1
|
Cavalieri S, Gambadoro S. Digital Twin of a Water Supply System Using the Asset Administration Shell. SENSORS (BASEL, SWITZERLAND) 2024; 24:1360. [PMID: 38474896 DOI: 10.3390/s24051360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/17/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024]
Abstract
The concept of digital twins is one of the fundamental pillars of Industry 4.0. Digital twin allows the realization of a virtual model of a real system, enhancing the relevant performance (e.g., in terms of production rate, risk prevention, energy saving, and maintenance operation). Current literature presents many contributions pointing out the advantages that may be achieved by the definition of a digital twin of a water supply system. The Reference Architecture Model for Industry 4.0 introduces the concept of the Asset Administration Shell for the digital representation of components within the Industry 4.0 ecosystem. Several proposals are currently available in the literature considering the Asset Administration Shell for the realization of a digital twin of real systems. To the best of the authors' knowledge, at the moment, the adoption of Asset Administration Shell for the digital representation of a water supply system is not present in the current literature. For this reason, the aim of this paper is to present a methodological approach for developing a digital twin of a water supply system using the Asset Administration Shell metamodel. The paper will describe the approach proposed by the author and the relevant model based on Asset Administration Shell, pointing out that its implementation is freely available on the GitHub platform.
Collapse
Affiliation(s)
- Salvatore Cavalieri
- Department of Electrical Electronic and Computer Engineering, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Salvatore Gambadoro
- Department of Electrical Electronic and Computer Engineering, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| |
Collapse
|
2
|
Burbery L, Abraham P, Sutton R, Close M. Evaluation of pollution swapping phenomena from a woodchip denitrification wall targetting removal of nitrate in a shallow gravel aquifer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153194. [PMID: 35063516 DOI: 10.1016/j.scitotenv.2022.153194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/17/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Woodchip denitrification walls offer a potentially useful way for passive in situ remediation of groundwater nitrate pollution, yet because of the low redox state they induce on the subsurface environment there is an inherent risk they can promote pollution-swapping phenomena. We evaluated pollution-swapping phenomena associated with the first two operational years of a woodchip denitrification wall that is being trialled in a fast-flowing shallow gravel aquifer of quartzo-feldspathic mineralogy. Following burial of woodchip below the water table there was immediate export of dissolved organic carbon (DOC), phosphorus and ammonium into the groundwater. Under the low redox state sustained by labile DOC, the wall initially provided 100% nitrate removal at the expense of acute and localised pollution that occurred in the form of a plume of dissolved iron, manganese and arsenic that were mobilised from the aquifer sediments, in conjunction with methane gas emission. Within one year however, the reactivity of the woodchip wall subsided to support a steady state condition in which nitrate reduction was the terminal electron acceptor process with no measurable methane emission. Having initially functioned as a sink for the potent greenhouse gas nitrous oxide (N2O), evidence is that the woodchip wall is now exporting N2O, albeit at rates less than those associated with productive agricultural land.
Collapse
Affiliation(s)
- Lee Burbery
- Institute of Environmental Science and Research Ltd. (ESR), Christchurch, New Zealand.
| | - Phil Abraham
- Institute of Environmental Science and Research Ltd. (ESR), Christchurch, New Zealand
| | - Richard Sutton
- Institute of Environmental Science and Research Ltd. (ESR), Christchurch, New Zealand
| | - Murray Close
- Institute of Environmental Science and Research Ltd. (ESR), Christchurch, New Zealand
| |
Collapse
|
3
|
Sanchez Bustamante-Bailon AP, Margenot A, Cooke RAC, Christianson LE. Phosphorus removal in denitrifying woodchip bioreactors varies by wood type and water chemistry. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:6733-6743. [PMID: 34460085 PMCID: PMC8763764 DOI: 10.1007/s11356-021-15835-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Denitrifying woodchip bioreactors are a practical nitrogen (N) mitigation technology but evaluating the potential for bioreactor phosphorus (P) removal is highly relevant given that (1) agricultural runoff often contains N and P, (2) very low P concentrations cause eutrophication, and (3) there are few options for removing dissolved P once it is in runoff. A series of batch tests evaluated P removal by woodchips that naturally contained a range of metals known to sorb P and then three design and environmental factors (water matrix, particle size, initial dissolved reactive phosphorus (DRP) concentration). Woodchips with the highest aluminum and iron content provided the most dissolved P removal (13±2.5 mg DRP removed/kg woodchip). However, poplar woodchips, which had low metals content, provided the second highest removal (12±0.4 mg/kg) when they were tested with P-dosed river water which had a relatively complex water matrix. Chemical P sorption due to woodchip elements may be possible, but it is likely one of a variety of P removal mechanisms in real-world bioreactor settings. Scaling the results indicated bioreactors could remove 0.40 to 13 g DRP/ha. Woodchip bioreactor dissolved P removal will likely be small in magnitude, but any such contribution is an added-value benefit of this denitrifying technology.
Collapse
Affiliation(s)
| | - Andrew Margenot
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, AW-101 Turner Hall, 1103 S. Goodwin Ave, Urbana, IL, 61801, USA
| | - Richard A C Cooke
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, 1304 W. Pennsylvania Ave, Urbana, IL, 61801, USA
| | - Laura E Christianson
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, AW-101 Turner Hall, 1103 S. Goodwin Ave, Urbana, IL, 61801, USA.
| |
Collapse
|
4
|
Chen YZ, Zhang LJ, Ding LY, Zhang YY, Wang XS, Qiao XJ, Pan BZ, Wang ZW, Xu N, Tao HC. Sustainable treatment of nitrate-containing wastewater by an autotrophic hydrogen-oxidizing bacterium. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2022; 9:100146. [PMID: 36157854 PMCID: PMC9487994 DOI: 10.1016/j.ese.2022.100146] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 05/15/2023]
Abstract
Bacteria are key denitrifiers in the reduction of nitrate (NO3 --N), which is a contaminant in wastewater treatment plants (WWTPs). They can also produce carbon dioxide (CO2) and nitrous oxide (N2O). In this study, the autotrophic hydrogen-oxidizing bacterium Rhodoblastus sp. TH20 was isolated for sustainable treatment of NO3 --N in wastewater. Efficient removal of NO3 --N and recovery of biomass nitrogen were achieved. Up to 99% of NO3 --N was removed without accumulation of nitrite and N2O, consuming CO2 of 3.25 mol for each mole of NO3 --N removed. The overall removal rate of NO3 --N reached 1.1 mg L-1 h-1 with a biomass content of approximately 0.71 g L-1 within 72 h. TH20 participated in NO3 --N assimilation and aerobic denitrification. Results from 15N-labeled-nitrate test indicated that removed NO3 --N was assimilated into organic nitrogen, showing an assimilation efficiency of 58%. Seventeen amino acids were detected, accounting for 43% of the biomass. Nitrogen loss through aerobic denitrification was only approximately 42% of total nitrogen. This study suggests that TH20 can be applied in WWTP facilities for water purification and production of valuable biomass to mitigate CO2 and N2O emissions.
Collapse
Affiliation(s)
- Yi-Zhen Chen
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, Guangdong, China
| | - Li-Juan Zhang
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, Guangdong, China
- Corresponding author.
| | - Ling-Yun Ding
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, Guangdong, China
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118, Guangdong, China
| | - Yao-Yu Zhang
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, Guangdong, China
| | - Xi-Song Wang
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, Guangdong, China
| | - Xue-Jiao Qiao
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, Guangdong, China
| | - Bao-Zhu Pan
- State Key Laboratory of Eco-hydraulic in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, 710048, Shaanxi, China
| | - Zhi-Wu Wang
- Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Manassas, 20147, Virginia, USA
| | - Nan Xu
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, Guangdong, China
| | - Hu-Chun Tao
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, Guangdong, China
- Corresponding author.
| |
Collapse
|
5
|
Mohajeri P, Smith CMS, Chau HW, Lehto N. ALLODUST augmented activated sludge single batch anaerobic reactor (AS-SBAnR) for high concentration nitrate removal from agricultural wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 752:141905. [PMID: 32892048 DOI: 10.1016/j.scitotenv.2020.141905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 06/11/2023]
Abstract
Nitrate is among the most widespread contaminants that threaten water bodies and waterways. Under favourable environmental conditions, high nitrate concentrations in water can contribute to eutrophication, thus presenting a high potential for risk to ecosystems and human health. Low-cost allophanic soil material and carbon-based bio-wastes have great potential to reduce nutrient concentrations from contaminated waters. This study investigated the mechanisms that underpin the reduction of nitrate concentrations and nitrous oxide (N2O) emission in the presence of novel developed media in an activated sludge process. A new operating approach, employing a newly developed media (ALLODUST), was evaluated for enhanced NO-3-N removal from agricultural wastewater. Two anaerobic-aerobic batch reactors were developed, where the coupled bottom aeration method was used for efficient agitation and aeration in the aerobic reactor. The reactor was run at high NO-3-N concentrations (110 mg L-1), under anoxic conditions at low- to long-term contact times (2, 12, and 22 h), while the aerobic period (clarification) was constant for all the experimental designs (2 h). ALLODUST retained its integrity and stability over the long-term operation. Low ALLODUST concentrations (5.95 g L-1) removed 87% of the NO-3-N from the wastewater within 12 h. Further exploration revealed that the same amount of the media was optimal for decreasing N2O emissions from the anaerobic activated sludge reactor by 80%.
Collapse
Affiliation(s)
- Parsa Mohajeri
- Department of Soil and Physical Sciences, Faculty of Agriculture and Life Sciences, Lincoln University, New Zealand.
| | - Carol M S Smith
- Department of Soil and Physical Sciences, Faculty of Agriculture and Life Sciences, Lincoln University, New Zealand
| | - Henry Wai Chau
- Department of Soil and Physical Sciences, Faculty of Agriculture and Life Sciences, Lincoln University, New Zealand
| | - Niklas Lehto
- Department of Soil and Physical Sciences, Faculty of Agriculture and Life Sciences, Lincoln University, New Zealand
| |
Collapse
|
6
|
Jiang Z, Wu J, Liu X, Yu H, Jiao C, Shen J, Pei Y. Facile synthesis of MgAl layered double hydroxides by a co-precipitation method for efficient nitrate removal from water: kinetics and mechanisms. NEW J CHEM 2021. [DOI: 10.1039/d1nj02035h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A series of MgAl-LDH as highly efficient adsorbents for removing low concentrations of NO3− were synthesized. The mechanism of NO3− removal has been comprehensively discussed in terms of its characterization, adsorption kinetics and thermodynamics.
Collapse
Affiliation(s)
- Zhuwu Jiang
- College of Ecological Environment and Urban Construction
- Fujian University of Technology
- Fuzhou
- China
- College of Civil Engineering
| | - Jiangnan Wu
- College of Ecological Environment and Urban Construction
- Fujian University of Technology
- Fuzhou
- China
| | - Xinru Liu
- College of Ecological Environment and Urban Construction
- Fujian University of Technology
- Fuzhou
- China
| | - Hai Yu
- College of Ecological Environment and Urban Construction
- Fujian University of Technology
- Fuzhou
- China
| | - Chengyuan Jiao
- College of Ecological Environment and Urban Construction
- Fujian University of Technology
- Fuzhou
- China
| | - Jyunhong Shen
- College of Ecological Environment and Urban Construction
- Fujian University of Technology
- Fuzhou
- China
| | - Yanyan Pei
- College of Ecological Environment and Urban Construction
- Fujian University of Technology
- Fuzhou
- China
| |
Collapse
|
7
|
Zhu L, Yu J, Van Dam B, Cao H, Pu Y, Shi W, Qin B. Optimized methods for diffusive greenhouse gas flux analyses in inland waters. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:25870-25876. [PMID: 31520385 DOI: 10.1007/s11356-019-06436-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
Inland waters are considered hotspots of greenhouse gas (GHG) emissions and have been extensively researched. Static chamber (STAT) and thin boundary layer (BLE) are two commonly used methods for analyzing diffusive GHG emissions from inland waters. However, the STAT method is often disturbed by GHG bubbles; meanwhile, many kinds of headspace gas are used in the BLE method, but the differences between their diffusive GHG emission analysis results are not understood. In this study, the chamber in the STAT method was modified to combat the disturbances from GHG bubbles, and the typically used gases for the BLE method, namely, pure nitrogen, air, and filtered air, were comparatively studied. Results demonstrated that the modified chamber could effectively prevent the invasion of GHG bubbles; it increased the success rate from 67 to 90% in the field test, with no obvious impacts on the results of the GHG emission analyses. The use of air and filtered air in the BLE method yielded the lower values of GHG emissions relative to pure nitrogen, and this finding was potentially attributed to the inhibition effects of the residual GHGs and high humidity in air and filtered air on the extraction of diffusive GHGs from the surface water. This study improved the commonly used methods for diffusive GHG emission analysis, and the current findings are beneficial to the study of GHG emissions from inland waters.
Collapse
Affiliation(s)
- Lin Zhu
- School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Jianghua Yu
- School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Bryce Van Dam
- Institute of Coastal Research, Helmholtz-Zentrum Geesthacht (HZG), 21502, Geesthacht, Germany
| | - Huayong Cao
- School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Yinyu Pu
- School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Wenqing Shi
- Center for Eco-Environment Research, Nanjing Hydraulic Research Institute, Nanjing, 210098, China.
| | - Boqiang Qin
- Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| |
Collapse
|
8
|
Rezvani F, Sarrafzadeh MH, Ebrahimi S, Oh HM. Nitrate removal from drinking water with a focus on biological methods: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:1124-1141. [PMID: 28567682 DOI: 10.1007/s11356-017-9185-0] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 05/02/2017] [Indexed: 06/07/2023]
Abstract
This article summarizes several developed and industrial technologies for nitrate removal from drinking water, including physicochemical and biological techniques, with a focus on autotrophic nitrate removal. Approaches are primarily classified into separation-based and elimination-based methods according to the fate of the nitrate in water treatment. Biological denitrification as a cost-effective and promising method of biological nitrate elimination is reviewed in terms of its removal process, applicability, efficiency, and associated disadvantages. The various pathways during biological nitrate removal, including assimilatory and dissimilatory nitrate reduction, are also explained. A comparative study was carried out to provide a better understanding of the advantages and disadvantages of autotrophic and heterotrophic denitrification. Sulfur-based and hydrogen-based denitrifications, which are the most common autotrophic processes of nitrate removal, are reviewed with the aim of presenting the salient features of hydrogenotrophic denitrification along with some drawbacks of the technology and research areas in which it could be used but currently is not. The application of algae-based water treatment is also introduced as a nature-inspired approach that may broaden future horizons of nitrate removal technology.
Collapse
Affiliation(s)
- Fariba Rezvani
- UNESCO Chair on Water Reuse, Biotechnology Group, School of Chemical Engineering, College of Engineering, University of Tehran, P.O. Box: 11155-4563, Tehran, Iran
| | - Mohammad-Hossein Sarrafzadeh
- UNESCO Chair on Water Reuse, Biotechnology Group, School of Chemical Engineering, College of Engineering, University of Tehran, P.O. Box: 11155-4563, Tehran, Iran.
| | - Sirous Ebrahimi
- Biotechnology Research Centre, Faculty of Chemical Engineering, Sahand University of Technology, Tabriz, Iran
| | - Hee-Mock Oh
- Cell Factory Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
9
|
Goeller BC, Febria CM, Harding JS, McIntosh AR. Thinking beyond the Bioreactor Box: Incorporating Stream Ecology into Edge-of-Field Nitrate Management. JOURNAL OF ENVIRONMENTAL QUALITY 2016; 45:866-872. [PMID: 27136152 DOI: 10.2134/jeq2015.06.0325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Around the world, artificially drained agricultural lands are significant sources of reactive nitrogen to stream ecosystems, creating substantial stream health problems. One management strategy is the deployment of denitrification enhancement tools. Here, we evaluate the factors affecting the potential of denitrifying bioreactors to improve stream health and ecosystem services. The performance of bioreactors and the structure and functioning of stream biotic communities are linked by environmental parameters like dissolved oxygen and nitrate-nitrogen concentrations, dissolved organic carbon availability, flow and temperature regimes, and fine sediment accumulations. However, evidence of bioreactors' ability to improve waterway health and ecosystem services is lacking. To improve the potential of bioreactors to enhance desirable stream ecosystem functioning, future assessments of field-scale bioreactors should evaluate the influences of bioreactor performance on ecological indicators such as primary production, organic matter processing, stream metabolism, and invertebrate and fish assemblage structure and function. These stream health impact assessments should be conducted at ecologically relevant spatial and temporal scales. Bioreactors have great potential to make significant contributions to improving water quality, stream health, and ecosystem services if they are tailored to site-specific conditions and implemented strategically with land-based and stream-based mitigation tools within watersheds. This will involve combining economic, logistical, and ecological information in their implementation.
Collapse
|