1
|
Fan Q, Wang L, Fu Y, Li Q, Liu Y, Wang Z, Zhu H. Iron redox cycling in layered clay minerals and its impact on contaminant dynamics: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:159003. [PMID: 36155041 DOI: 10.1016/j.scitotenv.2022.159003] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/30/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
A majority of clay minerals contain Fe, and the redox cycling of Fe(III)/Fe(II) in clay minerals has been extensively studied as it may fuel the biogeochemical cycles of nutrients and govern the mobility, toxicity and bioavailability of a number of environmental contaminants. There are three types of Fe in clay minerals, including structural Fe sandwiched in the lattice of clays, Fe species in interlayer space and adsorbed on the external surface of clays. They exhibit distinct reactivity towards contaminants due to their differences in redox properties and accessibility to contaminant species. In natural environments, microbially driven Fe(III)/Fe(II) redox cycling in clay minerals is thought to be important, whereas reductants (e.g., dithionite and Fe(II)) or oxidants (e.g., peroxygens) are capable of enhancing the rates and extents of redox dynamics in engineered systems. Fe(III)-containing clay minerals can directly react with oxidizable pollutants (e.g., phenols and polycyclic aromatic hydrocarbons (PAHs)), whereas structural Fe(II) is able to react with reducible pollutants, such as nitrate, nitroaromatic compounds, chlorinated aliphatic compounds. Also structural Fe(II) can transfer electrons to oxygen (O2), peroxymonosulfate (PMS), or hydrogen peroxide (H2O2), yielding reactive radicals that can promote the oxidative transformation of contaminants. This review summarizes the recent discoveries on redox reactivity of Fe in clay minerals and its links to fates of environmental contaminants. The biological and chemical reduction mechanisms of Fe(III)-clay minerals, as well as the interaction mechanism between Fe(III) or Fe(II)-containing clay minerals and contaminants are elaborated. Some knowledge gaps are identified for better understanding and modelling of clay-associated contaminant behavior and effective design of remediation solutions.
Collapse
Affiliation(s)
- Qingya Fan
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Lingli Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Yu Fu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Qingchao Li
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Yunjiao Liu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Zhaohui Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; State Key Laboratory of Mineral Processing, Beijing 102628, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663 N. Zhongshan Road, Shanghai 200062, China.
| | - Huaiyong Zhu
- School of Chemistry and Physics, Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4001, Australia
| |
Collapse
|
2
|
Zhou S, Tong G, Meng X, Wang Y, Gu G, Gan M. Reactive oxygen species formation driven by acidophiles mediated pyrite oxidation and its potential role on 2,4-dichlorophenol transformation. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127833. [PMID: 34872039 DOI: 10.1016/j.jhazmat.2021.127833] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/15/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Researches of reactive oxygen species (ROS) generation from pyrite oxidation and its impact on contaminants transformation has been constrained to abiotic conditions. However, pyrite oxidation by acidophiles is widespread in acidic environments. The potential role of these microorganisms on pyrite-induced ROS formation and pollutants processing is not understood well. Here, ROS production and 2,4-DCP transformation during pyrite oxidation under oxic and anoxic atmospheres by Acidithiobacillus ferrooxidans (A. ferrooxidans) were explored. 2,4-DCP removal was enhanced in biosystem. Under oxic and anoxic conditions, microbially mediated pyrite oxidation resulted in removing 93.66% and 43.77% 2,4-DCP, which were 1.14- and 1.51-fold greater than that without cells. Based on intermediates identified by LC-MS, the transformation pathway of 2,4-DCP was proposed. The trapping experiments demonstrated ROS contributed during 2,4-DCP transformation. The improving effect of A. ferrooxidans on 2,4-DCP degradation was mainly due to ROS increase. A. ferrooxidans was to promote pyrite surface renew, exposing more Fe(II) and Fe(III) sites that facilitated O2 reduction and H2O dissociation for ROS generation. Biogenic ROS and sulfite bio-oxidation with the free radical mechanism provided other ROS sources. ESR revealed A. ferrooxidans-pyrite interaction led to sustainable ROS production, indicating it could be a significant pathway in driving geochemical cycles of elements.
Collapse
Affiliation(s)
- Shuang Zhou
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China; State Environmental Protection Key Laboratory of Mineral Metallurgical Resources Utilization and Pollution Control, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Ge Tong
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Xiaoyu Meng
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Yanhong Wang
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Guohua Gu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China.
| | - Min Gan
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China.
| |
Collapse
|
3
|
Lin Y, Song B, Wang X, Zhang C, Zhang X, Sun S, Wu S, Ren H, Jia S, Liu Y, Han X. Catalytic cross‐coupling of aniline by pyrite and dissolved oxygen under alkaline conditions. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yi‐Ying Lin
- School of Chemical Engineering and TechnologyTianjin University Tianjin China
| | - Bao‐Dong Song
- School of Chemical Engineering and TechnologyTianjin University Tianjin China
| | - Xiang‐Ming Wang
- School of Chemical Engineering and TechnologyTianjin University Tianjin China
| | - Cong‐Cong Zhang
- School of Environmental Science and EngineeringTianjin University Tianjin China
| | - Xiao‐Cong Zhang
- School of Chemical Engineering and TechnologyTianjin University Tianjin China
| | - Shi‐Wei Sun
- School of Chemical Engineering and TechnologyTianjin University Tianjin China
| | - Song‐Hai Wu
- School of Chemical Engineering and TechnologyTianjin University Tianjin China
| | - Hai‐Tao Ren
- School of TextilesTiangong University Tianjin China
| | - Shao‐Yi Jia
- School of Chemical Engineering and TechnologyTianjin University Tianjin China
| | - Yong Liu
- School of Chemistry and Chemical EngineeringTianjin University of Technology Tianjin China
| | - Xu Han
- School of Chemical Engineering and TechnologyTianjin University Tianjin China
- School of Environmental Science and EngineeringTianjin University Tianjin China
| |
Collapse
|
4
|
Ghasemi M, Khataee A, Gholami P, Soltani RDC, Hassani A, Orooji Y. In-situ electro-generation and activation of hydrogen peroxide using a CuFeNLDH-CNTs modified graphite cathode for degradation of cefazolin. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 267:110629. [PMID: 32349954 DOI: 10.1016/j.jenvman.2020.110629] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 03/27/2020] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
The modified multifunctional electrodes for electro-Fenton (EF) process are suggested to be promising cathodes for in situ electro-generation and activation of H2O2 to produce hydroxyl radicals (•OH). However, heterogeneous EF process still faces the challenges of limited catalytic activity and releasing of massive amounts of transition metals to the solution after removal of organic pollutants. The main aim of the present investigation was to prepare a cathode containing carbon nanotubes (CNTs) and CuFe nano-layered double hydroxide (NLDH) for degradation and mineralization of cefazolin antibiotic through electro-Fenton process. Structural and electrochemical analyses demonstrated that CuFeNLDH-CNTs nanocomposite was successfully incorporated on the surface of graphite cathode. Due to the increased formation of •OH in the reactor, the incorporation of CNTs into NLDH matrix with a catalyst loading of 0.1 g substantially improved the degradation efficiency of cefazolin (89.9%) in comparison with CNTs-coated (28.7%) and bare graphite cathode (22.8%) within 100 min. In the presence of 15 mM of ethanol, the degradation efficiency of cefazolin was remarkably decreased to 43.7% by the process, indicating the major role of •OH in the destruction of target molecules. Acidic conditions favored the degradation efficiency of cefazolin by the modified EF process. Mineralization efficiency of the bio-refractory compound was obtained to be 70.1% in terms of chemical oxygen demand (COD) analysis after 300 min. The gas chromatography-mass spectroscopy (GC-MS) analysis was also implemented to identify the intermediate byproducts generated during the degradation of cefazolin in the CuFeNLDH-CNTs/EF reactor.
Collapse
Affiliation(s)
- Masoumeh Ghasemi
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran; Department of Environmental Engineering, Gebze Technical University, 41400 Gebze, Turkey; Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam.
| | - Peyman Gholami
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran; Department of Chemistry, University of Helsinki, P.O. Box 55, Helsinki 00014, Finland
| | - Reza Darvishi Cheshmeh Soltani
- Department of Environmental Health Engineering, School of Health, Arak University of Medical Sciences, 38196-93345, Arak, Iran
| | - Aydin Hassani
- Department of Materials Science and Nanotechnology Engineering, Faculty of Engineering, Near East University, 99138, Nicosia, TRNC, Mersin 10, Turkey
| | - Yasin Orooji
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
5
|
Farshchi ME, Aghdasinia H, Khataee A. Heterogeneous Fenton reaction for elimination of Acid Yellow 36 in both fluidized-bed and stirred-tank reactors: Computational fluid dynamics versus experiments. WATER RESEARCH 2019; 151:203-214. [PMID: 30594832 DOI: 10.1016/j.watres.2018.12.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 12/03/2018] [Accepted: 12/05/2018] [Indexed: 06/09/2023]
Abstract
Heterogeneous Fenton process is a kind of advanced oxidation processes (AOPs) that is significant for wastewater treatment. In the first part of this study, acid yellow 36 (AY36) degradation process has occurred in two kinds of reactors: fluidized-bed and stirred-tank reactors. Performances of these two semi-pilot reactors are compared by evaluating the removal ratio of the dye and pH changes during the process. Pyrite has been used as a heterogeneous catalyst. For obtaining the characteristics of pyrite, XRD, SEM, and FT-IR analysis have been carried out. In the second part of this study, a modified computational fluid dynamics (CFD) method has been utilized to solve the momentum and mass balances for heterogeneous Fenton process in both reactors. In AOPs, free radicals are reactive and have a short lifetime, so that turbulence mixing would be a limiting factor for the reactions that radicals are involved. By introducing a new parameter, named turbulence mixing rate, as a reaction rate for reactive species like hydroxyl radicals, the results of removal ratio and pH changes during the process showed a good agreement between the experiments and the CFD simulations, compared with not including the mixing rate in the CFD simulations (conventional kinetic modeling). In addition, the results revealed the high performance of the fluidized-bed reactor for this process in both experiments and CFD simulation.
Collapse
Affiliation(s)
- Mahdi Ebrahimi Farshchi
- Department of Chemical Engineering, Faculty of Chemical and Petroleum Engineering, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Hassan Aghdasinia
- Department of Chemical Engineering, Faculty of Chemical and Petroleum Engineering, University of Tabriz, 51666-16471, Tabriz, Iran.
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran
| |
Collapse
|
6
|
Peng S, Feng Y, Liu Y, Wu D. Applicability study on the degradation of acetaminophen via an H 2O 2/PDS-based advanced oxidation process using pyrite. CHEMOSPHERE 2018; 212:438-446. [PMID: 30153616 DOI: 10.1016/j.chemosphere.2018.08.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/29/2018] [Accepted: 08/06/2018] [Indexed: 06/08/2023]
Abstract
H2O2- and PDS-based reactions are two typical advanced oxidation processes (AOPs) with different adaptive pH ranges. However, the underlying mechanisms that caused the distinct applicability of these two AOPs have rarely been explored. Herein, a comparative study of H2O2/PDS-based AOPs employing pyrite as a catalyst to degrade acetaminophen (ACT) was reported. The poor ACT degradation in H2O2/pyrite under alkaline conditions was proven to be caused by a lack of OH production instead of by the weaker oxidation property of OH. The continuous exposure surface behavior induced by the intense acid-production reaction between PDS and pyrite prevented the coverage of iron-containing compounds on the pyrite surface. Therefore, the adaptive pH range in PDS/pyrite could extend from 4 to 10, in contrast to the narrow effective pH range of 4-6 in H2O2/pyrite. Oxidant consumption indicated that H2O2/pyrite possesses a higher oxidation efficiency than PDS/pyrite. The homogenous catalytic effect was non-negligible in PDS/pyrite, whereas heterogeneous catalytic oxidation dominated H2O2/pyrite under acidic conditions. The quenching experiment and electron spin resonance (ESR) spectroscopy demonstrated that the dominant radical species in H2O2/PDS-based AOPs via pyrite at a pH of 4 were OH and OH/SO4-, respectively, thus causing different degradation pathways of ACT. In addition, a higher proportion of S consumption was found in H2O2/pyrite, indicating that sulfur also plays a role during the catalytic reaction. The distinct surface reactions between pyrite and H2O2/PDS led to different water treatment applications.
Collapse
Affiliation(s)
- Shuhan Peng
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science & Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control Ecological Security, Shanghai, 200092, PR China.
| | - Yong Feng
- Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, PR China.
| | - Yanxia Liu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science & Engineering, Tongji University, Shanghai, 200092, PR China.
| | - Deli Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science & Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|
7
|
Zhao L, Chen Y, Liu Y, Luo C, Wu D. Enhanced degradation of chloramphenicol at alkaline conditions by S(-II) assisted heterogeneous Fenton-like reactions using pyrite. CHEMOSPHERE 2017; 188:557-566. [PMID: 28915374 DOI: 10.1016/j.chemosphere.2017.09.019] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/21/2017] [Accepted: 09/05/2017] [Indexed: 06/07/2023]
Abstract
The Fenton-like reactions catalyzed by pyrite can efficiently degrade organic contaminants by oxidation process. When chloramphenicol (CAP) was exposed to the pyrite-H2O2 system, the CAP removal rate rapidly reached 100% however slowed to a halt at alkaline conditions. Results indicated that by adding S(-II) in pyrite-H2O2 system improved the oxidation efficiency of CAP at alkaline conditions. The transformation of S22- and Sn2- observed by X-ray photoelectron spectroscopy (XPS), confirmed that amorphous iron polysulfide (FeSn) was freshly generated on the pyrite surface. The availability of S(-II) promoted the generation of FeSn. Besides, S(-II) played a role in accelerating the Fe(III)/Fe(II) cycles. The potential of S(-II) activating H2O2 to generate hydroxyl radicals (OH), which was confirmed by electron spin resonance (ESR) spectroscopy, quenching experiments, and trapping experiments, have supported the proposed mechanisms. This study came up with an efficient way of enhancing Fenton-like reactions by pyrite catalyzed at alkaline conditions, by adding S(-II) in the system. The new findings have implications for sulfide minerals, their interactions with pollutants, and the transformation products of sulfur in systems where Fe species are also present.
Collapse
Affiliation(s)
- Linghui Zhao
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science & Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Yufan Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science & Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Yanxia Liu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science & Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Cong Luo
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, United States
| | - Deli Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science & Engineering, Tongji University, Shanghai, 200092, People's Republic of China.
| |
Collapse
|
8
|
Bouzayani B, Meijide J, Pazos M, Elaoud SC, Sanroman MA. Removal of polyvinylamine sulfonate anthrapyridone dye by application of heterogeneous electro-Fenton process. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017. [PMID: 28639017 DOI: 10.1007/s11356-017-9468-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Diversity and rapidly multiplication of the pollutants incite as to improve the conventional treatments wastewater methods. One of the bottlenecks often faced is the presence into wastewater of organic pollutants with complex structures that requests the design of efficient processes. Thus, this work investigates the removal of polyvinylamine sulfonate anthrapyridone (PSA) dye which complex structure makes difficult its degradation by conventional technologies. For that, a heterogeneous oxidative process using pyrite as sustainable catalyst was designed. Initially, the performance of the system BBD-carbon felt as anode and cathode, respectively for the production of H2O2 was determined in comparison with system boron-doped diamond nickel foam. The carbon felt electrode provided the highest oxidant production, and it was selected for the treatment of the polymeric dye. Several oxidative processes were evaluated, and the best degradation levels were obtained by application of electro-Fenton-pyrite process. In addition, it was determined that dye removal followed a kinetic model of pseudo-first-order achieving the highest efficiency by operation at optimum dosage of pyrite 2 g/L and 200 mA of current intensity. Depending on the optimal experimental conditions, these values lead to a nearly complete mineralization (total organic carbon removal of 95%) after 6 h. Furthermore, the reusability of pyrite was evaluated, by removal of PSA in four cycles.
Collapse
Affiliation(s)
- Bakhta Bouzayani
- BIOSUV Group, University of Vigo, MTI Building, Campus Universitario de Vigo, 36310, Vigo, Spain
- Laboratory of the Physico-Chemistry of Solid States, University of Sfax, 3000, Sfax, Tunisia
| | - Jessica Meijide
- BIOSUV Group, University of Vigo, MTI Building, Campus Universitario de Vigo, 36310, Vigo, Spain
| | - Marta Pazos
- BIOSUV Group, University of Vigo, MTI Building, Campus Universitario de Vigo, 36310, Vigo, Spain
| | - Sourour Chaâbane Elaoud
- Laboratory of the Physico-Chemistry of Solid States, University of Sfax, 3000, Sfax, Tunisia
| | - Maria Angeles Sanroman
- BIOSUV Group, University of Vigo, MTI Building, Campus Universitario de Vigo, 36310, Vigo, Spain.
| |
Collapse
|
9
|
Seo YH, Sung M, Oh YK, Han JI. Lipid extraction and esterification for microalgae-based biodiesel production using pyrite (FeS2). BIORESOURCE TECHNOLOGY 2015; 191:420-425. [PMID: 25804530 DOI: 10.1016/j.biortech.2015.02.083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 02/19/2015] [Accepted: 02/20/2015] [Indexed: 06/04/2023]
Abstract
In this study, pyrite (FeS2) was used for lipid extraction as well as esterification processes for microalgae-based biodiesel production. An iron-mediated oxidation reaction, Fenton-like reaction, produced an expected degree of lipid extraction, but pyrite was less effective than FeCl3 commercial powder. That low efficiency was improved by using oxidized pyrite, which showed an equivalent lipid extraction efficiency to FeCl3, about 90%, when 20 mM of catalyst was used. Oxidized pyrite was also employed in the esterification step, and converted free fatty acids to fatty acid methyl esters under acidic conditions; thus, the fatal problem of saponification during esterification with alkaline catalysts was avoided, and esterification efficiency over 90% was obtained. This study clearly showed that pyrite could be utilized as a cheap catalyst in the lipid extraction and esterification steps for microalgae-based biodiesel production.
Collapse
Affiliation(s)
- Yeong Hwan Seo
- Department of Civil and Environmental Engineering, KAIST, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Mina Sung
- Department of Civil and Environmental Engineering, KAIST, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - You-Kwan Oh
- Clean Fuel Department, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon 305-343, Republic of Korea
| | - Jong-In Han
- Department of Civil and Environmental Engineering, KAIST, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea.
| |
Collapse
|