1
|
Mansee AH, Ebrahim AM, Koreish EA. Sustainable indigenous bio-mixture for restoration the soil point source pollution with special reference to chlorpyrifos. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:363. [PMID: 38478213 PMCID: PMC10937809 DOI: 10.1007/s10661-024-12494-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 02/24/2024] [Indexed: 03/17/2024]
Abstract
Improper pesticide handling is the main cause of contamination of the environment in agricultural systems. This could be caused by leakage of spraying liquid, leftovers, and inappropriate washing of spraying equipment. This study assessed the ability of suggested biomixture modules for remediate repetitive cycles of high chlorpyrifos doses. In three consecutive treatments, four tested modules were contaminated with 160 µg g-1 chlorpyrifos. Chlorpyrifos residues, dehydrogenase activity, and microbial respiration were continuously monitored for 22 weeks. Six bacterial consortia were isolated at the end of the experiment from four treated modules (B+3, BF+3, S+3, and SF+3) and two from untreated modules (B and S). The isolated consortium efficiency in degrading chlorpyrifos was studied. The results revealed that the best chlorpyrifos removal efficiency was achieved when using the stimulated biomixture module (BF) recorded 98%, 100%, and 89%, at the end of three chlorpyrifos treatments, respectively. Such removal efficiency was compatible with the biological activity results of the tested modules: dehydrogenase activity and microbial respiration. There was no difference in the efficiency among the S, B, and BF+3 consortia. The results presented here demonstrate that the combination of vermicompost, wheat straw, soil, and NPK (stimulated biomixture module) can successfully reduce the risk of a point source of pesticide pollution.
Collapse
Affiliation(s)
- Ayman H Mansee
- Department of Pesticide Chemistry & Technology, Faculty of Agriculture, Alexandria University, Alexandria, Egypt.
| | - Amal M Ebrahim
- Department of Soil & Water Science, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Essam A Koreish
- Department of Soil & Water Science, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| |
Collapse
|
2
|
Oviedo-Matamoros F, Pérez-Villanueva ME, Masís-Mora M, Aguilar-Álvarez R, Ramírez-Morales D, Méndez-Rivera M, Rodríguez-Rodríguez CE. Biological treatment of pesticide-containing wastewater from coffee crops: selection and optimization of a biomixture and biobed design. Front Microbiol 2024; 15:1357839. [PMID: 38384273 PMCID: PMC10881177 DOI: 10.3389/fmicb.2024.1357839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/18/2024] [Indexed: 02/23/2024] Open
Abstract
The biopurification systems (BPS) or biobeds are employed for the treatment of pesticide-containing wastewater of agricultural origin. The use of these devices for pesticide removal requires the proper optimization of the composition of biomixtures (BPS active matrix) according to the target pesticides applied on a specific crop and the available materials used in their elaboration. This work aims to design a biomixture for the simultaneous treatment of several pesticides applied in coffee crops, according to local practices in Costa Rica. Three biomixtures containing either coffee husk, coconut fiber or rice husk (as the lignocellulosic substrate) were applied for the removal of 12 pesticides. The profiles of pesticide elimination and the mineralization of radiolabeled chlorpyrifos (14C-chlorpyrifos) revealed that the best performance was achieved with the coconut fiber biomixture, even though similar detoxification patterns were determined in every biomixture (according to immobilization in Daphnia magna and germination tests in Lactuca sativa). The optimization of this biomixture's composition by means of a central composite design permitted the definition of two optimal compositions (compost:soil:coconut fiber, % v/v) that maximized pesticide removal: i. 29:7.3:63.7 and ii. 11:7.3:81.7. The validation of these optimized compositions also included the use of an alternative soil from another coffee farm and resulted in overall DT50 values of 7.8-9.0 d for the pesticide mixture. Considering the removal kinetics in the optimized biomixture, a 1 m3 BPS prototype was dimensioned to be eventually used in local coffee farms. This work provides relevant information for the design and implementation of BPS at on-farm conditions for the treatment of pesticide-containing wastewater of a major crop.
Collapse
Affiliation(s)
- Fernando Oviedo-Matamoros
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, San José, Costa Rica
| | - Marta E. Pérez-Villanueva
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, San José, Costa Rica
| | - Mario Masís-Mora
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, San José, Costa Rica
| | | | - Didier Ramírez-Morales
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, San José, Costa Rica
| | - Michael Méndez-Rivera
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, San José, Costa Rica
| | | |
Collapse
|
3
|
Ramírez-Morales D, Masís-Mora M, Montiel-Mora JR, Méndez-Rivera M, Gutiérrez-Quirós JA, Brenes-Alfaro L, Rodríguez-Rodríguez CE. Pharmaceuticals, hazard and ecotoxicity in surface and wastewater in a tropical dairy production area in Latin America. CHEMOSPHERE 2024; 346:140443. [PMID: 38303394 DOI: 10.1016/j.chemosphere.2023.140443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 10/06/2023] [Accepted: 10/12/2023] [Indexed: 02/03/2024]
Abstract
Pharmaceuticals comprise a complex group of emerging pollutants. Despite the significant number of pharmaceuticals used in veterinary medicine, the input of these compounds into the environment due to livestock activities has been scarcely described. This work assays for the first time in Central America the occurrence of pharmaceuticals in farm wastewater in an area devoted to dairy production, and in the surrounding surface waters. Among 69 monitored pharmaceuticals, a total of eight compounds were detected in wastewater samples collected from seven dairy farms after three sampling campaigns. Six pharmaceuticals were considered either of high (albendazole, lovastatin and caffeine) or intermediate estimated hazard (ciprofloxacin, acetaminophen and ketoprofen) based on the HQ approach, while 26% of the samples were considered of high estimated hazard according to the cumulative ∑HQ approach. Similarly, when ecotoxicological tests were applied, all the samples showed some level of toxicity towards Daphnia magna, and most samples towards Vibrio fischeri and Lactuca sativa. Fourteen pharmaceuticals were detected in surface water samples collected in the surroundings of the dairy production farms, including rural and urban areas. Seven out of these compounds showed high estimated risk (risperidone, diphenhydramine, trimethoprim, fluoxetine, ofloxacin, caffeine and ibuprofen), while three (gemfibrozil, ciprofloxacin and cephalexin) exhibited intermediate estimated risk. In a similar worrisome way, 27% of these samples were estimated to pose high environmental risk according to the pharmaceutical content. Despite being nontoxic for D. magna or V. fischeri, frequent inhibition (>20%) of GI in L. sativa was determined in 34% of surface water samples; such findings raise concern on the apparent inceptive environmental pollution and risk within the area. According to the pharmaceutical content patterns in both kinds of studied matrices, no clear evidence of significant contamination in surface water due to livestock activities could be retrieved, suggesting a main role of urban influence.
Collapse
Affiliation(s)
- Didier Ramírez-Morales
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | - Mario Masís-Mora
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | - José R Montiel-Mora
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | - Michael Méndez-Rivera
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | | | - Laura Brenes-Alfaro
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | - Carlos E Rodríguez-Rodríguez
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica.
| |
Collapse
|
4
|
Méndez-Rivera M, Montiel-Mora JR, Ramírez-Morales D, Masís-Mora M, Rodríguez-Rodríguez CE. On-farm Occurrence of Pharmaceuticals and Their Environmental Hazard: Case Study of a Tropical Dairy farm. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 111:51. [PMID: 37752279 DOI: 10.1007/s00128-023-03809-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/17/2023] [Indexed: 09/28/2023]
Abstract
Animal husbandry wastewaters represent an important source of pharmaceuticals into the environment. This work aimed to evaluate the occurrence of pharmaceuticals and their hazard in wastewater from a model dairy farm from Costa Rica. Among the seven pharmaceuticals detected (acetaminophen, caffeine, carbamazepine, ibuprofen, ketoprofen, risperidone, sulfamethazine), caffeine, ibuprofen and acetaminophen showed the highest concentrations, while caffeine, carbamazepine and risperidone were the most frequently detected compounds. High (HQ ≥ 1) or medium (0.1 ≤ HQ < 1) hazard were estimated for three (caffeine, ibuprofen, risperidone) and two (acetaminophen, ketoprofen) pharmaceuticals, respectively; similarly, high overall hazard (∑HQ) and significant ecotoxicity were determined in samples from all sampling points. According to our results, the release of these aqueous matrices is a matter of environmental concern, as the treated wastewater is used for farm irrigation or directly released into nearby water streams. This work contributes to the knowledge on the scarcely described occurrence and risk of pharmaceuticals in Latin American regions.
Collapse
Affiliation(s)
- Michael Méndez-Rivera
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, San José, 2060, Costa Rica
| | - José R Montiel-Mora
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, San José, 2060, Costa Rica
| | - Didier Ramírez-Morales
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, San José, 2060, Costa Rica
| | - Mario Masís-Mora
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, San José, 2060, Costa Rica
| | - Carlos E Rodríguez-Rodríguez
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, San José, 2060, Costa Rica.
| |
Collapse
|
5
|
Saez JM, González SK, Ocante TAL, Bigliardo AL, Briceño GE, Benimeli CS. Actinobacteria bioaugmentation and substrate evaluation for biobeds useful for the treatment of atrazine residues in agricultural fields. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 320:115870. [PMID: 36056489 DOI: 10.1016/j.jenvman.2022.115870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/27/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
Biopurification systems (BPS) or biobeds are bioprophylaxis systems to prevent pesticide point-source contamination, whose efficiency relies mostly on the pesticide removal capacity of the biomixture, the majority component of a BPS. The adaptation of the components of the biomixtures to local availabilities is a key aspect to ensure the sustainability of the system. In this work, the removal of atrazine (ATZ) was evaluated in biomixtures formulated with three sugarcane by-products as alternative lignocellulosic substrates. Based on the capacity of actinobacteria to tolerate and degrade diverse pesticides, the effect of biomixtures bioaugmentation with actinobacteria was evaluated as a strategy to enhance the depuration capacity of biobeds. Also, the effect of ATZ and/or the bioaugmentation on microbial developments and enzymatic activities were studied. The biomixtures formulated with bagasse, filter cake, or harvest residue, reached pesticide removal values of 37-41% at 28 d of incubation, with t1/2 between 37.9 ± 0.4 d and 52.3 ± 0.4 d. The bioaugmentation with Streptomyces sp. M7 accelerated the dissipation of the pesticide in the biomixtures, reducing ATZ t1/2 3-fold regarding the controls, and achieving up to 72% of ATZ removal. Atrazine did not exert a clear effect on microbial developments, although most of the microbial counts were less in the contaminated biomixtures at the end of the assay. The bioaugmentation improved the development of the microbiota in general, specially actinobacteria and fungi, regarding the non-bioaugmented systems. The inoculation with Streptomyces sp. M7 enhanced acid phosphatase activity and/or reversed a possible effect of the pesticide over this enzymatic activity.
Collapse
Affiliation(s)
- Juliana M Saez
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Av. Belgrano y Pje. Caseros, Tucumán, 4000, Argentina; Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Miguel Lillo 205, Tucumán, 4000, Argentina
| | - Samanta K González
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Av. Belgrano y Pje. Caseros, Tucumán, 4000, Argentina
| | - Teresa A L Ocante
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Av. Belgrano y Pje. Caseros, Tucumán, 4000, Argentina
| | - Ana L Bigliardo
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Av. Belgrano y Pje. Caseros, Tucumán, 4000, Argentina
| | - Gabriela E Briceño
- Centro de Excelencia en Investigación Biotecnológica Aplicada al medio Ambiente (CIBAMA), Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco, 4780000, Chile
| | - Claudia S Benimeli
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Av. Belgrano y Pje. Caseros, Tucumán, 4000, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Catamarca, Av. Belgrano 300, Catamarca, 4700, Argentina.
| |
Collapse
|
6
|
Pérez-Villanueva ME, Masís-Mora M, Araya-Valverde E, Rodríguez-Rodríguez CE. Fast removal and detoxification of oxytetracycline, triazine and organophosphate pesticides in a biopurification system. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
7
|
Preparation and Characterization of Biochar Derived from Agricultural By-Products for Dye Removal. ADSORPT SCI TECHNOL 2021. [DOI: 10.1155/2021/9161904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this study, biochar was derived from the agricultural by-products coconut coir (BC1) and rice husk (BC2) activated with NaOH 25%. This material was characterized through analytical methods such as SEM images, XRD, FTIR, and Raman. Analysis results indicated that the carbon structure carbon is amorphous and with many graphene layers. A high specific surface area was detected with 364.22 m2.g-1 for BC1 and 329.71 m2.g-1 for BC2 with many meso and micropores when analyzed by N2 and CO2 adsorption. The material also showed anionic and cationic dye adsorption capacity for textile wastewater following both Langmuir and Freundlich models where BC2 had better max adsorption capacity compared to BC1, 6.519 mg.g-1 for MO and 8.612 mg.g-1 for MB.
Collapse
|
8
|
Ramírez-Morales D, Masís-Mora M, Beita-Sandí W, Montiel-Mora JR, Fernández-Fernández E, Méndez-Rivera M, Arias-Mora V, Leiva-Salas A, Brenes-Alfaro L, Rodríguez-Rodríguez CE. Pharmaceuticals in farms and surrounding surface water bodies: Hazard and ecotoxicity in a swine production area in Costa Rica. CHEMOSPHERE 2021; 272:129574. [PMID: 33485042 DOI: 10.1016/j.chemosphere.2021.129574] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/18/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
The presence of pharmaceuticals in the environment is known to have multiple origins; livestock activities comprise one scarcely studied source, both globally and specially in Latin-America. This work aims to study the occurrence of pharmaceuticals in wastewater from swine farms and their surrounding surface waters, in a highland livestock production area of Costa Rica. The monitoring of 70 pharmaceutical active compounds resulted in the detection of 10 molecules in farm wastewater (influents and effluents of the on-farm treatment system), including compounds of animal and human use. A 57% of effluents showed high hazard (ΣHQ > 1), mainly due to the compounds risperidone, ketoprofen, ibuprofen and naproxen. Additionally, ecotoxicological tests with Daphnia magna and Microtox classified at least 21% of the effluents as very toxic (10 < TU ≤ 100); likewise, 86% of effluents exhibited germination index (GI) inhibition values over 90% for Lactuca sativa. Seven molecules were detected in surface water, six of them of human use (1,7-dimethylxanthine, caffeine, cephalexin, carbamazepine, gemfibrozil, ibuprofen) and one (acetaminophen) of dual (human and veterinary) use; nonetheless, most of the detections were found in sampling points closer to human settlements than animal farms. Considering the set of molecules and their distribution, the livestock influence on surface water seems minimal in comparison with the urban influence. Only 16% of surface water samples showed high risk, mainly due to ibuprofen, gemfibrozil and caffeine; similarly, 45% samples presented GI inhibition >20% (no toxicity was determined towards Daphnia magna or Microtox). These findings in surface water suggest an incipient environmental risk in the area.
Collapse
Affiliation(s)
- Didier Ramírez-Morales
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica
| | - Mario Masís-Mora
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica
| | - Wilson Beita-Sandí
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica
| | - José R Montiel-Mora
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica
| | - Ericka Fernández-Fernández
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica
| | - Michael Méndez-Rivera
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica
| | - Víctor Arias-Mora
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica
| | - Adrián Leiva-Salas
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica
| | - Laura Brenes-Alfaro
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica
| | - Carlos E Rodríguez-Rodríguez
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica.
| |
Collapse
|
9
|
Ramírez-Morales D, Masís-Mora M, Montiel-Mora JR, Cambronero-Heinrichs JC, Briceño-Guevara S, Rojas-Sánchez CE, Méndez-Rivera M, Arias-Mora V, Tormo-Budowski R, Brenes-Alfaro L, Rodríguez-Rodríguez CE. Occurrence of pharmaceuticals, hazard assessment and ecotoxicological evaluation of wastewater treatment plants in Costa Rica. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 746:141200. [PMID: 32771760 DOI: 10.1016/j.scitotenv.2020.141200] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/15/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
The continuous release of pharmaceuticals from WWTP effluents to freshwater is a matter of concern, due to their potential effects on non-target organisms. The occurrence of pharmaceuticals in WWTPs and their associated hazard have been scarcely studied in Latin American countries. This study aimed at monitoring for the first time the occurrence of 70 pharmaceutical active compounds (PhACs) in WWTPs across Costa Rica; the application of the hazard quotient (HQ) approach coupled to ecotoxicological determinations permitted to identify the hazard posed by specific pharmaceuticals and toxicity of the effluents, respectively. Thirty-three PhACs were found, with 1,7-dimethylxanthine, caffeine, acetaminophen, ibuprofen, naproxen, ketoprofen and gemfibrozil being the most frequently detected (influents/effluents). HQ for specific pharmaceuticals revealed 24 compounds with high/medium hazard in influents, while the amount only decreased to 21 in effluents. The top HQ values were obtained for risperidone, lovastatin, diphenhydramine and fluoxetine (influent/effluent samples), plus caffeine (influent) and trimethoprim (effluent). Likewise, the estimation of overall hazard in WWTP samples (sum of individual HQ, ∑HQ) demonstrated that every influent and 96% of the effluents presented high hazard towards aquatic organisms. Ecotoxicological analysis (Daphnia magna, Lactuca sativa and Microtox test) revealed that 16.7% of the effluents presented toxicity towards all benchmark organisms; the phytotoxicity was particularly frequent, as inhibition values ≥20% in the germination index for L. sativa were obtained for all the effluents. The ∑HQ approach estimated the highest hazard in urban wastewater, while the ecotoxicological results showed the highest toxicity in hospital and landfill wastewater. Likewise, ecotoxicological results and ∑HQ values showed a rather poor correlation; instead, better correlations were obtained between ecotoxicological parameters and HQ values for some individual pharmaceuticals such as cephalexin and diphenhydramine. Findings from this study provide novel information on the occurrence of pharmaceuticals and the performance of WWTPs in the tropical region of Central America.
Collapse
Affiliation(s)
- Didier Ramírez-Morales
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | - Mario Masís-Mora
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | - José R Montiel-Mora
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | - Juan Carlos Cambronero-Heinrichs
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica; Facultad de Microbiología, Universidad de Costa Rica, 2060 San José, Costa Rica
| | - Susana Briceño-Guevara
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | | | - Michael Méndez-Rivera
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | - Víctor Arias-Mora
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | - Rebeca Tormo-Budowski
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | - Laura Brenes-Alfaro
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | - Carlos E Rodríguez-Rodríguez
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica.
| |
Collapse
|
10
|
Masís-Mora M, Beita-Sandí W, Rodríguez-Yáñez J, Rodríguez-Rodríguez CE. Validation of a methodology by LC-MS/MS for the determination of triazine, triazole and organophosphate pesticide residues in biopurification systems. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1156:122296. [DOI: 10.1016/j.jchromb.2020.122296] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/25/2020] [Accepted: 07/29/2020] [Indexed: 11/29/2022]
|
11
|
Acosta-Sánchez A, Soto-Garita C, Masís-Mora M, Cambronero-Heinrichs JC, Rodríguez-Rodríguez CE. Impaired pesticide removal and detoxification by biomixtures during the simulated pesticide application cycle of a tropical agricultural system. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 195:110460. [PMID: 32199216 DOI: 10.1016/j.ecoenv.2020.110460] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/04/2020] [Accepted: 03/07/2020] [Indexed: 06/10/2023]
Abstract
Biopurification systems (BPS) or biobeds have been developed to attenuate point-source contamination due to inappropriate pesticide handling or disposal of agricultural wastewaters. The biomixture used for this strategy should be able to remove different active ingredients but its efficiency can vary due to the constant load of pesticides from crop application programs. For that reason, the performance of biomixtures in conditions that mimic the real pesticide treatment before their implementation in field settings should be assayed. This study aimed to evaluate the removal and detoxifying capacity of a previously formulated biomixture (coconut fiber, 50% v/v; compost, 25%; and soil pre-exposed to pesticides, 25%) during a simulated cycle of pesticide application (93 days) for potato production. The scheme included a first application of linuron followed by a weekly alternated treatment of the mixtures chlorpyrifos/metalaxyl and malathion/dimethomorph, and antibiotics at day 72. The biomixture showed efficient removal of linuron (half-life <15 days), and a fluctuating transformation rate for the other compounds. A constant and sustained removal was observed for malathion and methalaxyl. In contrast, lower efficiency and accumulation was described for chlorpyrifos and dimethomorph. Following antibiotic treatment, changes on pesticide removal were observed only in the case of chlorpyrifos, whose removal was slightly enhanced. Furthermore, acute toxicity assays showed limited detoxification of the matrix, especially when compounds began to accumulate. Summarizing, our experiments showed that the proposed biomixture does not support a proper removal of the pesticides during the simulated application cycle of potato production. Further optimization of a biopurification system is required to guarantee the successful elimination of pesticide combinations when applied in field conditions.
Collapse
Affiliation(s)
- Alejandra Acosta-Sánchez
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica
| | - Claudio Soto-Garita
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica
| | - Mario Masís-Mora
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica
| | - Juan Carlos Cambronero-Heinrichs
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica; Facultad de Microbiología, Universidad de Costa Rica, 2060, San José, Costa Rica
| | - Carlos E Rodríguez-Rodríguez
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica.
| |
Collapse
|
12
|
Dias LDA, Gebler L, Niemeyer JC, Itako AT. Destination of pesticide residues on biobeds: State of the art and future perspectives in Latin America. CHEMOSPHERE 2020; 248:126038. [PMID: 32041065 DOI: 10.1016/j.chemosphere.2020.126038] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 01/23/2020] [Accepted: 01/25/2020] [Indexed: 06/10/2023]
Abstract
Land-use intensification with a high demand for pesticides is a consequence of human population increase. Feasible alternatives for correct concentrated residues discharge are necessary to avoid soil and water resources contamination. Biobeds are in situ bioreactors for treating pesticide residues, used by several European and American countries due to its low cost and simple construction, whose efficiency has been scientifically proved for over 20 years. This review presents the state of the art of biobeds in Latin America (LA), identifying advances and future research needs. Factors affecting the efficiency of biobeds are discussed, like ideal temperature, moisture, and microbial communities, followed by methods for evaluating the bioreactor's efficiency. It was necessary to adapt this technology to the climatic and economic conditions of Latin-American countries, due to its European origins. Guatemala is the LA country that uses biobeds as official technology. Brazil, Argentina, Costa Rica and Chile are examples of countries that are actively investigating new substrates and pursuing legal aspects for the establishment of the biobeds. Robust scientific evidences may enable farmers start using this technology, which is an environmentally safe system to protect water resources.
Collapse
Affiliation(s)
- Leticia de A Dias
- Programa de Pós-Graduação em Ecossistemas Agrícolas e Naturais (PPGEAN), Universidade Federal de Santa Catarina (UFSC), Campus de Curitibanos, Curitibanos, Santa Catarina, 89520-000, Brasil.
| | - Luciano Gebler
- Estação Experimental de Fruticultura de Clima Temperado (EFCT), EMBRAPA Uva e Vinho, Vacaria, Rio Grande do Sul, Brasil
| | - Júlia C Niemeyer
- Programa de Pós-Graduação em Ecossistemas Agrícolas e Naturais (PPGEAN), Universidade Federal de Santa Catarina (UFSC), Campus de Curitibanos, Curitibanos, Santa Catarina, 89520-000, Brasil
| | - Adriana T Itako
- Programa de Pós-Graduação em Ecossistemas Agrícolas e Naturais (PPGEAN), Universidade Federal de Santa Catarina (UFSC), Campus de Curitibanos, Curitibanos, Santa Catarina, 89520-000, Brasil
| |
Collapse
|
13
|
Chan-Cheng M, Cambronero-Heinrichs JC, Masís-Mora M, Rodríguez-Rodríguez CE. Ecotoxicological test based on inhibition of fungal laccase activity: Application to agrochemicals and the monitoring of pesticide degradation processes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 195:110419. [PMID: 32182526 DOI: 10.1016/j.ecoenv.2020.110419] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 02/27/2020] [Accepted: 03/01/2020] [Indexed: 06/10/2023]
Abstract
Ecotoxicological evaluations require the use of assays with several bioindicators from different trophic levels. Only a few ecotoxicological tests using fungi have been developed, reason why, detection of adverse effects from compounds that exert fungicide action may be overlooked. This work developed a toxicity test based on the inhibition of laccase enzymatic activity in the fungus Trametes versicolor. The test was applied to several fungicides and succeeded to determine inhibition values (half maximum effective concentration, EC50) for most of them (flusilazole, imazalil, pyrimethanil, tetraconazole), though a clear dose-response was not evident for others (thiabendazole, metalaxyl). The application on atrazine (herbicide), imidacloprid (insecticide) and oxytetracycline (antibiotic), proved the proposed test is suitable towards other agrochemicals. The test was also used to estimate the detoxification resulting from two different approaches employed in the removal of agrochemicals. (a) First, in the liquid-phase elimination by fungal biomass simultaneously removing atrazine, imazalil, tebuconazole and triadimenol, the test showed a significant decrease in toxicity by biodegradation (adsorption contribution to detoxification was negligible). (b) Second, a solid-phase biomixture (used for pesticide degradation from agricultural wastewater) partially removed atrazine, imazalil, metalaxyl and pyrimethanil after 33 d; nonetheless, this system could not reduce the toxicity of the matrix, and higher laccase inhibition was detected after the treatment. The design test increases the battery of available bioassays to determine the toxicity of agrochemicals, and provides an interesting tool to monitor biodegradation processes.
Collapse
Affiliation(s)
- Melissa Chan-Cheng
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica
| | - Juan Carlos Cambronero-Heinrichs
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica; Facultad de Microbiología, Universidad de Costa Rica, 2060, San José, Costa Rica
| | - Mario Masís-Mora
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica
| | - Carlos E Rodríguez-Rodríguez
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica.
| |
Collapse
|
14
|
Masís-Mora M, Lizano-Fallas V, Tortella G, Beita-Sandí W, Rodríguez-Rodríguez CE. Removal of triazines, triazoles and organophophates in biomixtures and application of a biopurification system for the treatment of laboratory wastewaters. CHEMOSPHERE 2019; 233:733-743. [PMID: 31200133 DOI: 10.1016/j.chemosphere.2019.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/20/2019] [Accepted: 06/01/2019] [Indexed: 06/09/2023]
Abstract
Biopurification systems (BPS) have been barely explored for removing complex mixtures of pesticides. In this study, the potential of a biomixture to remove simultaneously a mixture of herbicides (triazines), fungicides (triazoles) and insecticides (organophosphates) is presented. Also, a BPS using the same biomixture was used for treating a pesticide testing laboratory wastewater containing a mixture of 38 compounds. Ecotoxicological assays were conducted on the BPS elutriates to investigate the mixture detoxification. A mixture (concentrations of 4-8 mg kg-1) run in small-scale biomixture systems (SSB) for 128 d showed 59.3% removal of triazines, 68.5% of organophosphates and no elimination of triazoles. The treatment of the laboratory wastewater (individual concentrations range: 0.0036-0.25 mg kg-1) in the pilot-scale BPS for 281 d resulted in the elimination pattern of organophosphates (90.0%) > triazoles (73.4%) > carbamates (71.3%) > triazines (54.3%). Complete detoxification towards Daphnia magna and partial detoxification in Lactuca sativa seeds germination occurred in the BPS. Although the pesticide mixture complexity is higher in the BPS, the lower concentrations found in this matrix, could explain removal differences between SSB and BPS and the apparent inhibition in the elimination of carbamates and some triazines observed in the latter. These findings suggest that disposal of pesticide-containing laboratory-wastewater should be done in separate containers, according to chemical groups before their treatment in separate BPS, in order to reduce treatment periods. Monitoring the treatment process in the BPS with a battery of ecotoxicological tests is strongly recommended.
Collapse
Affiliation(s)
- Mario Masís-Mora
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica
| | - Verónica Lizano-Fallas
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica
| | - Gonzalo Tortella
- Departamento de Ingeniería Química, Universidad de La Frontera, Temuco, Chile; Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA-BIOREN), Temuco, Chile
| | - Wilson Beita-Sandí
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica
| | - Carlos E Rodríguez-Rodríguez
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica.
| |
Collapse
|
15
|
Rodríguez-Castillo G, Molina-Rodríguez M, Pérez-Villanueva M, Masís-Mora M, Rodríguez-Rodríguez CE. Removal of Two Neonicotinoid Insecticides and Mineralization of 14C-Imidacloprid in Biomixtures. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2018; 101:137-143. [PMID: 29858622 DOI: 10.1007/s00128-018-2370-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/26/2018] [Indexed: 06/08/2023]
Abstract
Environmental contamination with neonicotinoid insecticides represents an issue of wide concern due to their negative effects on pollinators. The goal of this work was to evaluate the potential use of biomixtures employed in biopurification systems (BPS) to remove two neonicotinoid pesticides, imidacloprid and thiamethoxam, from wastewater of agricultural origin. The removal was assayed by quantification of the parent compounds and the detection of putative transformation products of imidacloprid by means of LC-MS/MS, and mineralization of radiolabeled imidacloprid. Two biomixtures (B1, B2) were prepared using coconut fiber, compost and two soils pre-exposed to imidacloprid (volumetric composition 50:25:25). After spiking of neonicotinoids and 228 days of treatment, the removal ranged from 22.3%-30.3% and 38.6%-43.7% for imidacloprid and thiamethoxam, respectively. Transformation products imidacloprid-urea, desnitro-imidacloprid and desnitro-olefin-imidacloprid were detected in both biomixtures. The mineralization of 14C-imidacloprid revealed DT50 (mineralization half-lives) values of 3466 and 7702 days in the biomixtures B1 and B2, respectively, markedly lower than those in the soil used in their preparation (8667 and 9902 days, respectively). As demonstrated by these findings, the high persistence of these compounds in the BPS suggests that additional biological (or physicochemical) approaches should be explored in order to decrease the impact of neonicotinoid-containing wastewater of agricultural origin.
Collapse
Affiliation(s)
- Gabriel Rodríguez-Castillo
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, San José, 2060, Costa Rica
| | - Marvin Molina-Rodríguez
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, San José, 2060, Costa Rica
| | - Marta Pérez-Villanueva
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, San José, 2060, Costa Rica
| | - Mario Masís-Mora
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, San José, 2060, Costa Rica
| | - Carlos E Rodríguez-Rodríguez
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, San José, 2060, Costa Rica.
| |
Collapse
|
16
|
Cambronero-Heinrichs JC, Masís-Mora M, Quirós-Fournier JP, Lizano-Fallas V, Mata-Araya I, Rodríguez-Rodríguez CE. Removal of herbicides in a biopurification system is not negatively affected by oxytetracycline or fungally pretreated oxytetracycline. CHEMOSPHERE 2018; 198:198-203. [PMID: 29421730 DOI: 10.1016/j.chemosphere.2018.01.122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/16/2018] [Accepted: 01/23/2018] [Indexed: 06/08/2023]
Abstract
The disposal of agricultural antibiotic-containing wastewater in biopurification systems (BPS) employed in the treatment of pesticides, may negatively affect the removal capacity of these devices. This work aimed to employ a fungal pretreatment of oxytetracycline (OTC)-rich wastewater, before its disposal in a BPS used for the treatment of two pesticides. The fungal treatment at reactor scale (stirred tank reactor, 3L) with biomass of Trametes versicolor efficiently removed 100 mg L-1 OTC in only 60 h. However, ecotoxicity tests on seed germination with Lactuca sativa revealed that antibiotic elimination did not correlate with a decrease in toxicity. After the pretreatment, treated OTC was discarded in biomixtures used for the elimination of the herbicides ametryn and terbutryn. The co-application of treated or untreated OTC did not inhibit the removal of the herbicides; moreover, in both cases their removal seemed to be slightly enhanced in the presence of OTC or its residues, with respect to antibiotic-free biomixtures. Estimated half-lives ranged from 28.4 to 34.8 d for ametryn, and 34.0-51.0 d for terbutryn. In addition, the biomixture was also able to remove OTC in the presence of the herbicides, with an estimated half-life of 38 d. Remarkably, the toxicity of the wastewater containing OTC or treated OTC was mostly eliminated after its disposal in the biomixture. Overall results suggest that, given the high efficiency of the biomixture, the fungal pretreatment of OTC-containing wastewater is not mandatory before its disposal in the BPS.
Collapse
Affiliation(s)
| | - Mario Masís-Mora
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | - José Pablo Quirós-Fournier
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, 1174-1200 San José, Costa Rica
| | - Verónica Lizano-Fallas
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | - Iray Mata-Araya
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, 1174-1200 San José, Costa Rica
| | - Carlos E Rodríguez-Rodríguez
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica.
| |
Collapse
|
17
|
Castro-Gutiérrez V, Masís-Mora M, Carazo-Rojas E, Mora-López M, Rodríguez-Rodríguez CE. Impact of oxytetracycline and bacterial bioaugmentation on the efficiency and microbial community structure of a pesticide-degrading biomixture. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:11787-11799. [PMID: 29442313 DOI: 10.1007/s11356-018-1436-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/30/2018] [Indexed: 06/08/2023]
Abstract
An experimental study evaluating the effect of bioaugmentation and antibiotic (oxytetracycline) application on pesticide degradation and microbial community structure of a biomixture used in a biopurification system (BPR) was conducted. The bioaugmentation employed a carbofuran-degrading bacterial consortium. The non-bioaugmented biomixture showed excellent performance for removal of atrazine (t1/2: 9.9 days), carbendazim (t1/2: 3.0 days), carbofuran (t1/2: 2.8 days), and metalaxyl (t1/2: 2.7 days). Neither the addition of oxytetracycline nor bioaugmentation affected the efficiency of pesticide removal or microbial community (bacterial and fungal) structure, as determined by DGGE analysis. Instead, biomixture aging was mainly responsible for microbial population shifts. Even though the bioaugmentation did not enhance the biomixtures' performance, this matrix showed a high capability to sustain initial stresses related to antibiotic addition; therefore, simultaneous elimination of this particular mixture of pesticides together with oxytetracycline residues is not discouraged.
Collapse
Affiliation(s)
- Víctor Castro-Gutiérrez
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, San José, 2060, Costa Rica
- Centro de Investigación en Biología Celular y Molecular (CIBCM), Universidad de Costa Rica, San José, 2060, Costa Rica
| | - Mario Masís-Mora
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, San José, 2060, Costa Rica
| | - Elizabeth Carazo-Rojas
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, San José, 2060, Costa Rica
| | - Marielos Mora-López
- Centro de Investigación en Biología Celular y Molecular (CIBCM), Universidad de Costa Rica, San José, 2060, Costa Rica
| | - Carlos E Rodríguez-Rodríguez
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, San José, 2060, Costa Rica.
| |
Collapse
|
18
|
Jiménez-Gamboa D, Castro-Gutiérrez V, Fernández-Fernández E, Briceño-Guevara S, Masís-Mora M, Chin-Pampillo JS, Mora-López M, Carazo-Rojas E, Rodríguez-Rodríguez CE. Expanding the application scope of on-farm biopurification systems: Effect and removal of oxytetracycline in a biomixture. JOURNAL OF HAZARDOUS MATERIALS 2018; 342:553-560. [PMID: 28886567 DOI: 10.1016/j.jhazmat.2017.08.059] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/18/2017] [Accepted: 08/22/2017] [Indexed: 06/07/2023]
Abstract
Antibiotic-containing wastewaters produced in agricultural activities may depress the pesticide-degrading capacity of biomixtures contained in biopurification systems. This work aimed to assay the effect of oxytetracycline (OTC) on the removal of carbofuran (CFN) in an optimized biomixture, and to determine the capacity of the system to dissipate OTC. During co-application of CFN+OTC, CFN removal and its accelerated degradation were not negatively affected. Similarly, different doses of OTC (10-500mgkg-1) did not significantly affect CFN mineralization, and the process even exhibited a hormetic-like effect. Moreover, the biomixture was able to remove OTC with a half-life of 34.0 d. DGGE-cluster analyses indicated that fungal and bacterial communities remained relatively stable during OTC application and CFN+OTC co-application, with similarities of over 70% (bacteria) and 80% (fungi). Overall, these findings support the potential use of this matrix to discard OTC-containing wastewater in this system originally intended for CFN removal.
Collapse
Affiliation(s)
- David Jiménez-Gamboa
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica (UCR), 2060 San José, Costa Rica
| | - Víctor Castro-Gutiérrez
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica (UCR), 2060 San José, Costa Rica; Centro de Investigación en Biología Celular y Molecular (CIBCM), UCR, 2060 San José, Costa Rica
| | - Ericka Fernández-Fernández
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica (UCR), 2060 San José, Costa Rica
| | - Susana Briceño-Guevara
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica (UCR), 2060 San José, Costa Rica
| | - Mario Masís-Mora
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica (UCR), 2060 San José, Costa Rica
| | - Juan Salvador Chin-Pampillo
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica (UCR), 2060 San José, Costa Rica
| | - Marielos Mora-López
- Centro de Investigación en Biología Celular y Molecular (CIBCM), UCR, 2060 San José, Costa Rica
| | - Elizabeth Carazo-Rojas
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica (UCR), 2060 San José, Costa Rica
| | - Carlos E Rodríguez-Rodríguez
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica (UCR), 2060 San José, Costa Rica.
| |
Collapse
|
19
|
Alternative Approaches to Determine the Efficiency of Biomixtures Used for Pesticide Degradation in Biopurification Systems. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2018. [DOI: 10.1007/978-1-4939-7425-2_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
20
|
Murillo-Zamora S, Castro-Gutiérrez V, Masís-Mora M, Lizano-Fallas V, Rodríguez-Rodríguez CE. Elimination of fungicides in biopurification systems: Effect of fungal bioaugmentation on removal performance and microbial community structure. CHEMOSPHERE 2017; 186:625-634. [PMID: 28818589 DOI: 10.1016/j.chemosphere.2017.07.162] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 07/18/2017] [Accepted: 07/31/2017] [Indexed: 06/07/2023]
Abstract
Bioaugmentation with ligninolytic fungi represents a potential way to improve the performance of biomixtures used in biopurification systems for the treatment of pesticide-containing agricultural wastewater. The fungus Trametes versicolor was employed in the bioaugmentation of a biomixture to be used in the simultaneous removal of seven fungicides. Liquid cultures of the fungus were able to remove tebuconazole, while no evidence of carbendazim, metalaxyl and triadimenol depletion was found. When applied in the biomixture, the bioaugmented matrix failed to remove all the triazole fungicides (including tebuconazole) under the assayed conditions, but was efficient to eliminate carbendazim, edifenphos and metalaxyl (the latter only after a second pesticide application). The re-addition of pesticides markedly increased the elimination of carbendazim and metalaxyl; nonetheless, no clear enhancement of the biomixture performance could be ascribed to fungal bioaugmentation, not even after the re-inoculation of fungal biomass. Detoxification efficiently took place in the biomixture (9 d after pesticide applications) according to acute tests on Daphnia magna. DGGE-analysis revealed only moderate time-divergence in bacterial and fungal communities, and a weak establishment of T. versicolor in the matrix. Data suggest that the non-bioaugmented biomixture is useful for the treatment of fungicides other than triazoles.
Collapse
Affiliation(s)
- Sergio Murillo-Zamora
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | - Víctor Castro-Gutiérrez
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | - Mario Masís-Mora
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | - Verónica Lizano-Fallas
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | - Carlos E Rodríguez-Rodríguez
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica.
| |
Collapse
|
21
|
Lizano-Fallas V, Masís-Mora M, Espinoza-Villalobos D, Lizano-Brenes M, Rodríguez-Rodríguez CE. Removal of pesticides and ecotoxicological changes during the simultaneous treatment of triazines and chlorpyrifos in biomixtures. CHEMOSPHERE 2017; 182:106-113. [PMID: 28494353 DOI: 10.1016/j.chemosphere.2017.04.147] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 06/07/2023]
Abstract
Biopurification systems constitute a biological approach for the treatment of pesticide-containing wastewaters produced in agricultural activities, and contain an active core called biomixture. This work evaluated the performance of a biomixture to remove and detoxify a combination of three triazine herbicides (atrazine/terbuthylazine/terbutryn) and one insecticide (chlorpyrifos), and this efficiency was compared with dissipation in soil alone. The potential enhancement of the process was also assayed by bioaugmentation with the ligninolytic fungi Trametes versicolor. Globally, the non-bioaugmented biomixture exhibited faster pesticide removal than soil, but only in the first stages of the treatment. After 20 d, the largest pesticide removal was achieved in the biomixture, while significant removal was detected only for chlorpyrifos in soil. However, after 60 d the removal values in soil matched those achieved in the biomixture for all the pesticides. The bioaugmentation failed to enhance, and even significantly decreased the biomixture removal capacity. Final removal values were 82.8% (non-bioaugmented biomixture), 43.8% (fungal bioaugmented biomixture), and 84.7% (soil). The ecotoxicological analysis revealed rapid detoxification (from 100 to 170 TU to <1 TU in 20 d) towards Daphnia magna in the biomixture and soil, and slower in the bioaugmented biomixture, coinciding with pesticide removal. On the contrary, despite important herbicide elimination, no clear detoxification patterns were observed in the phytotoxicity towards Lactuca sativa. Findings suggest that the proposed biomixture is useful for fast removal of the target pesticides; even though soil also removes the agrochemicals, longer periods would be required. On the other hand, the use of fungal bioaugmentation is discouraged in this matrix.
Collapse
Affiliation(s)
- Verónica Lizano-Fallas
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | - Mario Masís-Mora
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | - David Espinoza-Villalobos
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | - Michelle Lizano-Brenes
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | - Carlos E Rodríguez-Rodríguez
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica.
| |
Collapse
|
22
|
Castillo-González H, Pérez-Villanueva M, Masís-Mora M, Castro-Gutiérrez V, Rodríguez-Rodríguez CE. Antibiotics do not affect the degradation of fungicides and enhance the mineralization of chlorpyrifos in biomixtures. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 139:481-487. [PMID: 28214645 DOI: 10.1016/j.ecoenv.2017.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 01/30/2017] [Accepted: 02/07/2017] [Indexed: 06/06/2023]
Abstract
The use of antibiotics in agriculture produces residues in wastewaters. The disposal of such wastewaters in biopurification systems (BPS) employed for the treatment of pesticides could result in the inhibition of the degrading capacity of the biomixtures used in the BPS. We assayed the effect of two commercial formulations of antibiotics used in agriculture, one containing kasugamycin (KSG) and the other oxytetracycline plus gentamicin (OTC+GTM), on the biomixture performance. Doses from 0.1mgkg-1 to 1000mgkg-1 of KSG increased the respiration of the biomixture, and low doses enhanced the mineralization rate of the insecticide 14C-chlorpyrifos. On the contrary, OTC+GTM depressed the respiration of the biomixture and the initial mineralization rate of 14C-chlorpyrifos; nonetheless, the antibiotics did not decrease overall mineralization values. The application of both formulations in the biomixture at a relevant concentration did not harm the removal of the fungicides carbendazim and metalaxyl, or their enhanced degradation; on the other hand, the biomixture was unable to dissipate tebuconazol or triadimenol, a result that was unchanged during the addition of the antibiotic formulations. These findings reveal that wastewater containing these antibiotics do not affect the performance of BPS. However, such a response may vary depending on the type of pesticide and microbial consortium in the biomixture.
Collapse
Affiliation(s)
- Humberto Castillo-González
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | - Marta Pérez-Villanueva
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | - Mario Masís-Mora
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | - Víctor Castro-Gutiérrez
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | - Carlos E Rodríguez-Rodríguez
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica.
| |
Collapse
|
23
|
Huete-Soto A, Masís-Mora M, Lizano-Fallas V, Chin-Pampillo JS, Carazo-Rojas E, Rodríguez-Rodríguez CE. Simultaneous removal of structurally different pesticides in a biomixture: Detoxification and effect of oxytetracycline. CHEMOSPHERE 2017; 169:558-567. [PMID: 27898329 DOI: 10.1016/j.chemosphere.2016.11.106] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 10/28/2016] [Accepted: 11/20/2016] [Indexed: 06/06/2023]
Abstract
The biopurification systems (BPS) used for the treatment of pesticide-containing wastewater must present a versatile degrading ability, in order to remove different active ingredients according to the crop protection programs. This work aimed to assay the simultaneous removal of several pesticides (combinations of herbicides/insecticides/fungicides, or insecticides/fungicides) in a biomixture used in a BPS over a period of 115 d, and in the presence of oxytetracycline (OTC), an antibiotic of agricultural use that could be present in wastewater from agricultural pesticide application practices. The biomixture was able to mostly remove the herbicides during the treatment (removal rates: atrazine ≈ linuron > ametryn), and suffered no inhibition by OTC (only slightly for ametryn). Two fungicides (carbendazim and metalaxyl) were removed, nonetheless, in the systems containing only fungicides and insecticides, a clear increase in their half-lives was obtained in the treatments containing OTC. The neonicotinoid insecticides (imidacloprid and thiamethoxam) and the triazole fungicides (tebuconazole and triadimenol) were not significantly eliminated in the biomixture. Globally, the total removal of active ingredients ranged from 40.9% to 61.2% depending on the system, following the pattern: herbicides > fungicides > insecticides. The ecotoxicological analysis of the process revealed no detoxification towards the microcrustacean Daphnia magna, but a significant decay in the phytotoxicity towards Lactuca sativa in some cases, according to seed germination tests; in this case, OTC proved to be partially responsible for the phytotoxicity. The patterns of pesticide removal and detoxification provide inputs for the improvement of BPS use and their relevance as devices for wastewater treatment according to specific pesticide application programs.
Collapse
Affiliation(s)
- Alejandra Huete-Soto
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | - Mario Masís-Mora
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | - Verónica Lizano-Fallas
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | - Juan Salvador Chin-Pampillo
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | - Elizabeth Carazo-Rojas
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | - Carlos E Rodríguez-Rodríguez
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica.
| |
Collapse
|
24
|
Huete-Soto A, Castillo-González H, Masís-Mora M, Chin-Pampillo JS, Rodríguez-Rodríguez CE. Effects of oxytetracycline on the performance and activity of biomixtures: Removal of herbicides and mineralization of chlorpyrifos. JOURNAL OF HAZARDOUS MATERIALS 2017; 321:1-8. [PMID: 27607927 DOI: 10.1016/j.jhazmat.2016.08.078] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/30/2016] [Accepted: 08/31/2016] [Indexed: 06/06/2023]
Abstract
Biopurification systems (BPS) are design to remove pesticides from agricultural wastewater. This work assays for the first time the potential effect of an antibiotic of agricultural use (oxytetracycline, OTC) on the performance of a biomixture (biologically active core of BPS), considering that antibiotic-containing wastewaters are also produced in agricultural labors. The respiration of the biomixture was stimulated in the presence of increasing doses of OTC (≥100mgkg-1), and only slightly increased with lower doses (≤10mgkg-1). When co-applied during the removal of chlorpyrifos, OTC increased chlorpyrifos mineralization rates at low doses, resembling a hormetic effect. The biomixture was also able to remove three herbicides (atrazine, ametryn and linuron) with half-lives of 24.3 d, 43.9 d and 30.7 d; during co-application of OTC at a biomixture-relevant concentration, only the removal of ametryn was significantly inhibited, increasing its half-life to 92.4 d. Ecotoxicological assays revealed that detoxification takes place in the biomixture during the removal of herbicides in the presence of OTC. Overall results suggest that co-application of OTC in a biomixture does not negatively affect the performance of the matrix in every case; moreover, the co-application of this antibiotic could improve the mineralization of some pesticides.
Collapse
Affiliation(s)
- Alejandra Huete-Soto
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | - Humberto Castillo-González
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | - Mario Masís-Mora
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | - Juan Salvador Chin-Pampillo
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | - Carlos E Rodríguez-Rodríguez
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica.
| |
Collapse
|
25
|
Rodríguez-Rodríguez CE, Madrigal-León K, Masís-Mora M, Pérez-Villanueva M, Chin-Pampillo JS. Removal of carbamates and detoxification potential in a biomixture: Fungal bioaugmentation versus traditional use. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 135:252-258. [PMID: 27750092 DOI: 10.1016/j.ecoenv.2016.10.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 09/26/2016] [Accepted: 10/06/2016] [Indexed: 06/06/2023]
Abstract
The use of fungal bioaugmentation represents a promising way to improve the performance of biomixtures for the elimination of pesticides. The ligninolyitc fungus Trametes versicolor was employed for the removal of three carbamates (aldicarb, ALD; methomyl, MTM; and methiocarb, MTC) in defined liquid medium; in this matrix ALD and MTM showed similar half-lives (14d), nonetheless MTC exhibited a faster removal, with a half-life of 6.5d. Then the fungus was employed in the bioaugmentation of an optimized biomixture to remove the aforementioned carbamates plus carbofuran (CFN). Bioaugmented and non-bioaugmented systems removed over 99% ALD and MTM after 8d of treatment, nonetheless a slight initial delay in the removal was observed in the bioaugmented biomixtures (removal after 3d: ALD 87%/97%; MTM 86%/99%, in bioaugmented/non-bioaugmented systems). The elimination of the other carbamates was slower, but independent of the presence of the fungus: >98% for MTM after 35d and >99.5% for CFN after 22d. Though the bioaugmentation did not improve the removal capacity of the biomixture, it favored a lower production of transformation products at the first stages of the treatment, and in both cases, a marked decrease in the toxicity of the matrix was swiftly achieved along the process (from 435 to 448 TU to values <1TU in 16d).
Collapse
Affiliation(s)
- Carlos E Rodríguez-Rodríguez
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica.
| | - Karina Madrigal-León
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | - Mario Masís-Mora
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | - Marta Pérez-Villanueva
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | - Juan Salvador Chin-Pampillo
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| |
Collapse
|
26
|
López-Fernández O, Yáñez R, Rial-Otero R, Simal-Gándara J. Kinetic modelling of mancozeb hydrolysis and photolysis to ethylenethiourea and other by-products in water. WATER RESEARCH 2016; 102:561-571. [PMID: 27423406 DOI: 10.1016/j.watres.2016.07.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/03/2016] [Accepted: 07/04/2016] [Indexed: 06/06/2023]
Abstract
The aim of this study was to propose kinetic models suitable for reproducing and predicting mancozeb (Mz) conversion to by-products as a function of the operational conditions. The main factors (pH, temperature and light) potentially affecting the mancozeb degradation in aqueous models were studied by a multifactorial screening design. In addition, the response surface methodology (RSM) was applied to evaluate the interactive effects of these factors on ethylenethiourea (ETU) formation. The response surface revealed that the best degradation conditions to minimize mancozeb conversion to ETU were low pH (2), low temperature (25 °C) and darkness. Under these conditions, the percentage of mancozeb remained in the solution at 72 h was approximately 10% of the initial concentration and the percentage of ETU conversion was 5.4%. However, according to the model, in surface waters under typical environmental conditions (pH 8, 25 °C and light) the percentage of mancozeb conversion to ETU would be about 17.5%. The proposed model provides a satisfactory interpretation of the experimental data obtained during the hydrolysis of mancozeb.
Collapse
Affiliation(s)
- Olalla López-Fernández
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Science Faculty, University of Vigo, Ourense Campus, E-32004 Ourense, Spain
| | - Remedios Yáñez
- Department of Chemical Engineering, Science Faculty, University of Vigo, Ourense Campus, E-32004 Ourense, Spain
| | - Raquel Rial-Otero
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Science Faculty, University of Vigo, Ourense Campus, E-32004 Ourense, Spain.
| | - Jesús Simal-Gándara
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Science Faculty, University of Vigo, Ourense Campus, E-32004 Ourense, Spain.
| |
Collapse
|
27
|
Chin-Pampillo JS, Masís-Mora M, Ruiz-Hidalgo K, Carazo-Rojas E, Rodríguez-Rodríguez CE. Removal of carbofuran is not affected by co-application of chlorpyrifos in a coconut fiber/compost based biomixture after aging or pre-exposure. J Environ Sci (China) 2016; 46:182-189. [PMID: 27521950 DOI: 10.1016/j.jes.2015.12.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 11/18/2015] [Accepted: 12/25/2015] [Indexed: 06/06/2023]
Abstract
Biomixtures constitute the biologically active part of biopurification systems (BPS), which are used to treat pesticide-containing wastewater. The aim of this work was to determine whether co-application of chlorpyrifos (CLP) affects the removal of carbofuran (CFN) (both insecticide/nematicides) in a coconut fiber-compost-soil biomixture (FCS biomixture), after aging or previous exposure to CFN. Removal of CFN and two of its transformation products (3-hydroxycarbofuran and 3-ketocarbofuran) was enhanced in pre-exposed biomixtures in comparison to aged biomixtures. The co-application of CLP did not affect CFN removal, which suggests that CLP does not inhibit microbial populations in charge of CFN transformation. Contrary to the removal behavior, mineralization of radiolabeled (14)C-pesticides showed higher mineralization rates of CFN in aged biomixtures (with respect to freshly prepared or pre-exposed biomixtures). In the case of CLP, mineralization was favored in freshly prepared biomixtures, which could be ascribed to high sorption during aging and microbial inhibition by CFN in pre-exposure. Regardless of removal and mineralization results, toxicological assays revealed a steep decrease in the acute toxicity of the matrix on the microcrustacean Daphnia magna (over 97%) after 8days of treatment of individual pesticides or the mixture CFN/CLP. Results suggest that FCS biomixtures are suitable to be used in BPS for the treatment of wastewater in fields where both pesticides are employed.
Collapse
Affiliation(s)
| | - Mario Masís-Mora
- Research Center of Environmental Contamination (CICA), University of Costa Rica, 2060 San José, Costa Rica
| | - Karla Ruiz-Hidalgo
- Research Center of Environmental Contamination (CICA), University of Costa Rica, 2060 San José, Costa Rica
| | - Elizabeth Carazo-Rojas
- Research Center of Environmental Contamination (CICA), University of Costa Rica, 2060 San José, Costa Rica
| | | |
Collapse
|