1
|
Hu Q, Wang R, Gan Y, Zhang Y, Bao H, Zhang L, Qu G, Wang T. Chlorinated disinfection by-product formation during DOM removal by discharge plasma: Insights into DOC structure alterations. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121183] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
2
|
The Role of Catalytic Ozonation Processes on the Elimination of DBPs and Their Precursors in Drinking Water Treatment. Catalysts 2021. [DOI: 10.3390/catal11040521] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Formation of disinfection byproducts (DBPs) in drinking water treatment (DWT) as a result of pathogen removal has always been an issue of special attention in the preparation of safe water. DBPs are formed by the action of oxidant-disinfectant chemicals, mainly chlorine derivatives (chlorine, hypochlorous acid, chloramines, etc.), that react with natural organic matter (NOM), mainly humic substances. DBPs are usually refractory to oxidation, mainly due to the presence of halogen compounds so that advanced oxidation processes (AOPs) are a recommended option to deal with their removal. In this work, the application of catalytic ozonation processes (with and without the simultaneous presence of radiation), moderately recent AOPs, for the removal of humic substances (NOM), also called DBPs precursors, and DBPs themselves is reviewed. First, a short history about the use of disinfectants in DWT, DBPs formation discovery and alternative oxidants used is presented. Then, sections are dedicated to conventional AOPs applied to remove DBPs and their precursors to finalize with the description of principal research achievements found in the literature about application of catalytic ozonation processes. In this sense, aspects such as operating conditions, reactors used, radiation sources applied in their case, kinetics and mechanisms are reviewed.
Collapse
|
3
|
Asgari G, Salari M. Optimized synthesis of carbon-doped nano-MgO and its performance study in catalyzed ozonation of humic acid in aqueous solutions: Modeling based on response surface methodology. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 239:198-210. [PMID: 30901698 DOI: 10.1016/j.jenvman.2019.03.055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 05/27/2023]
Abstract
This research study focused on the optimization of the synthesis of carbon-doped nano-MgO (C-MgO) and the investigation of its catalytic capacity in a catalytic ozonation process (COP) for the removal of humic acid (HA). Characterization analyses, including SEM, EDX, XRD, BET, and photoluminescence test showed that the C-MgO was successfully synthesized. L8 orthogonal arrays according to the Taguchi methodology optimized the synthesis of the C-MgO as follows: sucrose to MgO ratio = 0.5, sonication time = 15 min, calcination temperature = 400 °C and pH = 10.5. A central composite design based on response surface methodology was employed to optimize and model the COP in the removal of HA. A quadratic polynomial model with p-value < 0.0001 and R2 = 0.9988 showed a better fit to experimental responses. The optimum levels of the studied parameters in the COP based on the predictive model were obtained as follows: pH = 9.5, reaction time = 12 min, catalyst dose = 1 g/L, and HA concentration = 5 mg/L. The HA mineralization was determined to be 86.8% at the 100 min reaction time. Additionally, the COP exhibited 34% synergistic effect and the kinetic rate constant of 0.1898 min-1 in the HA removal. The presence of tert-butanol, methanol, salicylic acid, and some anions did not significantly affect the removal of the HA in the COP. From a practical view, this report indicated that the C-MgO catalyst could be potentially applied in the COP for the treatment of the water having high concentrations of HA substances.
Collapse
Affiliation(s)
- Ghorban Asgari
- Social Determinants of Health Research Center (SDHRC), Department of Environmental Health Engineering, School of Public Health, Hamadan University of Medical Science, Hamadan, Iran
| | - Mehdi Salari
- Social Determinants of Health Research Center (SDHRC), Department of Environmental Health Engineering, School of Public Health, Hamadan University of Medical Science, Hamadan, Iran.
| |
Collapse
|
4
|
Fuentes I, Rodriguez JL, Tiznado H, Romo-Herrera JM, Chairez I, Poznyak T. Terephthalic acid decomposition by photocatalytic ozonation with V xO y/ZnO under different UV-A LEDs distributions. CHEM ENG COMMUN 2019. [DOI: 10.1080/00986445.2019.1581617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Iliana Fuentes
- Lab. de Ing. Química Ambiental, ESIQIE—Instituto Politécnico Nacional, Zacatenco, México, México
- UPIBI—Instituto Politécnico Nacional, Ticomán, Unidad Profesional Interdisciplinaria de Biotecnología, México, México
| | - Julia L. Rodriguez
- Lab. de Ing. Química Ambiental, ESIQIE—Instituto Politécnico Nacional, Zacatenco, México, México
| | - Hugo Tiznado
- Centro de Nanociencias y Nanotecnología CNyN Universidad Nacional Autónoma de México, Carretera Tijuana a Ensenada, Ensenada, Baja California, México
| | - José M. Romo-Herrera
- Centro de Nanociencias y Nanotecnología CNyN Universidad Nacional Autónoma de México, Carretera Tijuana a Ensenada, Ensenada, Baja California, México
| | - Isaac Chairez
- UPIBI—Instituto Politécnico Nacional, Ticomán, Unidad Profesional Interdisciplinaria de Biotecnología, México, México
| | - Tatyana Poznyak
- Lab. de Ing. Química Ambiental, ESIQIE—Instituto Politécnico Nacional, Zacatenco, México, México
| |
Collapse
|
5
|
Zhang H, Wang J. Catalytic Ozonation of Humic Acids by Ce–Ti Composite Catalysts. KINETICS AND CATALYSIS 2018. [DOI: 10.1134/s0023158417060167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Studziński W, Gackowska A, Przybyłek M, Gaca J. Studies on the formation of formaldehyde during 2-ethylhexyl 4-(dimethylamino)benzoate demethylation in the presence of reactive oxygen and chlorine species. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:8049-8061. [PMID: 28133704 PMCID: PMC5384958 DOI: 10.1007/s11356-017-8477-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 01/18/2017] [Indexed: 06/06/2023]
Abstract
In order to protect the skin from UV radiation, personal care products (PCPS) often contain chemical UV-filters. These compounds can enter the environment causing serious consequences on the water ecosystems. The aim of this study was to examine, the effect of different factors, such as UV light, the presence of NaOCl and H2O2 on the formaldehyde formation during popular UV filter, 2-ethylhexyl 4-(dimethylamino)benzoate (ODPABA) demethylation. The concentration of formaldehyde was determined by VIS spectrophotometry after derivatization. The reaction mixtures were qualitatively analyzed using GC/MS chromatography. The highest concentration of formaldehyde was observed in the case of ODPABA/H2O2/UV reaction mixture. In order to describe two types of demethylation mechanisms, namely, radical and ionic, the experimental results were enriched with Fukui function analysis and thermodynamic calculations. In the case of non-irradiated system containing ODPABA and NaOCl, demethylation reaction probably proceeds via ionic mechanism. As it was established, amino nitrogen atom in the ODPABA molecule is the most susceptible site for the HOCl electrophilic attack, which is the first step of ionic demethylation mechanism. In the case of irradiated mixtures, the reaction is probably radical in nature. The results of thermodynamic calculations showed that abstraction of the hydrogen from N(CH3)2 group is more probable than from 2-ethylhexyl moiety, which indicates higher susceptibility of N(CH3)2 to the oxidation.
Collapse
Affiliation(s)
- Waldemar Studziński
- Faculty of Chemical Technology and Engineering, University of Technology and Life Sciences, Seminaryjna 3, 85-326, Bydgoszcz, Poland
| | - Alicja Gackowska
- Faculty of Chemical Technology and Engineering, University of Technology and Life Sciences, Seminaryjna 3, 85-326, Bydgoszcz, Poland
| | - Maciej Przybyłek
- Department of Physical Chemistry, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Kurpińskiego 5, 85-950, Bydgoszcz, Poland.
| | - Jerzy Gaca
- Faculty of Chemical Technology and Engineering, University of Technology and Life Sciences, Seminaryjna 3, 85-326, Bydgoszcz, Poland
| |
Collapse
|
7
|
Papageorgiou A, Stylianou SK, Kaffes P, Zouboulis AI, Voutsa D. Effects of ozonation pretreatment on natural organic matter and wastewater derived organic matter - Possible implications on the formation of ozonation by-products. CHEMOSPHERE 2017; 170:33-40. [PMID: 27974269 DOI: 10.1016/j.chemosphere.2016.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/30/2016] [Accepted: 12/02/2016] [Indexed: 06/06/2023]
Abstract
The aim of this study was to investigate possible implications of natural and wastewater derived organic matter in river water that is subsequently used following treatment for drinking purposes. River water was subjected to lab-scale ozonation experiments under different ozone doses (0.1, 0.4, 0.8, 1.0 and 2.0 mgO3/mgC) and contact times (1, 3, 5, 8 and 10 min). Mixtures of river water with humic acids or wastewaters (sewage wastewater and secondary effluents) at different proportions were also ozonated. Dissolved organic carbon and biodegradable dissolved organic carbon concentrations as well as spectroscopic characteristics (UV absorbance and fluorescence intensities) of different types of dissolved organic matter and possible changes due to the ozonation treatment are presented. River water, humic substances and wastewater exhibited distinct spectroscopic characteristics that could serve for pollution source tracing. Wastewater impacted surface water results in higher formation of carbonyl compounds. However, the formation yield (μg/mgC) of wastewaters was lower than that of surface water possibly due to different composition of wastewater derived organic matter and the presence of scavengers, which may limit the oxidative efficiency of ozone.
Collapse
Affiliation(s)
- Alexandros Papageorgiou
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University, 54 124 Thessaloniki, Greece.
| | - Stylianos K Stylianou
- Division of Chemical Technology, Department of Chemistry, Aristotle University, 54 124 Thessaloniki, Greece
| | - Pavlos Kaffes
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University, 54 124 Thessaloniki, Greece
| | - Anastasios I Zouboulis
- Division of Chemical Technology, Department of Chemistry, Aristotle University, 54 124 Thessaloniki, Greece
| | - Dimitra Voutsa
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University, 54 124 Thessaloniki, Greece
| |
Collapse
|
8
|
Turkay O, Inan H, Dimoglo A. Experimental and theoretical study on catalytic ozonation of humic acid by ZnO catalyst. SEP SCI TECHNOL 2016. [DOI: 10.1080/01496395.2016.1252776] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Ozge Turkay
- Department of Environmental Engineering, Faculty of Engineering, Gebze Technical University, Kocaeli, Turkey
| | - Hatice Inan
- Department of Environmental Engineering, Faculty of Engineering, Gebze Technical University, Kocaeli, Turkey
| | - Anatoli Dimoglo
- Department of Environmental Engineering, Faculty of Engineering, Gebze Technical University, Kocaeli, Turkey
| |
Collapse
|
9
|
Shah S, Hao C. Density functional theory study of direct and indirect photodegradation mechanisms of sulfameter. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:19921-19930. [PMID: 27424205 DOI: 10.1007/s11356-016-6956-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 05/20/2016] [Indexed: 06/06/2023]
Abstract
Sulfonamide antibiotics (SAs) have been observed to undergo direct and indirect photodegradation in natural water environments. In this study, the density functional theory (DFT) method was employed for the study of direct and indirect photodegradation mechanisms of sulfameter (SME) with excited triplet states of dissolved organic matter ((3)DOM(*)) and metal ions. SME was adopted as a representative of SAs, and SO2 extrusion product was obtained with different energy paths in the triplet-sensitized photodegradation of the neutral (SME(0)) and the anionic (SME(-)) form of SME. The selected divalent metal ions (Ca(2+), Mg(2+), and Zn(2+)) promoted the triplet-sensitized photodegradation of SME(0) but showed an inhibitory effect in triplet-sensitized photodegradation of SME(-). The triplet-sensitized indirect photodegradation mechanism of SME was investigated with the three DOM analogues, i.e., 2-acetonaphthone (2-AN), fluorenone (FN), and thioxanthone (TN). Results indicated that the selected DOM analogues are highly responsible for the photodegradation via attacking on amine moiety of SME. According to the natural bond orbital (NBO) analysis, the triplet-sensitized photodegradation mechanism of SME(0) with 2-AN, FN, and TN was H-transfer, and the SME(-) was proton plus electron transfer with these DOM analogues.
Collapse
Affiliation(s)
- Shaheen Shah
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
- Department of Chemistry, Karakorum International University, Gilgit-Balitstan, 15100, Pakistan
| | - Ce Hao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
10
|
Wang T, Qu G, Ren J, Yan Q, Sun Q, Liang D, Hu S. Evaluation of the potentials of humic acid removal in water by gas phase surface discharge plasma. WATER RESEARCH 2016; 89:28-38. [PMID: 26624519 DOI: 10.1016/j.watres.2015.11.039] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 11/07/2015] [Accepted: 11/15/2015] [Indexed: 06/05/2023]
Abstract
Degradation of humic acid (HA), a predominant type of natural organic matter in ground water and surface waters, was conducted using a gas phase surface discharge plasma system. HA standard and two surface waters (Wetland, and Weihe River) were selected as the targets. The experimental results showed that about 90.9% of standard HA was smoothly removed within 40 min's discharge plasma treatment at discharge voltage 23.0 kV, and the removal process fitted the first-order kinetic model. Roles of some active species in HA removal were studied by evaluating the effects of solution pH and OH radical scavenger; and the results presented that O3 and OH radical played significant roles in HA removal. Scanning electron microscope (SEM) and FTIR analysis showed that HA surface topography and molecular structure were changed during discharge plasma process. The mineralization of HA was analyzed by UV-Vis spectrum, dissolved organic carbon (DOC), specific UV absorbance (SUVA), UV absorption ratios, and excitation-emission matrix (EEM) fluorescence. The formation of disinfection by-products during HA sample chlorination was also identified, and CHCl3 was detected as the main disinfection by-product, but discharge plasma treatment could suppress its formation to a certain extent. In addition, approximately 82.3% and 67.9% of UV254 were removed for the Weihe River water and the Wetland water after 40 min of discharge plasma treatment.
Collapse
Affiliation(s)
- Tiecheng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China.
| | - Guangzhou Qu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Jingyu Ren
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Qiuhe Yan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Qiuhong Sun
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Dongli Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Shibin Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| |
Collapse
|
11
|
Maleki A, Safari M, Shahmoradi B, Zandsalimi Y, Daraei H, Gharibi F. Photocatalytic degradation of humic substances in aqueous solution using Cu-doped ZnO nanoparticles under natural sunlight irradiation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:16875-16880. [PMID: 26104905 DOI: 10.1007/s11356-015-4915-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 06/16/2015] [Indexed: 06/04/2023]
Abstract
In this study, Cu-doped ZnO nanoparticles were investigated as an efficient synthesized catalyst for photodegradation of humic substances in aqueous solution under natural sunlight irradiation. Cu-doped ZnO nanocatalyst was prepared through mild hydrothermal method and was characterized using FT-IR, powder XRD and SEM techniques. The effect of operating parameters such as doping ratio, initial pH, catalyst dosage, initial concentrations of humic substances and sunlight illuminance were studied on humic substances degradation efficiency. The results of characterization analyses of samples confirmed the proper synthesis of Cu-doped ZnO nanocatalyst. The experimental results indicated the highest degradation efficiency of HS (99.2%) observed using 1.5% Cu-doped ZnO nanoparticles at reaction time of 120 min. Photocatalytic degradation efficiency of HS in a neutral and acidic pH was much higher than that at alkaline pH. Photocatalytic degradation of HS was enhanced with increasing the catalyst dosage and sunlight illuminance, while increasing the initial HS concentration led to decrease in the degradation efficiency of HS. Conclusively, Cu-doped ZnO nanoparticles can be used as a promising and efficient catalyst for degradation of HS under natural sunlight irradiation.
Collapse
Affiliation(s)
- Afshin Maleki
- Environmental Health Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mahdi Safari
- Environmental Health Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Behzad Shahmoradi
- Environmental Health Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Yahya Zandsalimi
- Environmental Health Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Hiua Daraei
- Environmental Health Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Fardin Gharibi
- Research Deputy, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|