1
|
Lilly K, Wang M, Orr AA, Bondos SE, Phillips TD, Tamamis P. β-Lactoglobulin Enhances Clay and Activated Carbon Binding and Protection Properties for Cadmium and Lead. Ind Eng Chem Res 2024; 63:16124-16140. [PMID: 39319074 PMCID: PMC11417999 DOI: 10.1021/acs.iecr.4c01774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/26/2024]
Abstract
The removal of heavy metals from wastewater remains a challenge due to the limitations of current remediation methods. This study aims to develop multicomponent composites as inexpensive and environmentally friendly sorbents with enhanced capture of cadmium (Cd) and lead (Pb). The composites are based on calcium montmorillonite (CM) and activated carbon (AC) because of their proven effectiveness as sorbents for diverse toxins in environmental settings. In this study, we used a combination of computational and experimental methods to delineate that β-lactoglobulin enhances CM and AC binding and protection properties for Cd and Pb. Modeling and molecular dynamics simulations investigated the formation of material systems formed by CM and AC in complex with β-lactoglobulin and predicted their capacity to bind heavy metal ions at neutral pH conditions. Our simulations suggest that the enhanced binding properties of the material systems are attributed to the presence of several binding pockets formed by β-lactoglobulin for the two heavy metal ions. At neutral pH conditions, divalent Cd and Pb shared comparable binding propensities in all material systems, with the former being consistently higher than the latter. To validate the interactions depicted in simulations, two ecotoxicological models (L. minor and H. vulgaris) were exposed to Cd, Pb, and a mixture of the two. The inclusion of CM-lactoglobulin (β-lactoglobulin amended CM) and AC-lactoglobulin (β-lactoglobulin amended AC) at 0.05-0.2% efficiently and dose-dependently reduced the severe toxicity of metals and increased the growth parameters. This high efficacy of protection shown in the ecotoxicological models may result from the numerous possible interaction pockets of the β-lactoglobulin-amended materials depicted in simulations. The ecotoxicological models support the agreement with computations. This study serves as a proof of concept on how computations in tandem with experiments can be used in the design of multicomponent clay- and carbon-based sorbent amended systems with augmented functionalities for particular toxins.
Collapse
Affiliation(s)
- Kendall Lilly
- Department
of Materials Science and Engineering, College of Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Meichen Wang
- Department
of Veterinary Physiology and Pharmacology, College of Veterinary Medicine
and Biomedical Sciences, Texas A&M University, College Station, Texas 77843, United States
- Interdisciplinary
Faculty of Toxicology, College of Veterinary Medicine and Biomedical
Sciences, Texas A&M University, College Station, Texas 77843, United States
- Department
of Environmental Health Sciences, University
of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Asuka A. Orr
- Artie
McFerrin Department of Chemical Engineering, College of Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Sarah E. Bondos
- Department
of Medical Physiology Texas A&M Health Science Center, Texas A&M University, College Station, Texas 77843, United States
| | - Timothy D. Phillips
- Department
of Veterinary Physiology and Pharmacology, College of Veterinary Medicine
and Biomedical Sciences, Texas A&M University, College Station, Texas 77843, United States
- Interdisciplinary
Faculty of Toxicology, College of Veterinary Medicine and Biomedical
Sciences, Texas A&M University, College Station, Texas 77843, United States
| | - Phanourios Tamamis
- Department
of Materials Science and Engineering, College of Engineering, Texas A&M University, College Station, Texas 77843, United States
- Artie
McFerrin Department of Chemical Engineering, College of Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
2
|
Abraham EC, D'Angelo JA, Ramírez DA, Camargo AB, Altamirano JC. Organic matter degradation determines the concentrations of polybrominated diphenyl ethers in sediments. Multivariate learning on environmental and experimental models. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162766. [PMID: 36921870 DOI: 10.1016/j.scitotenv.2023.162766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/03/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Sediment organic matter (SOM) plays an important role in capturing polybrominated diphenyl ethers (PBDEs) due to its affinity to hydrophobic and lipophilic compounds. Previous publications about correlations between PBDE concentrations and SOM content showed discrepancies among the results, reporting either significant positive correlations or no correlations at all. This work aimed to provide a deeper insight into SOM characteristics that might determine the concentrations of PBDEs in sediments. Sediment samples from Mendoza province, Argentina, were analyzed to contrast two models, environmental and experimental, using multivariate learning methods. Mendoza has been going through increasing events of drought and water scarcity, hence the occurrence, transport, and fate of contaminants as PBDEs in aquatic environments is of superlative importance. Principal component analysis (PCA) and partial least squares regression (PLS) were used to evaluate the correlations between physicochemical properties of sediments, semi-quantitative Fourier transform infrared (FTIR) area ratios obtained from SOM spectra, and PBDE concentrations in sediments. Moreover, a linear model was proposed to determine SOM density using FTIR area ratios and it was used as an additional variable in multivariate analyses. The results obtained from PCA and PLS were consistent and revealed that PBDE concentrations in sediments were correlated with a more degraded SOM, characterized by shorter and more branched hydrocarbon chains. PBDE concentrations were also correlated with higher SOM density values, which in turn were correlated with SOM degradation. These findings extend previous understanding and emphasize that not only is the organic matter content a factor in determining PBDE concentrations in sediments, but also and more significantly, its degree of degradation.
Collapse
Affiliation(s)
- Emilia C Abraham
- Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA), CONICET-UNCuyo-Government of Mendoza, P.O. Box. 331 (5500), Mendoza, Argentina
| | - José A D'Angelo
- Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA), CONICET-UNCuyo-Government of Mendoza, P.O. Box. 331 (5500), Mendoza, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo (UNCuyo), Padre Jorge Contreras 1300, Mendoza 5500, Argentina; Cape Breton University, Department of Mathematics, Physics, and Geology, 1250 Grand Lake Rd., Sydney, Nova Scotia B1P 6L2, Canada
| | - Daniela A Ramírez
- Instituto de Biología Agrícola de Mendoza (IBAM), CONICET-Mendoza, Mendoza, Argentina; Laboratorio de Cromatografía para Agroalimentos, Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Alejandra B Camargo
- Instituto de Biología Agrícola de Mendoza (IBAM), CONICET-Mendoza, Mendoza, Argentina; Laboratorio de Cromatografía para Agroalimentos, Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Jorgelina C Altamirano
- Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA), CONICET-UNCuyo-Government of Mendoza, P.O. Box. 331 (5500), Mendoza, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo (UNCuyo), Padre Jorge Contreras 1300, Mendoza 5500, Argentina.
| |
Collapse
|
3
|
Dell'Anno F, Joaquim van Zyl L, Trindade M, Buschi E, Cannavacciuolo A, Pepi M, Sansone C, Brunet C, Ianora A, de Pascale D, Golyshin PN, Dell'Anno A, Rastelli E. Microbiome enrichment from contaminated marine sediments unveils novel bacterial strains for petroleum hydrocarbon and heavy metal bioremediation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120772. [PMID: 36455775 DOI: 10.1016/j.envpol.2022.120772] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/24/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Petroleum hydrocarbons and heavy metals are some of the most widespread contaminants affecting marine ecosystems, urgently needing effective and sustainable remediation solutions. Microbial-based bioremediation is gaining increasing interest as an effective, economically and environmentally sustainable strategy. Here, we hypothesized that the heavily polluted coastal area facing the Sarno River mouth, which discharges >3 tons of polycyclic aromatic hydrocarbons (PAHs) and ∼15 tons of heavy metals (HMs) into the sea annually, hosts unique microbiomes including marine bacteria useful for PAHs and HMs bioremediation. We thus enriched the microbiome of marine sediments, contextually selecting for HM-resistant bacteria. The enriched mixed bacterial culture was subjected to whole-DNA sequencing, metagenome-assembled-genomes (MAGs) annotation, and further sub-culturing to obtain the major bacterial species as pure strains. We obtained two novel isolates corresponding to the two most abundant MAGs (Alcanivorax xenomutans strain-SRM1 and Halomonas alkaliantarctica strain-SRM2), and tested their ability to degrade PAHs and remove HMs. Both strains exhibited high PAHs degradation (60-100%) and HMs removal (21-100%) yield, and we described in detail >60 genes in their MAGs to unveil the possible genetic basis for such abilities. Most promising yields (∼100%) were obtained towards naphthalene, pyrene and lead. We propose these novel bacterial strains and related genetic repertoire to be further exploited for effective bioremediation of marine environments contaminated with both PAHs and HMs.
Collapse
Affiliation(s)
- Filippo Dell'Anno
- Department of Marine Biotechnology, Stazione Zoologica "Anton Dohrn", Villa Comunale, 80121, Naples, Italy.
| | - Leonardo Joaquim van Zyl
- Department of Biotechnology, Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, Bellville, 7535, Cape Town, South Africa.
| | - Marla Trindade
- Department of Biotechnology, Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, Bellville, 7535, Cape Town, South Africa.
| | - Emanuela Buschi
- Department of Marine Biotechnology, Stazione Zoologica "Anton Dohrn", Fano Marine Centre, Viale Adriatico 1-N, 61032, Fano, Italy.
| | - Antonio Cannavacciuolo
- Department of Integrative Marine Ecology, Stazione Zoologica "Anton Dohrn", Fano Marine Centre, Viale Adriatico 1-N, 61032, Fano, Italy.
| | - Milva Pepi
- Department of Integrative Marine Ecology, Stazione Zoologica "Anton Dohrn", Fano Marine Centre, Viale Adriatico 1-N, 61032, Fano, Italy.
| | - Clementina Sansone
- Department of Marine Biotechnology, Stazione Zoologica "Anton Dohrn", Villa Comunale, 80121, Naples, Italy.
| | - Christophe Brunet
- Department of Marine Biotechnology, Stazione Zoologica "Anton Dohrn", Villa Comunale, 80121, Naples, Italy.
| | - Adrianna Ianora
- Department of Marine Biotechnology, Stazione Zoologica "Anton Dohrn", Villa Comunale, 80121, Naples, Italy.
| | - Donatella de Pascale
- Department of Marine Biotechnology, Stazione Zoologica "Anton Dohrn", Villa Comunale, 80121, Naples, Italy.
| | - Peter N Golyshin
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Gwynedd LL57 2UW, UK.
| | - Antonio Dell'Anno
- Department of Life and Environmental Sciences, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| | - Eugenio Rastelli
- Department of Marine Biotechnology, Stazione Zoologica "Anton Dohrn", Fano Marine Centre, Viale Adriatico 1-N, 61032, Fano, Italy.
| |
Collapse
|
4
|
Formentini TA, Basile-Doelsch I, Legros S, Frierdich AJ, Pinheiro A, Fernandes CVS, Mallmann FJK, Borschneck D, da Veiga M, Doelsch E. Copper (Cu) speciation in organic-waste (OW) amended soil: Instability of OW-borne Cu(I) sulfide and role of clay and iron oxide minerals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157779. [PMID: 35926606 DOI: 10.1016/j.scitotenv.2022.157779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
The geochemistry of copper (Cu) is generally assumed to be controlled by organic matter in soils. However, the role of clay and iron oxide minerals may be understated. Soil density fractionation, X-ray diffraction (XRD), and X-ray absorption spectroscopy (XAS) were combined to assess the long-term behavior of Cu in an agricultural soil subject to organic waste application. Two unprecedented molecular environments of natural Cu (i.e. Cu inherited from the parent rock) in soils are reported: Cu dimer in the interlayer of vermiculite and Cu structurally incorporated within hematite. Moreover, the soil naturally containing Cu-vermiculite, Cu-hematite, but also Cu-kaolinite (Cutotal = 122 mg·kg-1) was amended over 11 years with Cu-rich pig slurry in which Cu was 100 % Cu(I) sulfide. Natural Cu associated with clay and iron oxide minerals persisted in the amended soil, but the exogenous Cu(I) sulfide was unstable. The increase in Cu concentration in the amended soil to 174 mg·kg-1 was accounted for the increase of Cu sorbed to kaolinite and Cu bound to organic matter. These results are important for better understanding the natural occurrence of Cu in soils and for assessing the environmental impacts of organic waste recycling in agricultural fields.
Collapse
Affiliation(s)
- Thiago A Formentini
- Department of Soil and Environment, Swedish University of Agricultural Sciences, P. O. Box 7014, SE-750 07 Uppsala, Sweden; Department of Hydraulics and Sanitation, Federal University of Parana (UFPR), 81531-980 Curitiba, PR, Brazil.
| | - Isabelle Basile-Doelsch
- Aix-Marseille Université, CNRS, IRD, Coll France, INRA, CEREGE, F-13545 Aix-en-Provence, France
| | - Samuel Legros
- CIRAD, UPR Recyclage et risque, F-34398 Montpellier, France; Recyclage et Risque, Univ. Montpellier, CIRAD, Montpellier, France
| | - Andrew J Frierdich
- School of Earth, Atmosphere & Environment, Monash University, Clayton, Victoria, Australia
| | - Adilson Pinheiro
- Environmental Engineering Program, Regional University of Blumenau (FURB), 89030-000 Blumenau, SC, Brazil
| | - Cristovão V S Fernandes
- Department of Hydraulics and Sanitation, Federal University of Parana (UFPR), 81531-980 Curitiba, PR, Brazil
| | - Fábio J K Mallmann
- Department of Soils, Federal University of Santa Maria (UFSM), 97105-900 Santa Maria, RS, Brazil
| | - Daniel Borschneck
- Aix-Marseille Université, CNRS, IRD, Coll France, INRA, CEREGE, F-13545 Aix-en-Provence, France
| | | | - Emmanuel Doelsch
- CIRAD, UPR Recyclage et risque, F-34398 Montpellier, France; Recyclage et Risque, Univ. Montpellier, CIRAD, Montpellier, France
| |
Collapse
|
5
|
Ali M, Song X, Ding D, Wang Q, Zhang Z, Tang Z. Bioremediation of PAHs and heavy metals co-contaminated soils: Challenges and enhancement strategies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 295:118686. [PMID: 34920044 DOI: 10.1016/j.envpol.2021.118686] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/20/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
Systemic studies on the bioremediation of co-contaminated PAHs and heavy metals are lacking, and this paper provides an in-depth review on the topic. The released sources and transport of co-contaminated PAHs and heavy metals, including their co-occurrence through formation of cation-π interactions and their adsorption in soil are examined. Moreover, it is investigated that co-contamination of PAHs and heavy metals can drive a synergistic positive influence on bioremediation through enhanced secretion of extracellular polymeric substances (EPSs), production of biosynthetic genes, organic acid and enzymatic proliferation. However, PAHs molecular structure, PAHs-heavy metals bioavailability and their interactive cytotoxic effects on microorganisms can exert a challenging influence on the bioremediation under co-contaminated conditions. The fluctuations in bioavailability for microorganisms are associated with soil properties, chemical coordinative interactions, and biological activities under the co-contaminated PAHs-heavy metals conditions. The interactive cytotoxicity caused by the emergence of co-contaminants includes microbial cell disruption, denaturation of DNA and protein structure, and deregulation of antioxidant biological molecules. Finally, this paper presents the emerging strategies to overcome the bioavailability problems and recommends the use of biostimulation and bioaugmentation along with the microbial immobilization for enhanced bioremediation of PAHs-heavy metals co-contaminated sites. Better knowledge of the bioremediation potential is imperative to improve the use of these approaches for the sustainable and cost-effective remediation of PAHs and heavy metals co-contamination in the near future.
Collapse
Affiliation(s)
- Mukhtiar Ali
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Song
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Da Ding
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, China
| | - Qing Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Zhuanxia Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiwen Tang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
6
|
Relationship between Polycyclic Aromatic Hydrocarbons in Sediments and Invertebrates of Natural and Artificial Stormwater Retention Ponds. WATER 2020. [DOI: 10.3390/w12072020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sediments and invertebrates were sampled from 9 stormwater retention ponds (SWRPs) and 11 natural, shallow lakes in Denmark. Samples were analyzed for 13 polycyclic aromatic hydrocarbons (PAHs). The SWRPs received urban and highway runoff from various types of drainage areas and the lakes were located in areas of various land uses. Comparing PAHs in the sediments of the SWRPs and the lakes, it was found that levels of total PAH were similar in the two aquatic systems, with median values of 0.94 and 0.63 mg·(kg·DM)−1 in sediments of SWRPs and lakes, respectively. However, the SWRP sediments tended to have higher concentrations of high-molecular-weight PAHs than the lakes. A similar pattern was seen for PAHs accumulated in invertebrates where the median of total PAH was 2.8 and 2.1 mg·(kg·DM)−1 for SWRPs and lakes, respectively. Principal component analysis on the PAH distribution in the sediments and invertebrates showed that ponds receiving highway runoff clustered with lakes in forests and farmland. The same was the case for some of the ponds receiving runoff from residential areas. Overall, results showed that sediment PAH levels in all SWRPs receiving runoff from highways were similar to the levels found in some of the investigated natural, shallow lakes, as were the sediment PAH levels from some of the residential SWRPs. Furthermore, there was no systematic trend that one type of water body exceeded environmental quality standards (EQS) values more often than others. Together this indicates that at least some SWRPs can sustain an invertebrate ecosystem without the organisms experiencing higher bioaccumulation of PAHs then what is the case in shallow lakes of the same region.
Collapse
|
7
|
Zhu X, Chatain V, Gautier M, Blanc-Biscarat D, Delolme C, Dumont N, Aubin JB, Lipeme Kouyi G. Combination of Lagrangian Discrete Phase Model and sediment physico-chemical characteristics for the prediction of the distribution of trace metal contamination in a stormwater detention basin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 698:134263. [PMID: 31505363 DOI: 10.1016/j.scitotenv.2019.134263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/29/2019] [Accepted: 09/02/2019] [Indexed: 06/10/2023]
Abstract
Elevated trace metal concentrations in sediments pose a major problem for the management of stormwater detention basins. These basins provide a nature-based solution to remove particulate pollutants through settling, but the resuspension of these contaminated deposits may impact the quality of both surface and groundwater. A better understanding of trace metal distribution will help to improve basin design and sediment management. This study aims to predict the distribution of trace metal contamination in a stormwater detention basin through (i) investigation of the correlation between metal content in sediments and their settling velocity, and (ii) the coupling of such correlation with a Lagrangian Discrete Phase Model (LDPM). The correlation between Fe, Cr, Cu, Ni, Pb contents and the settling velocity is firstly investigated, based on the sediments collected from 6 sites (inlet and 5 traps at the bottom of a detention basin situated in Chassieu, France) during 5 campaigns in 2017. Results show that Fe is strongly correlated to settling velocity and can be considered as a good indicator of trace metal contents. The derived correlation is then combined with a LDPM for the prediction of trace metal distribution, producing results consistent with in situ measurements. The proposed methodology can be applied for other stormwater basins (dry or wet). As described in this article, the interactions between hydrodynamics and sediment physico-chemical characteristics is crucial for the design and management of stormwater detention basins, allowing managers to target the highest contaminated sediments.
Collapse
Affiliation(s)
- Xiaoxiao Zhu
- Univ Lyon, INSA Lyon, DEEP, F-69621 Villeurbanne Cedex, France.
| | - Vincent Chatain
- Univ Lyon, INSA Lyon, DEEP, F-69621 Villeurbanne Cedex, France
| | - Mathieu Gautier
- Univ Lyon, INSA Lyon, DEEP, F-69621 Villeurbanne Cedex, France
| | | | - Cécile Delolme
- Univ Lyon, INSA Lyon, DEEP, F-69621 Villeurbanne Cedex, France
| | - Nathalie Dumont
- Univ Lyon, INSA Lyon, DEEP, F-69621 Villeurbanne Cedex, France
| | | | | |
Collapse
|
8
|
Scimeca M, Bischetti S, Lamsira HK, Bonfiglio R, Bonanno E. Energy Dispersive X-ray (EDX) microanalysis: A powerful tool in biomedical research and diagnosis. Eur J Histochem 2018; 62:2841. [PMID: 29569878 PMCID: PMC5907194 DOI: 10.4081/ejh.2018.2841] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/15/2018] [Accepted: 01/17/2018] [Indexed: 02/06/2023] Open
Abstract
The Energy Dispersive X-ray (EDX) microanalysis is a technique of elemental analysis associated to electron microscopy based on the generation of characteristic Xrays that reveals the presence of elements present in the specimens. The EDX microanalysis is used in different biomedical fields by many researchers and clinicians. Nevertheless, most of the scientific community is not fully aware of its possible applications. The spectrum of EDX microanalysis contains both semi-qualitative and semi-quantitative information. EDX technique is made useful in the study of drugs, such as in the study of drugs delivery in which the EDX is an important tool to detect nanoparticles (generally, used to improve the therapeutic performance of some chemotherapeutic agents). EDX is also used in the study of environmental pollution and in the characterization of mineral bioaccumulated in the tissues. In conclusion, the EDX can be considered as a useful tool in all works that require element determination, endogenous or exogenous, in the tissue, cell or any other sample.
Collapse
Affiliation(s)
- Manuel Scimeca
- University of Rome "Tor Vergata", Department of Biomedicine and Prevention.
| | | | | | | | | |
Collapse
|
9
|
Wang Q, Zhang Q, Dzakpasu M, Lian B, Wu Y, Wang XC. Development of an indicator for characterizing particle size distribution and quality of stormwater runoff. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:7991-8001. [PMID: 29302912 DOI: 10.1007/s11356-017-1074-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 12/18/2017] [Indexed: 06/07/2023]
Abstract
Stormwater particles washed from road-deposited sediments (RDS) are traditionally characterized as either turbidity or total suspended solids (TSS). Although these parameters are influenced by particle sizes, neither of them characterizes the particle size distribution (PSD), which is of great importance in pollutant entrainment and treatment performance. Therefore, the ratio of turbidity to TSS (Tur/TSS) is proposed and validated as a potential surrogate for the bulk PSD and quality of stormwater runoff. The results show an increasing trend of Tur/TSS with finer sizes of both RDS and stormwater runoff. Taking heavy metals (HMs, including Cu, Pb, Zn, Cr, and Ni) as typical pollutants in stormwater runoff, the concentrations (mg/kg) were found to vary significantly during rainfall events and tended to increase significantly with Tur/TSS. Therefore, Tur/TSS is a valid parameter to characterize the PSD and quality of stormwater. The high negative correlations between Tur/TSS and rainfall intensity demonstrate that stormwater with higher Tur/TSS generates under low intensity and, thus, characterizes small volume, finer sizes, weak settleability, greater mobility, and bioavailability. Conversely, stormwater with lower Tur/TSS generates under high intensity and, thus, characterizes large volume, coarser sizes, good settleability, low mobility, and bioavailability. These results highlight the need to control stormwater with high Tur/TSS. Moreover, Tur/TSS can aid the selection of stormwater control measures with appropriate detention storage, pollution loading, and removal effectiveness of particles.
Collapse
Affiliation(s)
- Qian Wang
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Qionghua Zhang
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an, 710055, China
| | - Mawuli Dzakpasu
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an, 710055, China
| | - Bin Lian
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yaketon Wu
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Xiaochang C Wang
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an, 710055, China.
| |
Collapse
|
10
|
Abuhelou F, Mansuy-Huault L, Lorgeoux C, Catteloin D, Collin V, Bauer A, Kanbar HJ, Gley R, Manceau L, Thomas F, Montargès-Pelletier E. Suspended particulate matter collection methods influence the quantification of polycyclic aromatic compounds in the river system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:22717-22729. [PMID: 28815369 DOI: 10.1007/s11356-017-9840-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/26/2017] [Indexed: 06/07/2023]
Abstract
In this study, we compared the influence of two different collection methods, filtration (FT) and continuous flow field centrifugation (CFC), on the concentration and the distribution of polycyclic aromatic compounds (PACs) in suspended particulate matter (SPM) occurring in river waters. SPM samples were collected simultaneously with FT and CFC from a river during six sampling campaigns over 2 years, covering different hydrological contexts. SPM samples were analyzed to determine the concentration of PACs including 16 polycyclic aromatic hydrocarbons (PAHs), 11 oxygenated PACs (O-PACs), and 5 nitrogen PACs (N-PACs). Results showed significant differences between the two separation methods. In half of the sampling campaigns, PAC concentrations differed from a factor 2 to 30 comparing FT and CFC-collected SPMs. The PAC distributions were also affected by the separation method. FT-collected SPM were enriched in 2-3 ring PACs whereas CFC-collected SPM had PAC distributions dominated by medium to high molecular weight compounds typical of combustion processes. This could be explained by distinct cut-off threshold of the two separation methods and strongly suggested the retention of colloidal and/or fine matter on glass-fiber filters particularly enriched in low molecular PACs. These differences between FT and CFC were not systematic but rather enhanced by high water flow rates.
Collapse
Affiliation(s)
- Fayez Abuhelou
- Université de Lorraine, CNRS, LTER Zone Atelier Moselle, LIEC (Laboratoire Interdisciplinaire des Environnements Continentaux), UMR7360, 54500, Vandœuvre-lès-Nancy, France
| | - Laurence Mansuy-Huault
- Université de Lorraine, CNRS, LTER Zone Atelier Moselle, LIEC (Laboratoire Interdisciplinaire des Environnements Continentaux), UMR7360, 54500, Vandœuvre-lès-Nancy, France.
| | - Catherine Lorgeoux
- Université de Lorraine, CNRS, CREGU, GeoRessources lab, UMR7359, 54506, Vandœuvre-lès-Nancy, France
| | - Delphine Catteloin
- Université de Lorraine, CNRS, CREGU, GeoRessources lab, UMR7359, 54506, Vandœuvre-lès-Nancy, France
| | - Valéry Collin
- Université de Lorraine, CNRS, LTER Zone Atelier Moselle, LIEC (Laboratoire Interdisciplinaire des Environnements Continentaux), UMR7360, 54500, Vandœuvre-lès-Nancy, France
| | - Allan Bauer
- Université de Lorraine, CNRS, LTER Zone Atelier Moselle, LIEC (Laboratoire Interdisciplinaire des Environnements Continentaux), UMR7360, 54500, Vandœuvre-lès-Nancy, France
| | - Hussein Jaafar Kanbar
- Université de Lorraine, CNRS, LTER Zone Atelier Moselle, LIEC (Laboratoire Interdisciplinaire des Environnements Continentaux), UMR7360, 54500, Vandœuvre-lès-Nancy, France
| | - Renaud Gley
- Université de Lorraine, CNRS, LTER Zone Atelier Moselle, LIEC (Laboratoire Interdisciplinaire des Environnements Continentaux), UMR7360, 54500, Vandœuvre-lès-Nancy, France
| | - Luc Manceau
- Université de Lorraine, LOTerr (Laboratoire d'Observation des Territoires), UFR SHS-Metz, Ile du Saulcy, 57045, Metz Cedex 01, France
| | - Fabien Thomas
- Université de Lorraine, CNRS, LTER Zone Atelier Moselle, LIEC (Laboratoire Interdisciplinaire des Environnements Continentaux), UMR7360, 54500, Vandœuvre-lès-Nancy, France
| | - Emmanuelle Montargès-Pelletier
- Université de Lorraine, CNRS, LTER Zone Atelier Moselle, LIEC (Laboratoire Interdisciplinaire des Environnements Continentaux), UMR7360, 54500, Vandœuvre-lès-Nancy, France
| |
Collapse
|
11
|
Liu Z, Pan S, Sun Z, Ma R, Chen L, Wang Y, Wang S. Heavy metal spatial variability and historical changes in the Yangtze River estuary and North Jiangsu tidal flat. MARINE POLLUTION BULLETIN 2015; 98:115-129. [PMID: 26159727 DOI: 10.1016/j.marpolbul.2015.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 06/27/2015] [Accepted: 07/03/2015] [Indexed: 06/04/2023]
Abstract
This research focuses on the spatial and temporal patterns of heavy metals from the Yangtze River estuary and the tidal flat of north Jiangsu. Most heavy metals in the surficial sediments after normalization to Ti decreased seaward at the Yangtze River estuary. The core records showed that the heavy metal variations in the last 50years were primarily linked to natural weathering input of trace elements. However, significant heavy metal pollution (mainly Ni, Pb, Cd, Cu and As) were in the two study areas, with anthropogenic inventories accounting for 23-40% percent of the total pollution. Sequential extraction showed that Pb, Cu and Ni were present largely in the non-residual fraction, which indicated the potential bioavailability in the study areas. The SEM/EDS together with sequential extraction facilitated the easy tracing of the origin/sources of heavy metals in a simple way in the estuary and the tidal flat.
Collapse
Affiliation(s)
- Zhiyong Liu
- School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Jiangsu 215123, China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Jiangsu 215123, China.
| | - Shaoming Pan
- The Key Lab of Ministry of Education of Coast and Island Development, Nanjing University, Nanjing 210093, China
| | - Zhuyou Sun
- The Key Lab of Ministry of Education of Coast and Island Development, Nanjing University, Nanjing 210093, China; Institute of Marine Geology, East China Mineral Exploration and Development Bureau, Nanjing 210007, China
| | - Renfeng Ma
- Coastal Resources and Environment Research Center Ningbo University, Ningbo 315211, China
| | - Lanhua Chen
- School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Jiangsu 215123, China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Jiangsu 215123, China
| | - Yanlong Wang
- School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Jiangsu 215123, China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Jiangsu 215123, China
| | - Shuao Wang
- School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Jiangsu 215123, China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Jiangsu 215123, China
| |
Collapse
|