 DOI: 10.1080/09593330.2022.2036248] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
We herein report the synthesis of monoclinic calcium aluminate (CaAl2O4) nanoparticles via a facile auto-combustion method followed by calcination. We performed the auto-combustion method using aluminium nitrate and calcium nitrate as oxidants and different fuels as reductants such as urea, glycine, and a mixture of urea and glycine, with various fuel-to-oxidant equivalence ratios (Φc). Then, the combusted samples were calcined at different temperatures; 600 and 800 °C. The products were characterized by means of X-ray diffraction, Fourier transform infrared spectroscopy, thermo-gravimetric analysis, field-emission scanning electron microscope, and high-resolution transmission electron microscope. CaAl2O4 nanoparticles with an average crystallite size of 40.4, 38.8, and 33.7 nm were obtained after calcination at 800 °C using the aforementioned fuels, respectively. TEM images revealed that CaAl2O4 nanoparticles tend to form partially sintered aggregates owing to the high thermal treatment temperature, so they have non-uniform shapes. The produced CaAl2O4 nanoparticles exhibited good absorptivity toward Ni(II) and As(III) ions form aqueous media. The maximum sorption capacities (qm) of CaAl2O4 for the removal of Ni(II) and As(III) were found to be 58.73 and 43.9 mg.g-1, at pH 7 and 5, respectively. The equilibrium isotherms and adsorption kinetics studies revealed that the adsorption data fitted well Freundlich isotherm and pseudo-second-order models, respectively. Besides, the adsorption of Ni(II) and As(III) ions on CaAl2O4 nanoparticles is physisorption. Overall, the obtained results indicated that calcium aluminate nano-adsorbent is a good candidate for the removal of Ni(II) and As(III) ions from wastewater, due to its high efficiency, stability, and re-usability.
Collapse
Affiliation(s)
- Hossam S Jahin
- Central Laboratory for Environmental Quality Monitoring, National Water Research Centre, Elkantir, Egypt
| | - Magdy I Kandil
- Chemistry Department, Faculty of Science, Benha University, Benha, Egypt
| | - Mostafa Y Nassar
- Chemistry Department, Faculty of Science, Benha University, Benha, Egypt
| |
Collapse
|
12
|
Synthetization of hybrid nanocellulose aerogels for the removal of heavy metal ions. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02693-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Nagarajan L, Kumaraguru K, Saravanan P, Rajeshkannan R, Rajasimman M. Facile synthesis and characterization of microporous-structured activated carbon from agro waste materials and its application for CO 2 capture. ENVIRONMENTAL TECHNOLOGY 2021; 43:1-10. [PMID: 34061712 DOI: 10.1080/09593330.2021.1938243] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
Biomass-derived activated carbon was prepared from the agro waste materials, (wild sugarcane (WS) and saw dust (SD)) by chemical activation using phosphoric acid. The crystallinity, morphology, functional groups of the synthesized activated carbon were investigated. The effects of contact time (10-60 min), mass of adsorbent (0.05-0.2 g) and concentrations of CO2 (1 × 10-4 to 10 × 10-4 M) were analysed and the optimum adsorption conditions were found. Freundlich, Langmuir, Temkin, Dubinin-Radushkevich and Sips isotherm were used to analyse the adsorption data. The adsorption process was fitted with the Freundlich model. Adsorption capacity of agro waste-based sorbent was 5.225 × 10-3 mol/g. Thermodynamic parameters, such as ΔH0, ΔG0, ΔS0 , were calculated and it was found that the present system was a spontaneous process. From the kinetic studies, it was inferred that the Pseudo-second-order kinetics describes the kinetics of CO2 on AC-WSSD with an equilibrium point attained at 50 minutes with a high R2 value of 0.9602. The Brunauer Emmett Teller (BET) surface area of 1220 m2/g and an iodine value of 1360 m2/g were better indications for adsorption process. The interaction between CO2 and functional groups on the surface of the activated carbon was confirmed by FTIR. Desorption studies were carried out for three cycles with an efficiency of 93.2%.
Collapse
Affiliation(s)
- Loganathan Nagarajan
- Department of Chemical Engineering, Sri Ram Engineering College, Perumalpattu, India
| | - Kannan Kumaraguru
- Department of Petrochemical Technology, Anna University, Tiruchirappalli, India
| | | | - Rajan Rajeshkannan
- Department of Chemical Engineering, Annamalai University, Chidambaram, India
| | | |
Collapse
|
14
|
Recyclable cascading of arsenic phytoremediation and lead removal coupled with high bioethanol production using desirable rice straws. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.107950] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Badessa TS, Wakuma E, Yimer AM. Bio-sorption for effective removal of chromium(VI) from wastewater using Moringa stenopetala seed powder (MSSP) and banana peel powder (BPP). BMC Chem 2020; 14:71. [PMID: 33303014 PMCID: PMC7727115 DOI: 10.1186/s13065-020-00724-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/27/2020] [Indexed: 11/10/2022] Open
Abstract
Chromium is an extremely toxic metal in the form of Cr(VI) that causes severe environmental and health problems. Therefore, the aim of this study was to remove chromium ions from wastewater by using cost effective and environmentally friendly bio-sorbents; Moringa stenopetala seed powder (MSSP), and banana peel powder (BPP) and to evaluate its adsorption capacities as bio-sorbents. FT-IR characterization of the adsorbents showed that there was a change in the functional groups of the structure of both adsorbents before and after the adsorption that might be due to the adsorption processes taken place on the surface of adsorbent. Adsorption experiments were carried out as batch studies with different contact times, pH, adsorbent dose, initial metal ion concentration, and temperature. Results showed maximum removal efficiency for Cr(VI) at 120 min contact time, adsorbent dose of 20 g/L and pH 2 by MSSP and pH 4 by BPP. The percentage removal of Cr(VI) increased with increasing adsorbent dose (from 5 to 20 g/L) and contact time (from 60 to 120 min). Freundlich isotherm model showed a better fit to the equilibrium data than the Langmuir model. The kinetics of adsorption for chromium was well represented by pseudo-second order kinetic model and the calculated equilibrium sorption capacity of the model showed good agreement with the sorption capacity obtained from experimental results.
Collapse
Affiliation(s)
- Tolera Seda Badessa
- Department of Chemistry, College of Natural Sciences, Arba Minch University, Arba Minch, Ethiopia.
| | - Esayas Wakuma
- Department of Chemistry, College of Natural Sciences, Arba Minch University, Arba Minch, Ethiopia
| | - Ali Mohammed Yimer
- Department of Chemistry, College of Natural Sciences, Arba Minch University, Arba Minch, Ethiopia
| |
Collapse
|
16
|
Abdel-Khalek AA, Badran SR, Marie MAS. The effective adsorbent capacity of rice husk to iron and aluminum oxides nanoparticles using Oreochromis niloticus as a bioindicator: biochemical and oxidative stress biomarkers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:23159-23171. [PMID: 32333341 DOI: 10.1007/s11356-020-08906-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
Metal oxide nanoparticles (NPs) have different industrial applications so it is unavoidable that NPs products could find their way into aquatic habitats. Therefore, toxic NPs must be treated sufficiently to reach the standard values before their discharge into the aquatic ecosystems. Our study aimed to investigate the adsorptive capacity of rice husk to iron and aluminum oxides from water and reducing their potential toxic effects. Fish were classified into eight groups for 7 days: Fe2O3 NPs (10 mg/l)-exposed group; Al2O3 NPs (10 mg/l)-exposed group; combined group (same concentrations of Fe2O3 and Al2O3NPs), and control group (dechlorinated water). The other four groups were the same as the above groups but with 50 mg/l rice husk in each group. Compared with control groups, our results showed a significant (p < 0.05) increase in plasma total proteins, globulin, glucose, liver enzymes, and kidney function biomarkers (creatinine and uric acid). While the recorded albumin and total lipids were significantly decreased. The oxidative biomarkers in liver and gill tissues of NPs-exposed fish showed significant (p < 0.05) reduction in glutathione-reduced content and elevation in thiobarbituric acid reactive substances, glutathione peroxidase, catalase, and superoxide dismutase. Based on our results, Fe2O3 NPs were more toxic than Al2O3 NPs. The combined doses of both NPs showed more or less toxicity compared to single doses. Therefore, this point needs more studies to show the mode of interaction. Finally, rice husk was a good adsorber to both NPs as it could improve the biochemical and antioxidant status of the studied fish.
Collapse
Affiliation(s)
- Amr A Abdel-Khalek
- The Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt.
| | - Shereen R Badran
- The Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt
| | | |
Collapse
|
17
|
Khanna M, Mathur A, Dubey AK, McLaughlin J, Moirangthem I, Wadhwa S, Singh D, Kumar R. Rapid removal of lead(II) ions from water using iron oxide-tea waste nanocomposite - a kinetic study. IET Nanobiotechnol 2020; 14:275-280. [PMID: 32463017 DOI: 10.1049/iet-nbt.2019.0312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lead (Pb) ions are a major concern to the environment and human health as they are contemplated cumulative poisons. In this study, facile synthesis of magnetic iron oxide-tea waste nanocomposite is reported for adsorptive removal of lead ions from aqueous solutions and easy magnetic separation of the adsorbent afterwards. The samples were characterised by scanning electron microscopy, Fourier transform-infrared spectroscopy, X-ray diffraction, and Braunner-Emmet-Teller nitrogen adsorption study. Adsorptive removal of Pb(II) ions from aqueous solution was followed by ultraviolet-visible (UV-Vis) spectrophotometry. About 95% Pb(II) ion removal is achieved with the magnetic tea waste within 10 min. A coefficient of regression R2 ≃ 0.99 and adsorption density of 18.83 mg g-1 was found when Pb(II) ions were removed from aqueous solution using magnetic tea waste. The removal of Pb(II) ions follows the pseudo-second-order rate kinetics. External mass transfer principally regulates the rate-limiting phenomena of adsorption of Pb(II) ions on iron oxide-tea waste surface. The results strongly imply that magnetic tea waste has promising potential as an economic and excellent adsorbent for the removal of Pb(II) from water.
Collapse
Affiliation(s)
- Mansi Khanna
- Amity School of Engineering and Technology, Amity University, Uttar Pradesh, Noida, India
| | - Ashish Mathur
- Amity Institute of Nanotechnology, Amity University, Uttar Pradesh, Noida, India
| | - Ashwani Kumar Dubey
- Department of Electronics & Communication Engineering, Amity School of Engineering and Technology, Amity University Uttar Pradesh, Noida, India
| | - James McLaughlin
- School of Engineering, Engineering Research Institute, Jordanstown Campus, Belfast, UK
| | - Igamcha Moirangthem
- Amity Institute of Nanotechnology, Amity University, Uttar Pradesh, Noida, India
| | - Shikha Wadhwa
- Amity Institute of Nanotechnology, Amity University, Uttar Pradesh, Noida, India
| | - Devraj Singh
- Department of Physics, RBIPSSR, VBS Purvanchal University, Jaunpur, Uttar Pradesh, India
| | - Ranjit Kumar
- Amity Institute of Nanotechnology, Amity University, Uttar Pradesh, Noida, India.
| |
Collapse
|
18
|
Albalah MA, Alsabah YA, Mustafa DE. Characteristics of co-precipitation synthesized cobalt nanoferrites and their potential in industrial wastewater treatment. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2586-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
19
|
A comparative study of micro- and nano-structured di-nuclear Co(II) complex, designed to produce efficient nano-sorbent of Co3O4 applicable in the removal of Pb2+. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2550-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
20
|
Li M, Messele SA, Boluk Y, Gamal El-Din M. Isolated cellulose nanofibers for Cu (II) and Zn (II) removal: performance and mechanisms. Carbohydr Polym 2019; 221:231-241. [DOI: 10.1016/j.carbpol.2019.05.078] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/04/2019] [Accepted: 05/26/2019] [Indexed: 11/16/2022]
|
21
|
Akar S, Lorestani B, Sobhanardakani S, Cheraghi M, Moradi O. Surveying the efficiency of Platanus orientalis bark as biosorbent for Ni and Cr(VI) removal from plating wastewater as a real sample. ENVIRONMENTAL MONITORING AND ASSESSMENT 2019; 191:373. [PMID: 31102030 DOI: 10.1007/s10661-019-7479-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 04/15/2019] [Indexed: 06/09/2023]
Abstract
Heavy metals make up one of the most important pollutants in industrial wastewater. For wastewater, adsorbent materials developed from suitable biomass can be effective in removing the heavy metal ions. In this study, the powder of the bark of Platanus orientalis was used as a biosorbent to remove Cr(VI) and Ni from a nickel-chromium plating wastewater as a real sample for the first time. Two different adsorbents were used in analyzing the data: modified and non-modified bark. The extent of adsorption was dependent on the pH (in the range of 1.5, 3, 5, 7, and 9), the time of contact (in the range of 30, 60, 90, 120 min), and the adsorbent dosage (different doses of 0.5, 1, 1.5, 2 g L-1). The concentration of unabsorbed metals was measured by inductively coupled plasma-optical emission spectroscopy (ICP-OES, Model Thermo iCAP 6000). The maximum removal of Cr(VI) was obtained 89.6% for non-modified bark and 90.7% for modified bark both at pH of 5 in 2 g L-1 of adsorbent dosage in 300 min. While, the maximum Ni removal was obtained 74.5 and 56.5% for non-modified and modified bark, respectively, at pH 3 in 2 g L-1 adsorbent dosage in 90 min. Based on the results, Freundlich isotherm appears better fitted in adsorption with a better correlation coefficient (R2 = 0.998) than that of Langmuir model with a correlation coefficient of R2 = 0.996. The qmax for Ni1 and Ni2 were 126.58 and 285.714 mg g-1 and the qmax for Cr1 and Cr2 were 13.423 and 19.920 mg g-1, respectively. The FTIR studies indicated that S-O stretching group from sulfonate, surface O=H stretching, and also aliphatic C-H stretching are responsible for the adsorption. The SEM results obviously show the difference between the biomass surface before and after loading of ions. Ultimately, the present study concluded that P. orientalis could be a cheap and efficient biosorbent to adsorb and remove Cr(VI) and Ni from the plating wastewater; however, it seems more efficient for Cr(VI) with an average removal power of 90.15% than Ni with an average removal power of 65.75%.
Collapse
Affiliation(s)
- Sheida Akar
- Department of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| | - Bahareh Lorestani
- Department of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran.
| | - Soheil Sobhanardakani
- Department of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| | - Mehrdad Cheraghi
- Department of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| | - Omid Moradi
- Department of Chemistry, Shahr-e Qods Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
22
|
Dong L, Liang J, Li Y, Hunang S, Wei Y, Bai X, Jin Z, Zhang M, Qu J. Effect of coexisting ions on Cr(VI) adsorption onto surfactant modified Auricularia auricula spent substrate in aqueous solution. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 166:390-400. [PMID: 30286398 DOI: 10.1016/j.ecoenv.2018.09.097] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/19/2018] [Accepted: 09/21/2018] [Indexed: 06/08/2023]
Abstract
In this paper, the effect of coexisting cations and anions on Cr(VI)(in the form of Cr2O72-) adsorption onto Auricularia auricula spent substrate (AASS) modified by cetyl trimethyl ammonium bromide (CTAB) was investigated in batch adsorption experiment. The Cr(VI) adsorption capacity of 9.327 mg/g, obtained at pH 3.0, 303 K, adsorbent dosage of 2 g/L, initial Cr(VI) concentration of 20 mg/L, rotational speed of 150 r/min for 120 min, was decreased in the presence of coexisting cations and anions, among which Pb2+ and PO43- affected most by 21.79% and 12.43%, respectively. XRD, XPS and FTIR detection found that coexisting Pb2+ and PO43- would not only interfere Cr(VI) to form crystals and reduce to Cr(III), but also compete with Cr(VI) for oxygen-containing and amino groups to form Pb-O and P-NH2, respectively. In addition, the single Cr(VI) adsorption fitted with Langmuir isotherm model, while the competitive adsorption was well described by Freundlich isotherm model. Both single adsorption and competitive adsorption were in line with the pseudo-second-order kinetic model.
Collapse
Affiliation(s)
- Liying Dong
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Jinsong Liang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yue Li
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Siqi Hunang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yingnan Wei
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xin Bai
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Zonghui Jin
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Meng Zhang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Juanjuan Qu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
23
|
Chai L, Li Q, Wang Q, Yan X. Solid-liquid separation: an emerging issue in heavy metal wastewater treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:17250-17267. [PMID: 29766423 DOI: 10.1007/s11356-018-2135-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 04/25/2018] [Indexed: 06/08/2023]
Abstract
Solid-liquid separation (SLS) plays a dominant role in various chemical industries. Nowadays, low efficiency of SLS also become a significant problem in heavy metal (HM) wastewater treatment, affecting the effluent quality (HM concentration and turbidity) and overall process economy. In this context, we summarize here the occurrence of solids in HM wastewater, as well as typical SLS operations used in HM wastewater treatment, including sedimentation, flotation, and centrifugation. More important, this article reviews the improvement of the SLS operations by some technologies, including coagulation, flocculation, ballasted method, seeding method, granular sludge strategy, and external field enhancement. It is noted that abiological granular sludge strategy and magnetic field enhancement often possess higher SLS efficiency (faster settling velocity or shorter separation time) than other methods. Hence, the two strategies stand out as promising tools for improving SLS in HM wastewater treatment, but further research is required regarding scalability, economy, and reliability.
Collapse
Affiliation(s)
- Liyuan Chai
- School of Metallurgy and Environment, Central South University, Changsha, 410083, Hunan, China
- National Engineering Research Center for Heavy Metals Pollution Control and Treatment, Changsha, China
| | - Qingzhu Li
- School of Metallurgy and Environment, Central South University, Changsha, 410083, Hunan, China
- National Engineering Research Center for Heavy Metals Pollution Control and Treatment, Changsha, China
| | - Qingwei Wang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, Hunan, China
- National Engineering Research Center for Heavy Metals Pollution Control and Treatment, Changsha, China
| | - Xu Yan
- School of Metallurgy and Environment, Central South University, Changsha, 410083, Hunan, China.
- National Engineering Research Center for Heavy Metals Pollution Control and Treatment, Changsha, China.
| |
Collapse
|
24
|
Production and performance of activated carbon from rice husks for removal of natural organic matter from water: A review. Chem Eng Res Des 2018. [DOI: 10.1016/j.cherd.2017.11.008] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
25
|
Varghese AG, Paul SA, Latha MS. Cellulose Based Green Adsorbents for Pollutant Removal from Wastewater. ENVIRONMENTAL CHEMISTRY FOR A SUSTAINABLE WORLD 2018. [DOI: 10.1007/978-3-319-92162-4_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
26
|
Jilal I, El Barkany S, Bahari Z, Sundman O, El Idrissi A, Abou-Salama M, Romane A, Zannagui C, Amhamdi H. New quaternized cellulose based on hydroxyethyl cellulose (HEC) grafted EDTA: Synthesis, characterization and application for Pb (II) and Cu (II) removal. Carbohydr Polym 2018; 180:156-167. [DOI: 10.1016/j.carbpol.2017.10.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 10/01/2017] [Accepted: 10/03/2017] [Indexed: 11/26/2022]
|
27
|
Milani P, França D, Balieiro AG, Faez R. Polymers and its applications in agriculture. POLIMEROS 2017. [DOI: 10.1590/0104-1428.09316] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Ciesielczyk F, Bartczak P, Klapiszewski Ł, Jesionowski T. Treatment of model and galvanic waste solutions of copper(II) ions using a lignin/inorganic oxide hybrid as an effective sorbent. JOURNAL OF HAZARDOUS MATERIALS 2017; 328:150-159. [PMID: 28110149 DOI: 10.1016/j.jhazmat.2017.01.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 12/19/2016] [Accepted: 01/05/2017] [Indexed: 05/26/2023]
Abstract
A study was made concerning the removal of copper(II) ions from model and galvanic waste solutions using a new sorption material consisting of lignin in combination with an inorganic oxide system. Specific physicochemical properties of the material resulted from combining the activity of the functional groups present in the structure of lignin with the high surface area of the synthesized oxide system (585m2/g). Analysis of the porous structure parameters, particle size and morphology, elemental composition and characteristic functional groups confirmed the effective synthesis of the new type of sorbent. A key element of the study was a series of tests of adsorption of copper(II) ions from model solutions. It was determined how the efficiency of the adsorption process was affected by the process time, mass of sorbent, concentration of adsorbate, pH and temperature. Potential regeneration of adsorbent, which provides the possibility of its reusing and recovering the adsorbed copper, was also analyzed. The sorption capacity of the material was measured (83.98mg/g), and the entire process was described using appropriate kinetic models. The results were applied to the design of a further series of adsorption tests, carried out on solutions of real sewage from a galvanizing plant.
Collapse
Affiliation(s)
- Filip Ciesielczyk
- Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, PL-60965 Poznan, Poland.
| | - Przemysław Bartczak
- Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, PL-60965 Poznan, Poland
| | - Łukasz Klapiszewski
- Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, PL-60965 Poznan, Poland
| | - Teofil Jesionowski
- Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, PL-60965 Poznan, Poland
| |
Collapse
|
29
|
Talebzadeh F, Sobhanardakani S, Zandipak R. Effective adsorption of As(V) and V(V) ions from water samples using 2,4-dinitrophenylhydrazine functionalized sodium dodecyl sulfate-coated magnetite nanoparticles. SEP SCI TECHNOL 2017. [DOI: 10.1080/01496395.2016.1262873] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- F. Talebzadeh
- Young Researchers & Elite Club, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| | - S. Sobhanardakani
- Department of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| | - R. Zandipak
- Young Researchers & Elite Club, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| |
Collapse
|
30
|
Pondja Jr. EA, Persson KM, Matsinhe NP. The Potential Use of Cassava Peel for Treatment of Mine Water in Mozambique. ACTA ACUST UNITED AC 2017. [DOI: 10.4236/jep.2017.83021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
Hamza W, Chtara C, Benzina M. Purification of industrial phosphoric acid (54 %) using Fe-pillared bentonite. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:15820-15831. [PMID: 26514573 DOI: 10.1007/s11356-015-5557-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 10/05/2015] [Indexed: 06/05/2023]
Abstract
The current problem of excess impurities in industrial phosphoric acid (IPA) 54 % P2O5 makes phosphates industries look toward low-cost but efficient adsorbents. In the present study, iron-oxide-modified bentonite (Fe-PILB) was prepared and investigated as a possible adsorbent for the removal of organic matter (OM) like humic acid (HA), chromium (Cr(III)), and zinc (Zn(II)) from IPA aqueous solutions. These adsorbents were characterized using XRD, TEM, and BET. The adsorption of impurities is well described by the pseudo-second-order model. The results indicate that Fe-PILB has a good ability to resist co-existing anions and the low-pH condition of IPA and owns a relatively high-removal capacity of 80.42 and 25 % for OM, Cr(III), and Zn(II). The mechanism of adsorption may be described by the ligand and ion exchange that happened on the active sites. The selected order of adsorption OM > Cr(3+) > Zn(2+) showed the importance of the competitive phenomenon onto bentonite materials' pore adsorption. For the adsorption of OM at the low pH of IPA, H-bond complexation was the dominant mechanism. From the adsorption of heavy metals and OM complex compounds contained in IPA 54 % on Fe-PILB, the bridging of humic acid between bentonite and heavy metals (Zn(II) or Cr(III)) is proposed as the dominant adsorption mechanism (bentonite-HA-Me). Overall, the results obtained in this study indicate Fe-pillared bentonite possesses a potential for the practical application of impurity (OM, Zn(II), and Cr(III)) removal from IPA aqueous solutions.
Collapse
Affiliation(s)
- Wiem Hamza
- Laboratory of Water-Energy-Environment (LR3E), Code: AD-10-02, National School of Engineers of Sfax, University of Sfax, BP W, 3038, Sfax, Tunisia.
| | | | - Mourad Benzina
- Laboratory of Water-Energy-Environment (LR3E), Code: AD-10-02, National School of Engineers of Sfax, University of Sfax, BP W, 3038, Sfax, Tunisia
| |
Collapse
|
32
|
Srivastava S, Agrawal SB, Mondal MK. A review on progress of heavy metal removal using adsorbents of microbial and plant origin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:15386-415. [PMID: 26315592 DOI: 10.1007/s11356-015-5278-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 08/19/2015] [Indexed: 05/15/2023]
Abstract
Heavy metals released into the water bodies and on land surfaces by industries are highly toxic and carcinogenic in nature. These heavy metals create serious threats to all the flora and fauna due to their bioaccumulatory and biomagnifying nature at various levels of food chain. Existing conventional technologies for heavy metal removal are witnessing a downfall due to high operational cost and generation of huge quantity of chemical sludge. Adsorption by various adsorbents appears to be a potential alternative of conventional technologies. Its low cost, high efficiency, and possibility of adsorbent regeneration for reuse and recovery of metal ions for various purposes have allured the scientists to work on this technique. The present review compiles the exhaustive information available on the utilization of bacteria, algae, fungi, endophytes, aquatic plants, and agrowastes as source of adsorbent in adsorption process for removal of heavy metals from aquatic medium. During the last few years, a lot of work has been conducted on development of adsorbents after modification with various chemical and physical techniques. Adsorption of heavy metal ions is a complex process affected by operating conditions. As evident from the literature, Langmuir and Freundlich are the most widely used isotherm models, while pseudo first and second order are popularly studied kinetic models. Further, more researches are required in continuous column system and its practical application in wastewater treatment.
Collapse
Affiliation(s)
- Shalini Srivastava
- Department of Botany, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - S B Agrawal
- Department of Botany, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - M K Mondal
- Department of Chemical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
33
|
Sobhanardakani S, Zandipak R. 2,4-Dinitrophenylhydrazine functionalized sodium dodecyl sulfate-coated magnetite nanoparticles for effective removal of Cd(II) and Ni(II) ions from water samples. ENVIRONMENTAL MONITORING AND ASSESSMENT 2015; 187:412. [PMID: 26050063 DOI: 10.1007/s10661-015-4635-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 05/21/2015] [Indexed: 06/04/2023]
Abstract
2,4-Dinitrophenylhydrazine immobilized on sodium dodecyl sulfate (SDS)-coated magnetite and was used for removal of Cd(II) and Ni(II) ions from aqueous solution. The prepared product was characterized by X-ray diffraction (XRD) analysis, Fourier transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM). The size of the nanoparticles according to SEM was obtained around 20-35 nm. In batch tests, the effects of pH, contact time, initial metal concentration, and temperature were studied. The kinetic and equilibrium data were modeled with recently developed models. The adsorption kinetics and isotherms were well fitted by the fractal-like pseudo-second-order model and Langmuir-Freundlich model, respectively. Maximum adsorption capacity by this adsorbent is 255.1 mg g(-1) for Cd(II) ion and 319.6 mg g(-1) for Ni(II) ion at pH 7.0 and 25 °C. The method was successfully applied to the removal of metal cations in real samples (tap water, river water, and petrochemical wastewater).
Collapse
Affiliation(s)
- Soheil Sobhanardakani
- Department of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran,
| | | |
Collapse
|