1
|
Foysal MRA, Qiu CW, Sreesaeng J, Elhabashy S, Akhter D, Zhang S, Shi SH, Wu F. Comprehensive Physio-Biochemical Evaluation Reveals Promising Genotypes and Mechanisms for Cadmium Tolerance in Tibetan Hull-Less Barley. PLANTS (BASEL, SWITZERLAND) 2024; 13:3593. [PMID: 39771291 PMCID: PMC11676794 DOI: 10.3390/plants13243593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 01/11/2025]
Abstract
Cadmium (Cd) toxicity in agricultural soil is increasing globally and significantly impacts crop production and food safety. Tibetan hull-less barley (Hordeum vulgare L. var. nudum), an important staple food and economic crop, exhibits high genetic diversity and is uniquely adapted to the harsh conditions of the Qinghai-Tibet Plateau. This study utilized hydroponic experiments to evaluate the genotypic differences in Cd tolerance among 71 Tibetan hull-less barley genotypes. Physiological assessments revealed significant reductions in various growth parameters under Cd stress compared to normal conditions: soil-plant analysis development (SPAD) value, shoot height, root length, shoot and root fresh weight, shoot and root dry weight, of 11.74%, 39.69%, 48.09%, 52.88%, 58.39%, 40.59%, and 40.52%, respectively. Principal component analysis (PCA) revealed key traits contributing to Cd stress responses, explaining 76.81% and 46.56% of the variance in the preliminary and secondary selection. The genotypes exhibited varying degrees of Cd tolerance, with X178, X192, X215, X140, and X162 showing high tolerance, while X38 was the most sensitive based on the integrated score and PCA results. Validation experiments confirmed X178 as the most tolerant genotype and X38 as the most sensitive, with observed variations in morphological, physiological, and biochemical parameters, as well as mineral nutrient responses to Cd stress. Cd-tolerant genotypes exhibited higher chlorophyll content, net photosynthesis rates, and effective photochemical capacity of photosystem II, along with an increased Cd translocation rate and reduced oxidative stress. This was accompanied by elevated activities of antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), indicating a robust stress response mechanism. These findings could facilitate the development of high-tolerance cultivars, with X178 as a promising candidate for further research and cultivation in Cd-contaminated soils.
Collapse
Affiliation(s)
- Md Rafat Al Foysal
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; (M.R.A.F.); (J.S.); (S.E.); (S.Z.); (S.-H.S.); (F.W.)
- Department of Agronomy and Haor Agriculture, Faculty of Agriculture, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Cheng-Wei Qiu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; (M.R.A.F.); (J.S.); (S.E.); (S.Z.); (S.-H.S.); (F.W.)
| | - Jakkrit Sreesaeng
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; (M.R.A.F.); (J.S.); (S.E.); (S.Z.); (S.-H.S.); (F.W.)
- Expert Centre of Innovative Agriculture, Thailand Institute of Scientific and Technological Research, Pathum Thani 12120, Thailand
| | - Saad Elhabashy
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; (M.R.A.F.); (J.S.); (S.E.); (S.Z.); (S.-H.S.); (F.W.)
- Department of Crop Science, Faculty of Agriculture, Alexandria University, Alexandria 21545, Egypt
| | - Delara Akhter
- Department of Genetics and Plant Breeding, Sylhet Agricultural University, Sylhet 3100, Bangladesh;
| | - Shuo Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; (M.R.A.F.); (J.S.); (S.E.); (S.Z.); (S.-H.S.); (F.W.)
| | - Shou-Heng Shi
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; (M.R.A.F.); (J.S.); (S.E.); (S.Z.); (S.-H.S.); (F.W.)
| | - Feibo Wu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; (M.R.A.F.); (J.S.); (S.E.); (S.Z.); (S.-H.S.); (F.W.)
| |
Collapse
|
2
|
Ibnyasser A, Saidi R, Elhaissoufi W, Khourchi S, Haddine M, Ghani R, Elghali A, Oukarroum A, Barakat A, Bargaz A. Root acid phosphatases and microbial biomass phosphorus induced Cd tolerance and P acquisition in wheat inoculated with P solubilizing bacteria. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117402. [PMID: 39615300 DOI: 10.1016/j.ecoenv.2024.117402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/09/2024]
Abstract
Microbial bioremediation has emerged promisingly to improve crop tolerance to cadmium (Cd). Moreover, Cd tolerance and phosphate acquisition in plants positively correlated under P solubilizing bacteria inoculation, yet there is no evidence on specific mechanisms influencing Cd tolerance and plant P acquisition. The present study evaluates Cd tolerance in rock P-amended durum wheat in response to inoculation with P solubilizing bacteria (PSB) [three individual isolates Bacillus siamensis, Rahnella aceris, Bacillus cereus and their consortium (PSBCs)] and consequently reveals key rhizosphere mechanisms involved in both Cd tolerance and P use efficiency. Results show that inoculation overall improved plant growth, rhizosphere parameters and nutrient uptake (P, N, K) under increasing Cd concentrations [8 (Cd8) and 16 (Cd16) ppm Cd2+]. Under Cd16, Rahnella aceris induced the most significant plant responses in terms of biomass [shoots (31 %), roots (40 %), and spikes (92 %)], rhizosphere available P (234 %) and root inorganic P (109 %) compared to uninoculated plant. Microbial biomass P (MBP) and root acid phosphatases (APase) were 33-and 13-times higher, respectively, than in uninoculated plants. In addition, inoculation (particularly using PSBCs) significantly decreased Cd translocation factor (TF) (Cd8: -17 % and Cd16: -22 %) and Cd bioaccumulation factor (BAF) (Cd8: -6 % and Cd16: -40 %) concomitantly to enhanced root morphological traits and P contents in shoots and spikes. Furthermore, PSB inoculation under Cd constraint increased (rhizosphere available P / MBP) and (Root APase / Rhizosphere Apase) ratios that significantly (p < 0.05) correlate with plant P uptake in shoots and spikes. Increase in both ratios was concomitant to a significant decrease in TF and BAF of Cd exemplified by negatively significant correlations (r2=0.70 and r2=0.57, p < 0.05). This finding elucidates the key role of bacterial inoculation that presumably triggered Cd tolerance and aboveground P owing to increased (rhizosphere available P / MBP) and (Root / Rhizosphere APase) ratios in PSB-inoculated wheat.
Collapse
Affiliation(s)
- Ammar Ibnyasser
- AgroBiosciences Program, College of Agriculture and Environmental Sciences, Mohammed 6 Polytechnic University, Lot 660, Ben Guerir 43150, Morocco.
| | - Rym Saidi
- AgroBiosciences Program, College of Agriculture and Environmental Sciences, Mohammed 6 Polytechnic University, Lot 660, Ben Guerir 43150, Morocco.
| | - Wissal Elhaissoufi
- AgroBiosciences Program, College of Agriculture and Environmental Sciences, Mohammed 6 Polytechnic University, Lot 660, Ben Guerir 43150, Morocco.
| | - Said Khourchi
- AgroBiosciences Program, College of Agriculture and Environmental Sciences, Mohammed 6 Polytechnic University, Lot 660, Ben Guerir 43150, Morocco.
| | - Meryem Haddine
- AgroBiosciences Program, College of Agriculture and Environmental Sciences, Mohammed 6 Polytechnic University, Lot 660, Ben Guerir 43150, Morocco.
| | - Rachid Ghani
- AgroBiosciences Program, College of Agriculture and Environmental Sciences, Mohammed 6 Polytechnic University, Lot 660, Ben Guerir 43150, Morocco.
| | - Abdellatif Elghali
- Geology & Sustainable Mining Institute, Mohammed 6 Polytechnic University, Lot 660, Ben Guerir 43150, Morocco.
| | - Abdallah Oukarroum
- AgroBiosciences Program, College of Agriculture and Environmental Sciences, Mohammed 6 Polytechnic University, Lot 660, Ben Guerir 43150, Morocco.
| | - Abdellatif Barakat
- IATE, University of Montpellier, INRAE, Agro Institute, Montpellier 34060, France.
| | - Adnane Bargaz
- AgroBiosciences Program, College of Agriculture and Environmental Sciences, Mohammed 6 Polytechnic University, Lot 660, Ben Guerir 43150, Morocco.
| |
Collapse
|
3
|
Basit A, Andleeb S, Liaqat I, Ashraf N, Ali S, Naseer A, Nazir A, Kiyani F. Characterization of heavy metal-associated bacteria from petroleum-contaminated soil and their resistogram and antibiogram analysis. Folia Microbiol (Praha) 2024; 69:975-991. [PMID: 38319458 DOI: 10.1007/s12223-024-01135-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 01/10/2024] [Indexed: 02/07/2024]
Abstract
The aim of the current study was to screen and identify heavy metal (chromium, cadmium, and lead) associated bacteria from petroleum-contaminated soil of district Muzaffarabad, Azad Jammu and Kashmir, Pakistan to develop ecofriendly technology for contaminated soil remediation. The petroleum-contaminated soil was collected from 99 different localities of district Muzaffarabad and the detection of heavy metals via an atomic absorption spectrometer. The isolation and identification of heavy metals-associated bacteria were done via traditional and molecular methods. Resistogram and antibiogram analysis were also performed using agar well diffusion and agar disc diffusion methods. The isolated bacteria were classified into species, i.e., B. paramycoides, B. albus, B. thuringiensis, B. velezensis, B. anthracis, B. pacificus Burkholderia arboris, Burkholderia reimsis, Burkholderia aenigmatica, and Streptococcus agalactiae. All heavy metals-associated bacteria showed resistance against both high and low concentrations of chromium while sensitive towards high and low concentrations of lead in the range of 3.0 ± 0.0 mm to 13.0 ± 0.0 mm and maximum inhibition was recorded when cadmium was used. Results revealed that some bacteria showed sensitivity towards Sulphonamides, Norfloxacin, Erythromycin, and Tobramycin. It was concluded that chromium-resistant bacteria could be used as a favorable source for chromium remediation from contaminated areas and could be used as a potential microbial filter.
Collapse
Affiliation(s)
- Abdul Basit
- Microbial Biotechnology and Vermi-Technology Laboratory, Department of Zoology, The University of Azad Jammu & Kashmir, King Abdullah Campus, Chattar Kalass, Muzaffarabad, 13100, Pakistan
| | - Saiqa Andleeb
- Microbial Biotechnology and Vermi-Technology Laboratory, Department of Zoology, The University of Azad Jammu & Kashmir, King Abdullah Campus, Chattar Kalass, Muzaffarabad, 13100, Pakistan.
| | - Iram Liaqat
- Department of Zoology, GC University, Lahore, Pakistan
| | - Nasra Ashraf
- Microbial Biotechnology and Vermi-Technology Laboratory, Department of Zoology, The University of Azad Jammu & Kashmir, King Abdullah Campus, Chattar Kalass, Muzaffarabad, 13100, Pakistan
| | - Shaukat Ali
- Department of Zoology, GC University, Lahore, Pakistan
| | - Anum Naseer
- Microbial Biotechnology and Vermi-Technology Laboratory, Department of Zoology, The University of Azad Jammu & Kashmir, King Abdullah Campus, Chattar Kalass, Muzaffarabad, 13100, Pakistan
| | - Aisha Nazir
- Institute of Botany, University of the Punjab, Quaid-E-Azam Campus, Lahore, Pakistan
| | - Fahad Kiyani
- Microbial Biotechnology and Vermi-Technology Laboratory, Department of Zoology, The University of Azad Jammu & Kashmir, King Abdullah Campus, Chattar Kalass, Muzaffarabad, 13100, Pakistan
| |
Collapse
|
4
|
Guo Y, Chen J, Liao H, Wu K, Xiao Z, Duan Q, Wang J, Shu Y. Defense of cabbages against herbivore cutworm Spodoptera litura under Cd stress and insect herbivory stress simultaneously. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124519. [PMID: 38986765 DOI: 10.1016/j.envpol.2024.124519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 06/20/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
Biotic (e.g., heavy metal) and abiotic stress (e.g., insect attack) can affect plant chemical defense, but little is known about the changes in plant defense when they occur concurrently. Herein, the impacts of heavy metal cadmium (Cd) stress and insect herbivory stress on the direct and indirect defense of two cultivar cabbages of Brassica campestris, the low-Cd cultivar Lvbao701 and the high-Cd cultivar Chicaixin No.4, against the herbivore cutworm Spodoptera litura were investigated. Although 10 mg kg-1 Cd stress alone inhibited leaf secondary metabolites (total phenolics, flavonoids), it reduced the feeding rate and odor selection of S. litura towards both cultivar cabbages, especially for Lvbao701, by increasing leaf Cd content and repellent volatile organic compounds (VOCs) (6-methyl-5-hepten-2-one, 7,9-di-tert-butyl-1-oxaspiro (4,5)deca-6,9-diene-2,8-dione), and reducing soluble sugar and attractive VOCs (3-methyl-3-pentanol, 2,5-hexanedione, tetradecanal). Under 2.5 mg kg-1 Cd and herbivory stress, although leaf total phenolics and flavonoids increased significantly, the feeding rate and odor selection of S. litura towards both cultivar cabbages increased, especially for Chicaixin No.4, indicating that the chemical defense of cabbages was depressed. Therefore, Cd stress alone improved the insect resistance of cabbages, whereas herbivory stress weakened the enhanced cabbages defence by Cd stress. The low-Cd cultivar Lvbao701 presented stronger insect resistance than Chicaixin No.4, suggesting that Lvbao701 application in Cd-polluted soil can not only decrease Cd transmission to higher levels in the food chain but also reduce pest occurrence.
Collapse
Affiliation(s)
- Yeshan Guo
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Research Center for Modern Eco-Agriculture and Circular Agriculture, Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Jin Chen
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Research Center for Modern Eco-Agriculture and Circular Agriculture, Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
| | - Huimin Liao
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Research Center for Modern Eco-Agriculture and Circular Agriculture, Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Kaixuan Wu
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Research Center for Modern Eco-Agriculture and Circular Agriculture, Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Zhenggao Xiao
- Institute of Environmental Processes and Pollution Control, and School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Qijiao Duan
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Research Center for Modern Eco-Agriculture and Circular Agriculture, Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Jianwu Wang
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Research Center for Modern Eco-Agriculture and Circular Agriculture, Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yinghua Shu
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Research Center for Modern Eco-Agriculture and Circular Agriculture, Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
5
|
Zhou L, Liao H, Wang W, Li L, Chen H, He X, Peng Y, Chen Q. Mechanistic insights into mitigating Cd stress in plants using typical organic waste fermentation solutions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:4721-4732. [PMID: 38105331 DOI: 10.1007/s11356-023-31498-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
Finding practical solutions for utilizing agricultural organic wastes has always been a challenge. To address this, our study investigated the effects and mechanisms of different exogenous organic waste fermentation solutions on alleviating Cd stress in plants using hydroponic experiments. Out of the seven fermentation solutions examined, pea fermentation liquid (T3), chicken manure (T5), molasses (T6), and chitosan oligosaccharide broth (T9) exhibited positive effects. They increased shoot fresh weight by 1.17%, 26.83%, 7.94%, and 15.59%, and root fresh weight by 50.00%, 12.21%, 81.19%, and 19.47%, respectively. Conversely, amino acid mother liquid (T7) and potassium polyaspartate liquid (T8) reduced shoot fresh weight by 34.21% and 24.74%, and root fresh weight by 27.06% and 7.10%, respectively. All organic waste liquids reduced Cd concentration in shoots and roots. Corn fermentation liquid (T4) reduced Cd in shoots from 87.91 to 19.20 mg/kg, while molasses (T6) reduced Cd in roots from 980.94 to 260.47 mg/kg. SEM-EDX results revealed that molasses (T6) effectively repaired Cd damage on root surfaces. In addition, several waste liquids mitigated microelement absorption disturbances. All waste liquids reduced MDA, corn fermentation liquid (T4), chicken manure (T5), molasses (T6), potassium polyaspartate liquid (T8), and chitosan oligosaccharide liquid (T9) significantly decreased H2O2 by 21.6-38.3%. Structural equation model (SEM) and correlation analysis highlighted the importance of root Mg, Cu, and Zn content and CAT activity in relieving Cd stress and promoting plant growth. Overall, molasses (T6) and chicken manure (T5) demonstrated the most beneficial combined effects, while amino acid mother liquid (T7) and chitosan oligosaccharide liquid (T9) should be exercised with caution due to their weaker effects.
Collapse
Affiliation(s)
- Lin Zhou
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Hongjie Liao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Wenhao Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Longcheng Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Hao Chen
- School of Agriculture, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Xuehan He
- School of Pharmaceutical Sciences, Shenzhen, 518107, Guangdong, China
| | - Yutao Peng
- School of Agriculture, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China.
| | - Qing Chen
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
6
|
Jia L, Fan W, Wang P, Chen Y, Zhao P, Yang S, Long G. Attapulgite amendment favors the utilization of high cadmium-contaminated soil for Erigeron breviscapus cultivation. CHEMOSPHERE 2023; 326:138490. [PMID: 36965533 DOI: 10.1016/j.chemosphere.2023.138490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/02/2023] [Accepted: 03/21/2023] [Indexed: 06/18/2023]
Abstract
A practical measure of soil pollution can effectively control the utilization of contaminated soil during the remediation process. In this study, Erigeron breviscapus was used as the experimental material. Soil polluted with high concentrations of cadmium (Cd) was used to study the effects of different doses of attapulgite (AP) (0, 10, 20, and 40 kg-1 for AP0, AP10, AP20, and AP40, respectively) on the yield and quality of E. breviscapus (as measured by scutellarin), as well as soil remediation. The results showed that the yield and scutellarin content of E. breviscapus decreased by 33.4% and 78.9%, respectively, in soil contaminated with high concentrations of Cd (AP0) compared with the control soil (without Cd added). Moreover, the yield increased by 48.0% and 10.6% in AP20 and AP40, respectively, compared with AP0, and the scutellarin content increased by a factor of 2.35-2.41 in AP10, AP20, and AP40. Compared with AP0, the soil Cd content decreased by 22.5-26.2% in AP10, AP20, and AP40 and the available Cd content and acid-extractable Cd fraction in the soil also decreased. The catalase, peroxidase, superoxide dismutase activities, chlorophyll, and Fe2+ content were increased in AP10, AP20, and AP40, leading to an increased yield and scutellarin content. Overall, AP20 had the best effect on the yield, quality of E. breviscapus, and soil remediation. This study provides a practical measure to consider for concurrent benefits of pollution remediation and utilization of Cd-contaminated soil.
Collapse
Affiliation(s)
- Lijie Jia
- College of Resources and Environment, Yunnan Agricultural University, KunMing, 650201, China
| | - Wei Fan
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China; National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, China
| | - Peili Wang
- College of Resources and Environment, Yunnan Agricultural University, KunMing, 650201, China
| | - Yu Chen
- College of Resources and Environment, Yunnan Agricultural University, KunMing, 650201, China
| | - Ping Zhao
- College of Resources and Environment, Yunnan Agricultural University, KunMing, 650201, China
| | - Shengchao Yang
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China; National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, China
| | - Guangqiang Long
- College of Resources and Environment, Yunnan Agricultural University, KunMing, 650201, China; The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China; National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
7
|
Li G, Yan L, Chen X, Lam SS, Rinklebe J, Yu Q, Yang Y, Peng W, Sonne C. Phytoremediation of cadmium from soil, air and water. CHEMOSPHERE 2023; 320:138058. [PMID: 36746249 DOI: 10.1016/j.chemosphere.2023.138058] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Potentially toxic elements (PTEs) pose a great threat to ecosystems and long-term exposure causes adverse effects to wildlife and humans. Cadmium induces a variety of diseases including cancer, kidney dysfunction, bone lesions, anemia and hypertension. Here we review the ability of plants to accumulate cadmium from soil, air and water under different environmental conditions, focusing on absorption mechanisms and factors affecting these. Cadmium possess various transport mechanisms and pathways roughly divided into symplast and apoplast pathway. Excessive cadmium concentrations in the environment affects soil properties, pH and microorganism composition and function and thereby plant uptake. At the same time, plants resist cadmium toxicity by antioxidant reaction. The differences in cadmium absorption capacity of plants need more exploration to determine whether it is beneficial for crop breeding or genetic modification. Identify whether plants have the potential to become hyperaccumulator and avoid excessive cadmium uptake by edible plants. The use of activators such as wood vinegar, GLDA (Glutamic acid diacetic acid), or the placement of earthworms and fungi can speed up phytoremediation of plants, thereby reducing uptake of crop varieties and reducing human exposure, thus accelerating food safety and the health of the planet.
Collapse
Affiliation(s)
- Guanyan Li
- Henan Province International Collaboration /Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Lijun Yan
- Henan Province International Collaboration /Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiangmeng Chen
- Henan Province International Collaboration /Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Center for Transdisciplinary Research, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; University Centre for Research and Development, Department of Chemistry, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste Management, Laboratory of Soil and Groundwater Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany
| | - Qing Yu
- Henan Province International Collaboration /Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yafeng Yang
- Henan Province International Collaboration /Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Wanxi Peng
- Henan Province International Collaboration /Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Christian Sonne
- Department of Ecoscience, Arctic Research Centre (ARC), Aarhus University, Frederiksborgvej 399, PO Box 358, 4000, Roskilde, Denmark; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India.
| |
Collapse
|
8
|
Luo F, Zhu D, Sun H, Zou R, Duan W, Liu J, Yan Y. Wheat Selenium-binding protein TaSBP-A enhances cadmium tolerance by decreasing free Cd 2+ and alleviating the oxidative damage and photosynthesis impairment. FRONTIERS IN PLANT SCIENCE 2023; 14:1103241. [PMID: 36824198 PMCID: PMC9941557 DOI: 10.3389/fpls.2023.1103241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Cadmium, one of the toxic heavy metals, robustly impact crop growth and development and food safety. In this study, the mechanisms of wheat (Triticum aestivum L.) selenium-binding protein-A (TaSBP-A) involved in response to Cd stress was fully investigated by overexpression in Arabidopsis and wheat. As a cytoplasm protein, TaSBP-A showed a high expression in plant roots and its expression levels were highly induced by Cd treatment. The overexpression of TaSBP-A enhanced Cd-toleration in yeast, Arabidopsis and wheat. Meanwhile, transgenic Arabidopsis under Cd stress showed a lower H2O2 and malondialdehyde content and a higher photochemical efficiency in the leaf and a reduction of free Cd2+ in the root. Transgenic wheat seedlings of TaSBP exhibited an increment of Cd content in the root, and a reduction Cd content in the leaf under Cd2+ stress. Cd2+ binding assay combined with a thermodynamics survey and secondary structure analysis indicated that the unique CXXC motif in TaSBP was a major Cd-binding site participating in the Cd detoxification. These results suggested that TaSBP-A can enhance the sequestration of free Cd2+ in root and inhibit the Cd transfer from root to leaf, ultimately conferring plant Cd-tolerance via alleviating the oxidative stress and photosynthesis impairment triggered by Cd stress.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yueming Yan
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Science, Capital Normal University, Beijing, China
| |
Collapse
|
9
|
Khan IU, Qi SS, Gul F, Manan S, Rono JK, Naz M, Shi XN, Zhang H, Dai ZC, Du DL. A Green Approach Used for Heavy Metals 'Phytoremediation' Via Invasive Plant Species to Mitigate Environmental Pollution: A Review. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12040725. [PMID: 36840073 PMCID: PMC9964337 DOI: 10.3390/plants12040725] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/28/2023] [Accepted: 02/02/2023] [Indexed: 05/27/2023]
Abstract
Heavy metals (HMs) normally occur in nature and are rapidly released into ecosystems by anthropogenic activities, leading to a series of threats to plant productivity as well as human health. Phytoremediation is a clean, eco-friendly, and cost-effective method for reducing soil toxicity, particularly in weedy plants (invasive plant species (IPS)). This method provides a favorable tool for HM hyperaccumulation using invasive plants. Improving the phytoremediation strategy requires a profound knowledge of HM uptake and translocation as well as the development of resistance or tolerance to HMs. This review describes a comprehensive mechanism of uptake and translocation of HMs and their subsequent detoxification with the IPS via phytoremediation. Additionally, the improvement of phytoremediation through advanced biotechnological strategies, including genetic engineering, nanoparticles, microorganisms, CRISPR-Cas9, and protein basis, is discussed. In summary, this appraisal will provide a new platform for the uptake, translocation, and detoxification of HMs via the phytoremediation process of the IPS.
Collapse
Affiliation(s)
- Irfan Ullah Khan
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shan-Shan Qi
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Farrukh Gul
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Sehrish Manan
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Justice Kipkorir Rono
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Misbah Naz
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xin-Ning Shi
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Haiyan Zhang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
- School of Inspection and Testing Certificate, Changzhou Vocational Institute Engineering, Changzhou 213164, China
| | - Zhi-Cong Dai
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Dao-Lin Du
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
10
|
Li W, Chen K, Li Q, Tang Y, Jiang Y, Su Y. Effects of Arbuscular Mycorrhizal Fungi on Alleviating Cadmium Stress in Medicago truncatula Gaertn. PLANTS (BASEL, SWITZERLAND) 2023; 12:547. [PMID: 36771633 PMCID: PMC9920379 DOI: 10.3390/plants12030547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/13/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Heavy metal contamination is a global problem for ecosystems and human health. Remediation of contaminated soils has received much attention in the last decade. Aided mitigation of heavy metal phytotoxicity by arbuscular mycorrhizal fungi (AMF) is a cost-effective and environmentally friendly strategy. This study was carried out to investigate the mitigation effect of AMF inoculation on heavy metal toxicity in Medicago truncatula under soil cadmium stress. Therefore, a pot experiment was designed to evaluate the growth, chlorophyll fluorescence, Cd uptake and distribution, malondialdehyde (MDA) content, root soil physicochemical properties, and metabolite profile analysis of M. truncatula with/without AMF inoculation in Cd (20 mg/Kg)-contaminated soil. The results showed that inoculating AMF under Cd stress might enhance photosynthetic efficiency, increase plant biomass, decrease Cd and MDA content, and improve soil physicochemical properties in M. truncatula. Non-targeted metabolite analysis revealed that inoculation with AMF under Cd stress significantly upregulated the production of various amino acids in inter-root metabolism and increase organic acid and phytohormone synthesis. This study provides information on the physiological responses of mycorrhizal plants to heavy metal stress, which could help provide deeper insight into the mechanisms of heavy metal remediation by AMF.
Collapse
Affiliation(s)
- Wanting Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Ke Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Qiong Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Yunlai Tang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Yuying Jiang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Yu Su
- Sichuan Academy of Forestry, Chengdu 610036, China
| |
Collapse
|
11
|
Jaja N, Codling EE, Timlin D, Rutto LK, Reddy VR. Phytoremediation efficacy of native vegetation for nutrients and heavy metals on soils amended with poultry litter and fertilizer. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 25:1423-1434. [PMID: 36644901 DOI: 10.1080/15226514.2022.2161466] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Poultry litter on agricultural lands could introduce nitrogen (N), phosphorus (P), heavy metals in soil and ground water. Native vegetations were identified to assess efficacy for phytoremediation of nutrients and metals from soil and water. Objective was to measure capability of multi-year native species to remove metals, nutrients, and prevent Nitrate-N leaching below the rooting zone. Treatments were distributed in four replicates with/without fertilization. Suction lysimeters were installed at 30, 60, and 90-cm depths in 3 of 4 replicates. Species were identified, recorded, five specified cuttings sampled. Plant, soil, water samples were prepared and analyzed by spectroscopy. Nitrate-N extraction, nitrates in water samples were determined using flow injection analysis. Fertilized plots (NVM) had 39% more biomass yield than unfertilized plots (NVN). In plants, nutrient and metal concentrations varied significantly with 14% increase in Zn, 36% and 26% in K and Mg over NVN for first and second year. Uneven between NVM and NVN, topsoil had higher values for most nutrients and metals. Largest P and (NO3-)-N in plant and water were observed from NVM. Cultivation of native vegetation appears to be an effective approach for remediation of excess nitrates-N, P, heavy metals from surface and sub-surface zones of the soil.
Collapse
Affiliation(s)
- Ngowari Jaja
- Adaptive Cropping Systems Laboratory, USDA-ARS, Beltsville, MD, USA
| | - Eton E Codling
- Adaptive Cropping Systems Laboratory, USDA-ARS, Beltsville, MD, USA
| | - Dennis Timlin
- Adaptive Cropping Systems Laboratory, USDA-ARS, Beltsville, MD, USA
| | - Laban K Rutto
- Agriculture Research Station, College of Agriculture, Virginia State University, Petersburg, VA, USA
| | | |
Collapse
|
12
|
Tian P, Feng YX, Li CZ, Zhang P, Yu XZ. Transcriptional analysis of heavy metal P 1B-ATPases (HMAs) elucidates competitive interaction in metal transport between cadmium and mineral elements in rice plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:287-297. [PMID: 35900629 DOI: 10.1007/s11356-022-22243-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Cadmium (Cd) pollution has become a major threat to crop production and quality globally. The heavy metal P1B-ATPases (HMAs) play a crucial role in metal transport in plants. In the present study, we investigated the interaction in metal transport by HMAs between Cd and mineral elements in rice plants. Rice seedlings were treated with cadmium nitrate either in the nutrient solution ("Cd+M") or in the ultrapure water ("Cd-M"). Result showed that phytotoxicity of Cd to rice seedlings was evident from both Cd treatments, judged by relative growth rate (RGR), where more severe repression (p < 0.05) of RGR was observed in the "Cd-M" treatments than the "Cd+M" treatments. More Cd (p < 0.05) was accumulated in rice tissues from the "Cd-M" treatments than the "Cd+M" treatments, while there is a significant difference (p < 0.05) in distribution and translocation of mineral elements in rice tissues between the "Cd+M" and the "Cd-M" treatments. RT-qPCR analysis displayed that the expression patterns of HMAs related genes were quite different between "Cd+M" and "Cd-M" treatments, suggesting their different regulatory effects during the transport of Cd and mineral elements within rice plants. The competition in metal transport by HMAs mainly occurs between Cd and micro-elements of Zn and Cu in rice tissues during Cd exposure. Overall, this study provides new evidence to clarify the different translocation mechanisms of HMAs in metal transport between Cd and mineral elements in rice seedlings during Cd exposure.
Collapse
Affiliation(s)
- Peng Tian
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin, 541004, People's Republic of China
| | - Yu-Xi Feng
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin, 541004, People's Republic of China
| | - Cheng-Zhi Li
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin, 541004, People's Republic of China
| | - Ping Zhang
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin, 541004, People's Republic of China
| | - Xiao-Zhang Yu
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin, 541004, People's Republic of China.
| |
Collapse
|
13
|
Azhar U, Ahmad H, Shafqat H, Babar M, Shahzad Munir HM, Sagir M, Arif M, Hassan A, Rachmadona N, Rajendran S, Mubashir M, Khoo KS. Remediation techniques for elimination of heavy metal pollutants from soil: A review. ENVIRONMENTAL RESEARCH 2022; 214:113918. [PMID: 35926577 DOI: 10.1016/j.envres.2022.113918] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/05/2022] [Accepted: 07/14/2022] [Indexed: 05/27/2023]
Abstract
Contaminated soil containing toxic metals and metalloids is found everywhere globally. As a consequence of adsorption and precipitation reactions, metals are comparatively immobile in subsurface systems. Hence remediation techniques in such contaminated sites have targeted the solid phase sources of metals such as sludges, debris, contaminated soils, or wastes. Over the last three decades, the accumulation of these toxic substances inside the soil has increased dramatically, putting the ecosystem and human health at risk. Pollution of heavy metal have posed severe impacts on human, and it affects the environment in different ways, resulting in industrial anger in many countries. Various procedures, including chemical, biological, physical, and integrated approaches, have been adopted to get rid of this type of pollution. Expenditure, timekeeping, planning challenges, and state-of-the-art gadget involvement are some drawbacks that need to be properly handled. Recently in situ metal immobilization, plant restoration, and biological methods have changed the dynamics and are considered the best solution for removing metals from soil. This review paper critically evaluates and analyzes the numerous approaches for preparing heavy metal-free soil by adopting different soil remediation methods.
Collapse
Affiliation(s)
- Umair Azhar
- Department of Chemical Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Huma Ahmad
- Department of Chemical Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Hafsa Shafqat
- Department of Chemical Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Muhammad Babar
- Department of Chemical Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Hafiz Muhammad Shahzad Munir
- Department of Chemical Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Muhammad Sagir
- Department of Chemical Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Muhammad Arif
- Department of Chemical Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan.
| | - Afaq Hassan
- Department of Chemical Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan.
| | - Nova Rachmadona
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Japan; Research Collaboration Center for Biomass and Biorefinery between BRIN and Universitas Padjadjaran, West Java, Indonesia
| | - Saravanan Rajendran
- Faculty of Engineering, Department of Mechanical Engineering, University of Tarapacá, Avda. General Velasquez, 1775, Arica, Chile
| | - Muhammad Mubashir
- Department of Petroleum Engineering, School of Engineering, Asia Pacific University of Technology and Innovation, 57000, Kuala Lumpur, Malaysia
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan.
| |
Collapse
|
14
|
Gao F, Zhang X, Zhang J, Li J, Niu T, Tang C, Wang C, Xie J. Zinc oxide nanoparticles improve lettuce ( Lactuca sativa L.) plant tolerance to cadmium by stimulating antioxidant defense, enhancing lignin content and reducing the metal accumulation and translocation. FRONTIERS IN PLANT SCIENCE 2022; 13:1015745. [PMID: 36388475 PMCID: PMC9647129 DOI: 10.3389/fpls.2022.1015745] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Cadmium (Cd) contamination is a serious global concern that warrants constant attention. Therefore, a hydroponic study was conducted to evaluate the effect of different concentrations (0, 1, 2.5, 5, 10, 15 mg/l) of zinc oxide nanoparticles (ZnONPs) on the Cd content in lettuce (Lactuca sativa L.) under Cd stress conditions. The results showed that Cd stress triggered a decrease in plant biomass, an increase in relative electrolyte conductivity (REC), a decrease in root activity, accumulation of reactive oxygen species (ROS) accumulation, and nutrient imbalance. The application of ZnONPs reduced the toxicity symptoms of lettuce seedlings under Cd stress, with the most pronounced effect being observed 2.5 mg/l. ZnONPs promoted the growth of lettuce under Cd stress, mainly in terms of increase in biomass, chlorophyll content, antioxidant enzyme activity, and proline content, as well as reduction in Cd content, malondialdehyde, and reactive oxygen species (ROS) in plant tissues. ZnONPs also enhanced the uptake of ions associated with photosynthesis, such as iron, manganese, magnesium, and zinc. In addition, ZnONPs increase the amount of lignin in the roots, which blocks or reduces the entry of Cd into plant tissues.
Collapse
Affiliation(s)
- Feng Gao
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Xiaodan Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jing Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jing Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Tianhang Niu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Chaonan Tang
- Institute of Vegetables, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Cheng Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
15
|
Combined Plant Growth-Promoting Bacteria Inoculants Were More Beneficial than Single Agents for Plant Growth and Cd Phytoextraction of Brassica juncea L. during Field Application. TOXICS 2022; 10:toxics10070396. [PMID: 35878301 PMCID: PMC9318595 DOI: 10.3390/toxics10070396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/12/2022] [Accepted: 07/16/2022] [Indexed: 11/16/2022]
Abstract
Single or combined plant growth-promoting bacteria (PGPB) strains were widely applied as microbial agents in cadmium (Cd) phytoextraction since they could promote plant growth and facilitate Cd uptake. However, the distinct functional effects between single and combined inoculants have not yet been elucidated. In this study, a field experiment was conducted with single, double and triple inoculants to clarify their divergent impacts on plant growth, Cd uptake and accumulation at different growth stages of Brassica juncea L. by three different PGPB strains (Cupriavidus SaCR1, Burkholdria SaMR10 and Sphingomonas SaMR12). The results show that SaCR1 + SaMR10 + SaMR12 combined inoculants were more effective for growth promotion at the bud stage, flowering stage, and mature stage. Single/combined PGPB agents of SaMR12 and SaMR10 were more efficient for Cd uptake promotion. In addition, SaMR10 + SaMR12 combined the inoculants greatly facilitated Cd uptake and accumulation in shoots, and enhanced the straw Cd extraction rates by 156%. Therefore, it is concluded that the application of PGPB inoculants elevated Cd phytoextraction efficiency, and the combined inoculants were more conductive than single inoculants. These results enriched the existing understanding of PGPB agents and provided technical support for the further exploration of PGPB interacting mechanisms strains on plant growth and Cd phytoextraction, which helped establish an efficient plant–microbe combined phytoremediation system and augment the phytoextraction efficiency in Cd-contaminated farmlands.
Collapse
|
16
|
Pan SF, Ji XH, Xie YH, Liu SH, Tian FX, Liu XL. Influence of soil properties on cadmium accumulation in vegetables: Thresholds, prediction and pathway models based on big data. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 304:119225. [PMID: 35351593 DOI: 10.1016/j.envpol.2022.119225] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/21/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Soil properties, such as soil pH, soil organic matter (SOM), cation exchange capacity (CEC), are the most important factors affecting cadmium (Cd) accumulation in vegetables. In this study, we conducted big data mining of 31,342 soil and vegetable samples to examine the influence of soil properties (soil pH, SOM, CEC, Zn and Mn content) on the accumulation of Cd in root, solanaceous, and leafy vegetables in Hunan Province, China. Specifically, the Cd accumulation capability was in the following order: leafy vegetables > root vegetables > solanaceous vegetables. The soil property thresholds for safety production in vegetables were determined by establishing nonlinear models between Cd bioaccumulation factor (BCF) and the individual soil property, and were 6.5 (pH), 30.0 g/kg (SOM), 13.0 cmol/kg (CEC), 100-140 mg/kg (Zn), and 300-400 mg/kg (Mn). When soil property values were higher than the thresholds, Cd accumulation in vegetables tended to be stable. Prediction models showed that pH and soil Zn were the leading factors influencing Cd accumulation in root vegetables, explaining 87% of the variance; pH, SOM, soil Zn and Mn explained 68% of the variance in solanaceous vegetables; pH and SOM were the main contributors in leafy vegetables, explaining 65% of the variance. Further, variance partitioning analysis (VPA) revealed that the interaction effect of the corresponding key soil properties contributed mostly to BCF. Meanwhile, partial least squares (PLS) path modeling was employed to analyze the path and the interactive effects of soil properties on Cd BCF. pH and SOM were found to be the biggest two players affecting BCF in PLS-models, and the most substantial interactive influence paths of soil properties on BCF were different among the three types of vegetables.
Collapse
Affiliation(s)
- Shu-Fang Pan
- Key Lab of Prevention, Control and Remediation of Soil Heavy Metal Pollution, Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha, 410125, China; Ministry of Agriculture Key Lab of Agri-Environment in the Midstream of Yangtze River Plain, Changsha, 410125, China
| | - Xiong-Hui Ji
- Key Lab of Prevention, Control and Remediation of Soil Heavy Metal Pollution, Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha, 410125, China; Ministry of Agriculture Key Lab of Agri-Environment in the Midstream of Yangtze River Plain, Changsha, 410125, China
| | - Yun-He Xie
- Key Lab of Prevention, Control and Remediation of Soil Heavy Metal Pollution, Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha, 410125, China; Ministry of Agriculture Key Lab of Agri-Environment in the Midstream of Yangtze River Plain, Changsha, 410125, China
| | - Sai-Hua Liu
- Key Lab of Prevention, Control and Remediation of Soil Heavy Metal Pollution, Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha, 410125, China; Ministry of Agriculture Key Lab of Agri-Environment in the Midstream of Yangtze River Plain, Changsha, 410125, China
| | - Fa-Xiang Tian
- Key Lab of Prevention, Control and Remediation of Soil Heavy Metal Pollution, Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha, 410125, China; Ministry of Agriculture Key Lab of Agri-Environment in the Midstream of Yangtze River Plain, Changsha, 410125, China
| | - Xin-Liang Liu
- Key Laboratory of Agro-ecological Processes in Subtropical Regions and Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
| |
Collapse
|
17
|
Phytoremediation of Cadmium Polluted Soils: Current Status and Approaches for Enhancing. SOIL SYSTEMS 2022. [DOI: 10.3390/soilsystems6010003] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cadmium (Cd) is a heavy metal present in atmosphere, rocks, sediments, and soils without a known role in plants. It is relatively mobile and can easily enter from soil into groundwater and contaminate the food chain. Its presence in food in excess amounts may cause severe conditions in humans, therefore prevention of cadmium entering the food chain and its removal from contaminated soils are important steps in preserving public health. In the last several years, several approaches for Cd remediation have been proposed, such as the use of soil amendments or biological systems for reduction of Cd contamination. One of the approaches is phytoremediation, which involves the use of plants for soil clean-up. In this review we summarized current data on the use of different plants in phytoremediation of Cd as well as information about different approaches which have been used to enhance phytoremediation. This includes data on the increasing metal bioavailability in the soil, plant biomass, and plant accumulation capacity as well as seed priming as a promising novel approach for phytoremediation enhancing.
Collapse
|
18
|
Menhas S, Yang X, Hayat K, Niazi NK, Hayat S, Aftab T, Hui N, Wang J, Chen X, Zhou P. Targeting Cd coping mechanisms for stress tolerance in Brassica napus under spiked-substrate system: from physiology to remediation perspective. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 24:622-636. [PMID: 34388060 DOI: 10.1080/15226514.2021.1960479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) is a prevalent, non-essential, carcinogenic, and hazardous heavy metal that reduces plant productivity and capacity of arable land area around the globe. In the present substrate-based pot study, seedlings of Brassica napus 180015 were grown equidistantly in the spiked-substrate medium for 60 days under increasing concentrations of Cd (0, 10, 20, 30, 40, 50 mg kg-1). Following harvest, the morpho-physio-biochemical, antioxidative, and Cd-induced tolerance responses were evaluated in B. napus under an increasing Cd stress regime. Additionally, these parameters were also investigated to select the plant's threshold tolerance limit for Cd under the spiked-substrate system. B. napus showed dynamic behavior regarding morpho-physio-biochemical attributes, including agronomic features, biomass, photosynthetic pigments, relative water content under increased Cd toxicity. Cd stress-induced hydrogen peroxide (H2O2) production with high MDA contents and passive EL, followed by the orchestration of both enzymatic (SOD, POD, APX, CAT, and GR) and non-enzymatic antioxidants (flavonoids, TPC, TPA, proline, and total soluble protein) up to a certain limit. In addition, Cd-induced stress upregulated transcriptional levels of antioxidative enzyme SOD, POD, APX, GR, and MT encoded genes in B. napus. The increasing trend of Cd accumulation in different tissues at the highest Cd concentration was as follows: root > leaf > stem. In spiked substrate system, B. napus demonstrated improved metal extractability performance and a high potential for phyto-management of low to moderate Cd contamination, implying that this study could be used for integrative breeding programs and decontaminating heavy metals in real contaminated scenarios.Novelty statementThis study provides an insight into Cd-coping mechanisms of oilseed rape involved in alleviating toxicity and simultaneous phyto-management of increasing Cd concentration under spiked substrate system. The current study is the first scientific evidence of using a Cd-spiked soilless substrate medium. The present study will further strengthen our understanding of Cd-instigated positive responses in B. napus. Furthermore, it will provide a useful basis for integrative breeding programs and decontaminating heavy metals in real contaminated scenarios.
Collapse
Affiliation(s)
- Saiqa Menhas
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, P.R. China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Xijia Yang
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, P.R. China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Kashif Hayat
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, P.R. China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Sikandar Hayat
- College of Landscape Architecture, Nanjing Forestry University, Nanjing, P.R. China
| | - Tariq Aftab
- Department of Botany, Plant Physiology Section, Aligarh Muslim University, Aligarh, India
| | - Nan Hui
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, P.R. China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Juncai Wang
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, P.R. China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Xunfeng Chen
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, P.R. China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Pei Zhou
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, P.R. China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
| |
Collapse
|
19
|
Bernard F, Dumez S, Lemière S, Platel A, Nesslany F, Deram A, Vandenbulcke F, Cuny D. Impact of cadmium on forage kale (Brassica oleracea var. viridis cv "Prover") after 3-,10- and 56-day exposure to a Cd-spiked field soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:25060-25068. [PMID: 29546517 DOI: 10.1007/s11356-018-1636-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 02/28/2018] [Indexed: 06/08/2023]
Abstract
Cadmium (Cd) is a highly toxic element for living organisms and is widespread in metal-contaminated soils. As organisms which can grow up on these polluted areas, plants have some protection mechanisms against Cd issues. Among the plant kingdom, the Brassicaceae family includes species which are known to be able to tolerate and accumulate Cd in their tissues. In this study, Brassica oleracea var. viridis cv "Prover" was exposed to a range of artificially Cd-contaminated soils (from 2.5 up to 20 mg kg-1) during 3, 10, and 56 days and the effects on life traits, photosynthesis activity, antioxidant enzymatic activities were studied. Metal accumulation was quantified, as well as DNA damage, by means of the comet assay and immunodetection of 8-OHdG levels. Globally, B. oleracea was relatively tolerant to those Cd exposures. However, comet assay and detection of 8-OHdG revealed some DNA damage but which are not significant. According to metal accumulation analysis, B. oleracea var. viridis cv Prover could be a good candidate for alternative growing in contaminated areas.
Collapse
Affiliation(s)
- Fabien Bernard
- Université de Lille, 59000, Lille, France
- LGCgE EA 4515, "Fonctionnement des écosystèmes terrestres anthropisés" Cité Scientifique, Univ Lille1, F-59655, Villeneuve d'Ascq, France
- Laboratoire des Sciences Végétales et Fongiques-Université de Lille 2, Faculté des Sciences Pharmaceutiques et Biologiques, EA4483, 59006, Lille Cedex, France
| | - Sylvain Dumez
- Université de Lille, 59000, Lille, France
- Laboratoire des Sciences Végétales et Fongiques-Université de Lille 2, Faculté des Sciences Pharmaceutiques et Biologiques, EA4483, 59006, Lille Cedex, France
| | - Sébastien Lemière
- Université de Lille, 59000, Lille, France
- LGCgE EA 4515, "Fonctionnement des écosystèmes terrestres anthropisés" Cité Scientifique, Univ Lille1, F-59655, Villeneuve d'Ascq, France
| | - Anne Platel
- Université de Lille, 59000, Lille, France
- Laboratoire de Toxicologie Génétique-Institut Pasteur de Lille, EA 4483, 59800, Lille, France
| | - Fabrice Nesslany
- Université de Lille, 59000, Lille, France
- Laboratoire de Toxicologie Génétique-Institut Pasteur de Lille, EA 4483, 59800, Lille, France
| | - Annabelle Deram
- Université de Lille, 59000, Lille, France
- Laboratoire des Sciences Végétales et Fongiques-Université de Lille 2, Faculté des Sciences Pharmaceutiques et Biologiques, EA4483, 59006, Lille Cedex, France
- Faculté de Management de la Santé (ILIS)-Université de Lille 2, EA 4483, 59120, Loos, France
| | - Franck Vandenbulcke
- Université de Lille, 59000, Lille, France.
- LGCgE EA 4515, "Fonctionnement des écosystèmes terrestres anthropisés" Cité Scientifique, Univ Lille1, F-59655, Villeneuve d'Ascq, France.
| | - Damien Cuny
- Université de Lille, 59000, Lille, France
- Laboratoire des Sciences Végétales et Fongiques-Université de Lille 2, Faculté des Sciences Pharmaceutiques et Biologiques, EA4483, 59006, Lille Cedex, France
| |
Collapse
|
20
|
Heavy metal pollution: Insights into chromium eco-toxicity and recent advancement in its remediation. ACTA ACUST UNITED AC 2021. [DOI: 10.1016/j.enmm.2020.100388] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Chen J, Jin P, Huang S, Guo Y, Tan F, Wang J, Shu Y. Cabbage cultivars influence transfer and toxicity of cadmium in soil-Chinese flowering cabbage Brassica campestris-cutworm Spodoptera litura larvae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 213:112076. [PMID: 33639562 DOI: 10.1016/j.ecoenv.2021.112076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/19/2021] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
We executed a pot experiment to examine the differences of absorption, chemical forms, subcellular distribution, and toxicity of Cd between two cultivars of Chinese flowering cabbage Brassica campestris [Lvbao701 (low-Cd cultivar) and Chicaixin No.4 (high-Cd cultivar)]. Compared to Chicaixin No.4, the presence of Lvbao701 enhanced the proportion of insoluble Cd forms in soil, Lvbao701 roots and leaves had higher proportion of Cd converted into insoluble phosphate precipitates and pectate-or protein-bound forms and lower proportion of inorganic Cd, which result in low accumulation and toxicity of Cd to Lvbao701 and cutworm Spodoptera litura fed on Lvbao701 leaves. Instead of total Cd, Cd transfer and toxicity in B. campestris-S. litura system depend on chemical Cd forms in soil and cabbages and subcellular Cd distributions in cabbages and insects, and the proportions of them were not the highest among all chemical forms and subcellular distributions of Cd. Although exchangeable Cd was major Cd chemical form in cabbage planted soil, Cd bound to iron and manganese oxides and to organic matter were significantly correlated with growth indices and photosynthesis parameters of cabbages. Despite major part of Cd was precipitated in cell wall of roots, Cd in organelle fraction was closely associated with the fitness of cabbages. Metal-rich granules, not cytosolic fraction (the major subcellular Cd distribution), affected the food utilization of S. litura. Therefore, cabbage cultivars significantly affected Cd transfer and toxicity in B. campestris-S. litura system, and the use of Lvbao701 in Cd polluted soil could reduce potential risks for Cd entering food chains.
Collapse
Affiliation(s)
- Jin Chen
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Centre for Modern Eco-Agriculture, Guangzhou 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Pan Jin
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Centre for Modern Eco-Agriculture, Guangzhou 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Shimin Huang
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Centre for Modern Eco-Agriculture, Guangzhou 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yeshan Guo
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Centre for Modern Eco-Agriculture, Guangzhou 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Fengxiao Tan
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Centre for Modern Eco-Agriculture, Guangzhou 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Jianwu Wang
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Centre for Modern Eco-Agriculture, Guangzhou 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Yinghua Shu
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Centre for Modern Eco-Agriculture, Guangzhou 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
22
|
Wu X, Su N, Yue X, Fang B, Zou J, Chen Y, Shen Z, Cui J. IRT1 and ZIP2 were involved in exogenous hydrogen-rich water-reduced cadmium accumulation in Brassica chinensis and Arabidopsis thaliana. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124599. [PMID: 33360184 DOI: 10.1016/j.jhazmat.2020.124599] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 06/12/2023]
Abstract
The results of Cd (cadmium) concentration, Cd2+ fluorescent staining, NMT (non-invasive micro-test technology) analysis of Cd absorption revealed the remarkably positive role of HRW in reducing Cd uptake by root of pak choi seedlings. BcIRT1 (iron-regulated transporter 1) and BcZIP2 (zinc-regulated transporter protein 2) are the main Cd transporters in pak choi, but their roles in the process of HRW-reduced Cd uptake is still far from being answered. In this study, we specifically verified the function of IRT1 and ZIP2 in HRW-reduced Cd absorption in pak choi and Arabidopsis thaliana. Heterologous and homologous expression in Arabidopsis thaliana displayed that Cd concentrations in wild-type (Col-0) and transgenic A. thaliana of IRT1 and ZIP2 were significantly reduced by HRW, except for irt1- and zip2-mutant. NMT detection showed that HRW not only decreased Cd2+ influx in root of WT and transgenic lines, but also enhanced the competition between Zn and Cd. Taken together, the HRW-induced reduction of Cd accumulation in plants may be result from depressing the expression of BcIRT1 and BcZIP2 and affecting the preference of BcIRT1 and BcZIP2 in ion uptake.
Collapse
Affiliation(s)
- Xue Wu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China; The Agriculture Ministry Key Laboratory of Agricultural Engineering in the Middle and Lower Reaches of Yangtze River, Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing, China.
| | - Nana Su
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
| | - Xiaomeng Yue
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
| | - Bo Fang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
| | - Jianwen Zou
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China.
| | - Yahua Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
| | - Zhenguo Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
| | - Jin Cui
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
23
|
Haider FU, Liqun C, Coulter JA, Cheema SA, Wu J, Zhang R, Wenjun M, Farooq M. Cadmium toxicity in plants: Impacts and remediation strategies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 211:111887. [PMID: 33450535 DOI: 10.1016/j.ecoenv.2020.111887] [Citation(s) in RCA: 529] [Impact Index Per Article: 132.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 12/21/2020] [Accepted: 12/30/2020] [Indexed: 05/02/2023]
Abstract
Cadmium (Cd) is an unessential trace element in plants that is ubiquitous in the environment. Anthropogenic activities such as disposal of urban refuse, smelting, mining, metal manufacturing, and application of synthetic phosphate fertilizers enhance the concentration of Cd in the environment and are carcinogenic to human health. In this manuscript, we reviewed the sources of Cd contamination to the environment, soil factors affecting the Cd uptake, the dynamics of Cd in the soil rhizosphere, uptake mechanisms, translocation, and toxicity of Cd in plants. In crop plants, the toxicity of Cd reduces uptake and translocation of nutrients and water, increases oxidative damage, disrupts plant metabolism, and inhibits plant morphology and physiology. In addition, the defense mechanism in plants against Cd toxicity and potential remediation strategies, including the use of biochar, minerals nutrients, compost, organic manure, growth regulators, and hormones, and application of phytoremediation, bioremediation, and chemical methods are also highlighted in this review. This manuscript may help to determine the ecological importance of Cd stress in interdisciplinary studies and essential remediation strategies to overcome the contamination of Cd in agricultural soils.
Collapse
Affiliation(s)
- Fasih Ullah Haider
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China; Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Cai Liqun
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China; Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China.
| | - Jeffrey A Coulter
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA
| | - Sardar Alam Cheema
- Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan
| | - Jun Wu
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China; Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Renzhi Zhang
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China; Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Ma Wenjun
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China; Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Muhammad Farooq
- Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan; Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud 123, Oman.
| |
Collapse
|
24
|
Chtouki M, Naciri R, Soulaimani A, Zeroual Y, El Gharous M, Oukarroum A. Effect of Cadmium and Phosphorus Interaction on Tomato: Chlorophyll a Fluorescence, Plant Growth, and Cadmium Translocation. WATER, AIR, & SOIL POLLUTION 2021; 232:84. [DOI: 10.1007/s11270-021-05038-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/27/2021] [Indexed: 02/15/2024]
|
25
|
Siddiqui H, Ahmed KBM, Sami F, Hayat S. Phytoremediation of Cadmium Contaminated Soil Using Brassica juncea: Influence on PSII Activity, Leaf Gaseous Exchange, Carbohydrate Metabolism, Redox and Elemental Status. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 105:411-421. [PMID: 32725326 DOI: 10.1007/s00128-020-02929-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
Phytoremediation is an ecologically and economically feasible technique to remove heavy metal from soil. The aim of the study was to examine cadmium (Cd) toxicity and phytoremediation aptitude of Brassica juncea. In the present study, plants survived when exposed to different levels of Cd (0, 25, 50 and 100 mg/kg soil) and accumulated a large amount of Cd in its root and shoot. Translocation factor (TF) of Cd from root to shoot was > 1 at both 45 and 60-day stage of growth suggesting that B. juncea is a hyperaccumulator and strong candidate for phytoextraction of Cd. Alongside, Cd impaired photolysis of water, PSII activity, nutrient uptake, photosynthesis and sugar accumulation in the plant. Cd-generated oxidative stress restricts the growth of B. juncea. The toxic effect of Cd was more pronounced at 45-day stage of growth signifying the drifting of plant towards acquirement of exclusion strategy.
Collapse
Affiliation(s)
- Husna Siddiqui
- Plant Physiology Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Khan Bilal Mukhtar Ahmed
- Plant Physiology Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Fareen Sami
- Plant Physiology Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Shamsul Hayat
- Plant Physiology Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India.
| |
Collapse
|
26
|
Zhang F, Xiao X, Wu X. Physiological and molecular mechanism of cadmium (Cd) tolerance at initial growth stage in rapeseed (Brassica napus L.). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 197:110613. [PMID: 32304923 DOI: 10.1016/j.ecoenv.2020.110613] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
Cadmium (Cd) contaminated soil has threatened plant growth and human health. Rapeseed (Brassica napus L.), an ideal plant for phytoremediation, is an important source of edible vegetable oil, vegetable, animal fodder, green manure and biodiesel. For safe utilization of Cd polluted soil, physiological, biochemical, and molecular techniques have been used to understand mechanisms of Cd tolerance in B. napus. However, most of these researches have concentrated on vegetative and adult stages, just a few reports focus on the initial growth stage. Here, the partitioning of cadmium, gene expression level and activity of enzymatic antioxidants of H18 (tolerant genotype) and P9 (sensitive genotype) were investigated under 0 and 30 mg/L Cd stress at seedling establishment stage. Results shown that the radicle length of H18 and P9 under Cd stress were decreased by 30.33 (0.01 < P < 0.05) and 88.89% (P < 0.01) respectively. Cd concentration at cotyledon not radicle and hypocotyl in P9 was significantly higher than that in H18. The expression level of BnaHMA4c, which plays a key role in root-to-shoot translocation of Cd, was extremely higher in P9 than in H18 under both normal and Cd stress conditions. We also found that SOD, CAT and POD were more active in responding to Cd stress after 48 h, and the activity of SOD and CAT in H18 were higher than that in P9 at all observed time points. In conclusion, high activity of enzymatic antioxidants at initial Cd stress stage is the main detoxification mechanism in Cd-tolerant rapeseed, while the higher Cd transfer coefficient, driven by higher expression level of BnaHMA4c is the main mechanism for surviving radicle from initial Cd toxicity in Cd-sensitive rapeseed.
Collapse
Affiliation(s)
- Fugui Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Xin Xiao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Xiaoming Wu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| |
Collapse
|
27
|
Ismael MA, Elyamine AM, Moussa MG, Cai M, Zhao X, Hu C. Cadmium in plants: uptake, toxicity, and its interactions with selenium fertilizers. Metallomics 2020; 11:255-277. [PMID: 30632600 DOI: 10.1039/c8mt00247a] [Citation(s) in RCA: 272] [Impact Index Per Article: 54.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cd is the third major contaminant of greatest hazard to the environment after mercury and lead and is considered as the only metal that poses health risks to both humans and animals at plant tissue concentrations that are generally not phytotoxic. Cd accumulation in plant shoots depends on Cd entry through the roots, sequestration within root vacuoles, translocation in the xylem and phloem, and Cd dilution within the plant shoot throughout its growth. Several metal transporters, processes, and channels are involved from the first step of Cd reaching the root cells and until its final accumulation in the edible parts of the plant. It is hard to demonstrate one step as the pivotal factor to decide the Cd tolerance or accumulation ability of plants since the role of a specific transporter/process varies among plant species and even cultivars. In this review, we discuss the sources of Cd pollutants, Cd toxicity to plants, and mechanisms of Cd uptake and redistribution in plant tissues. The metal transporters involved in Cd transport within plant tissues are also discussed and how their manipulation can control Cd uptake and/or translocation. Finally, we discuss the beneficial effects of Se on plants under Cd stress, and how it can minimize or mitigate Cd toxicity in plants.
Collapse
Affiliation(s)
- Marwa A Ismael
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Research Center of Trace Elements, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| | | | | | | | | | | |
Collapse
|
28
|
Dhaliwal SS, Singh J, Taneja PK, Mandal A. Remediation techniques for removal of heavy metals from the soil contaminated through different sources: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:1319-1333. [PMID: 31808078 DOI: 10.1007/s11356-019-06967-1] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 11/05/2019] [Indexed: 04/16/2023]
Abstract
Heavy metal pollution is one of the serious problems and contaminates the environment by different means with the blow of industries in several countries. Different techniques like physical, chemical, and biological have been used for removal of heavy metal contaminants from the environment. Some of these have limitations such as cost, time consumption, logistical problems, and mechanical involvedness. Nowadays, in situ immobilization of metals, phytoremediation and biological techniques turned out to be best solution for elimination of metal(loid) s from the soil. Here, we reviewed the different remediation techniques for extraction of heavy metals from soil and especially highlighting in situ immobilization technique. The aim of remediation efforts at the contaminant site is to restrict the heavy metal to enter in the environment, food chain, and exposure to humans beings. The type of method used at a given site depends on the various factors like natural processes take place at the contaminated site, soil type, type of chemicals, and the depth of contaminated site.
Collapse
Affiliation(s)
| | - Jaswinder Singh
- Department of Zoology, Khalsa College Amritsar, Amritsar, Punjab, India.
| | - Parminder Kaur Taneja
- Department of Soil and Water Conservation, Government of Punjab, Bathinda, Punjab, India
| | - Agniva Mandal
- Department of Agricultural Chemistry and Soil Science, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, West Bengal, India
| |
Collapse
|
29
|
Alves LR, Rodrigues Dos Reis A, Prado ER, Lavres J, Pompeu GB, Azevedo RA, Gratão PL. New insights into cadmium stressful-conditions: Role of ethylene on selenium-mediated antioxidant enzymes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 186:109747. [PMID: 31634660 DOI: 10.1016/j.ecoenv.2019.109747] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/09/2019] [Accepted: 10/01/2019] [Indexed: 05/25/2023]
Abstract
Cadmium (Cd) contamination has generated an environmental problem worldwide, leading to harmful effects on human health and damages to plant metabolism. Selenium (Se) is non essential for plants, however it can improve plant growth and reduce the adverse effects of abiotic stress. In addition, ethylene may interplay the positive effects of Se in plants. In order to investigate the role of ethylene in Se-modulation of antioxidant defence system in response to Cd-stress, we tested the hormonal mutant Epinastic (epi) with a subset of constitutive activation of the ethylene response and Micro-Tom (MT) plants. For this purpose, Se mineral uptake, Cd and Se concentrations, pigments, malondialdeyde (MDA) and hydrogen peroxide (H2O2) contents, ethylene production, glutathione (GSH) compound, and superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), glutathione reductase (GR) and glutathione peroxidase (GSH-Px) activities were analysed in MT and epi plants submitted to 0.5 mM CdCl2 and 1 μM of selenate or selenite. MT plants treated with both Se forms increased growth in the presence or not of 0.5 mM CdCl2, but not change epi growth. Both Se forms reduced Cd uptake in MT plants and cause reverse effect in epi plants. P, Mg, S, K and Zn uptake increased in epi plants with Se application, irrespective to Cd exposure. Chlorophylls and carotenoids contents decreased in both genotypes under Cd exposure, in contrast to what was observed in epi leaves in the presence of Se. When antioxidant enzymes activities were concerned, Se application increased Mn-SOD, Fe-SOD and APX activities. In the presence of Cd, MT and epi plants exhibited decreased SOD activity and increased CAT, APX and GR activities. MT and epi plants with Se supply exhibited increased APX and GR activities in the presence of Cd. Overall, these results suggest that ethylene may be involved in Se induced-defence responses, that triggers a positive response of the antioxidant system and improve growth under Cd stress. These results showed integrative roles of ethylene and Se in regulating the cell responses to stressful-conditions and, the cross-tolerance to stress could be used to manipulate ethylene regulated gene expression to induce heavy metal tolerance.
Collapse
Affiliation(s)
- Leticia Rodrigues Alves
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias (FCAV), Departamento de Biologia Aplicada à Agropecuária, CEP 14884-900, Jaboticabal, SP, Brazil
| | - André Rodrigues Dos Reis
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências e Engenharia, Laboratório de Biologia, CEP 17602-496, Tupã, SP, Brazil
| | - Emilaine Rocha Prado
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias (FCAV), Departamento de Biologia Aplicada à Agropecuária, CEP 14884-900, Jaboticabal, SP, Brazil
| | - José Lavres
- Universidade de São Paulo (USP), Centro de Energia Nuclear na Agricultura (CENA), Laboratório de Nutrição Mineral de Plantas, CEP 13418-900, Piracicaba, SP, Brazil
| | - Georgia Bertoni Pompeu
- Universidade de São Paulo (USP), Escola Superior de Agricultura Luiz de Queiroz (ESALQ), Depto. de Ciência do Solo, CEP 13418-900, Piracicaba, SP, Brazil
| | - Ricardo Antunes Azevedo
- Universidade de São Paulo (USP), Escola Superior de Agricultura Luiz de Queiroz (ESALQ), Depto. de Genética, CEP 13418-900, Piracicaba, SP, Brazil
| | - Priscila Lupino Gratão
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias (FCAV), Departamento de Biologia Aplicada à Agropecuária, CEP 14884-900, Jaboticabal, SP, Brazil.
| |
Collapse
|
30
|
Kanu AS, Ashraf U, Mo Z, Sabir SUR, Baggie I, Charley CS, Tang X. Calcium amendment improved the performance of fragrant rice and reduced metal uptake under cadmium toxicity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:24748-24757. [PMID: 31240656 DOI: 10.1007/s11356-019-05779-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 06/17/2019] [Indexed: 04/16/2023]
Abstract
Cadmium (Cd) toxicity has detrimental effects on plant metabolism and yield formation. This study examined the effects of Cd stress in rice and the possible role of calcium (Ca) in mitigating oxidative damage caused by Cd in two fragrant rice cultivars, i.e., Guixiangzhan and Meixiangzhan 2. The experimental treatments were composed of various Ca and Cd levels as individual, i.e., Ca at 2.5 and 5.0 mg/kg soil (Ca1 and Ca2, respectively), Cd at 50 and 100 mg/kg soil (Cd50 and Cd100, respectively), and combined, i.e., Ca1+Cd50, Ca1+Cd100, Ca2+Cd50, and Ca2+Cd100. Plants without Ca and Cd application were taken as control (CK). Results showed that Cd stress led to a substantial decline in the photosynthetic pigments, i.e., Chl a, Chl b, and carotenoids, while enhanced oxidative damage in terms of increased levels of hydrogen peroxide (H2O2) and malondialdehyde (MDA) and electrolyte leakage (EL) in both rice cultivars. Moreover, Cd stress hampered the activities of enzymatic antioxidants, i.e., superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), with lowest antioxidant activities were recorded at Cd100. The overall trend (lowest to highest) for antioxidant activities across treatments was recorded as Cd100 < Ca2+Cd100 < Cd50 < Ca1+Cd100 < CK < Ca1 < Ca1+Cd50 < Ca2+Cd50 < Ca2. Similarly, Ca amendment improved the proline, soluble protein, and soluble sugar contents in both rice cultivars under Cd stress condition. Comparing Ca2 with CK, the yield and related components, i.e., number of panicles, spikelets per panicle, seed setting rate, 1000 grain weight, and grain yield, were found to increase by 13.08, 2.39, 4.03, 5.86, and 27.53% for Guixiangzhan and 16.48, 5.19, 6.87, 15.44, and 51.16% for Meixiangzhan, respectively. Furthermore, Cd contents in roots, stems, leaves, and grains increased with increased Cd concentration applied and reduced with Ca amendment. The Cd contents in grains for all Ca+Cd levels are statistically at par with each other and significantly lower (P < 0.05) than those for individual Cd application. Hence, Ca amendment can be an appropriate approach to ameliorate the toxic effects of Cd in crops grown under Cd-contaminated soils.
Collapse
Affiliation(s)
- Adam Sheka Kanu
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Sierra Leone Agricultural Research Institute (SLARI)-Rokupr Agricultural Research Centre (RARC), PMB 1313, Freetown, Sierra Leone
| | - Umair Ashraf
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
- Department of Botany, University of Education (Lahore), Faisalabad-Campus, Faisalabad, Punjab, 38000, Pakistan.
| | - Zhaowen Mo
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Sabeeh-Ur-Rasool Sabir
- State Key Laboratory of Grassland Agroecosystem, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Idris Baggie
- Sierra Leone Agricultural Research Institute (SLARI)-Rokupr Agricultural Research Centre (RARC), PMB 1313, Freetown, Sierra Leone
| | - Christen Shaka Charley
- Sierra Leone Agricultural Research Institute (SLARI)-Rokupr Agricultural Research Centre (RARC), PMB 1313, Freetown, Sierra Leone
| | - Xiangru Tang
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
31
|
Farooq MU, Tang Z, Zheng T, Asghar MA, Zeng R, Su Y, Ei HH, Liang Y, Zhang Y, Ye X, Jia X, Zhu J. Cross-Talk between Cadmium and Selenium at Elevated Cadmium Stress Determines the Fate of Selenium Uptake in Rice. Biomolecules 2019; 9:E247. [PMID: 31238551 PMCID: PMC6627080 DOI: 10.3390/biom9060247] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/20/2019] [Accepted: 06/22/2019] [Indexed: 12/04/2022] Open
Abstract
Cadmium (Cd) is a well-known metal imposing threats to human health, and it can be accumulated in polished rice over the permitted range of 0.2 mg kg-1 (GB 2762-2017). It has been reported that selenium (Se) application decreases Cd uptake. Se-rich diets have gained attention recently, but the potential of Se-rich rice in mitigating Cd stress needs further investigation. In this study, a pot experiment in the field was conducted to assess the influence of environmental factors and exogenous split application of Se on the nutritional status of rice under Cd stress. The results indicated that the increased fertilizer treatment in soil bulk linearly increased the metal content in rice grains. Approximately 50-70% of metal was recovered in rice tissues, while 5-20% of the metal that was applied leached down into the soil. A Se concentration of 0.4 mg kg-1 could significantly improve the total Se content in grain and mitigate Cd toxicity (1 mg kg-1) below the permitted range. Panicles and roots were more active for total Se accumulation in Se-rich and non-Se-rich rice, respectively. Polishing and milling operations can significantly reduce the Cd content, as rice bran in rice tissues accumulated most of the metal's residues. The late matured rice cultivars consumed more heat units, and more metal contents were found in them. Collectively, it was found that Se can mitigate Cd toxicity, but the rice cultivation at T2 (high Cd; 2 mg kg-1 and Se; 1 mg kg-1) increased the metal uptake capability and health-risk index in polished rice, with its Se content heightened over permitted range of 0.04 to 0.30 mg kg-1 (GB/T 22499-2008). However, further molecular studies are required, in order to completely access the inverted Se accumulation behavior in rice tissues at high Cd soil stress.
Collapse
Affiliation(s)
- Muhammad Umer Farooq
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Zhichen Tang
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Tengda Zheng
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Muhammad Ahsan Asghar
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Rui Zeng
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Dujiangyan Agricultural and Rural Bureau, Dujiangyan 611830, Sichuan, China.
| | - Yang Su
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Hla Hla Ei
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Yuanke Liang
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Yujie Zhang
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Xiaoying Ye
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Xiaomei Jia
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Jianqing Zhu
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| |
Collapse
|
32
|
Wan Y, Wang K, Liu Z, Yu Y, Wang Q, Li H. Effect of selenium on the subcellular distribution of cadmium and oxidative stress induced by cadmium in rice (Oryza sativa L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:16220-16228. [PMID: 30972675 DOI: 10.1007/s11356-019-04975-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 03/25/2019] [Indexed: 05/12/2023]
Abstract
Cadmium (Cd) is absorbed readily by rice plants and is transferred to humans when contaminated rice is consumed. Adding selenium (Se) to the plant nutrient solutions reduces the accumulation of Cd in the rice (Oryza sativa L.) seedlings. However, as the relevant underlying mechanism remains unclear, the aim of our study was to improve our understanding of the Se-mediated resistance to Cd stress in rice. We conducted hydroponic experiments to study the effects of selenite or selenate on Cd subcellular distribution and xylem transport in rice seedlings under Cd stress, and we investigated the antioxidative defense responses in the rice plants. We found that the supplementation of both Se forms decreased the Cd accumulations in the roots and shoots of the rice plants. The selenite addition significantly decreased the Cd contents in different subcellular fractions of the rice roots, increased the proportion of Cd distributed to soluble cytosol by 23.41%, and decreased the Cd distribution in the organelle by 28.74% in contrast with the treatment with Cd only. As regards the selenate addition, only the Cd distribution ratio of cytosol was increased by 13.07%. After adding selenite, a decrease of 55.86% in the Cd concentration in xylem sap was observed, whereas little change was found after treatment co-applied with selenate. The hydrogen peroxide (H2O2) and malondialdehyde(MDA) contents in the rice roots were elevated under Cd stress, and the addition of selenite and selenate decreased the H2O2 levels by 77.78% and 59.26%, respectively. Co-exposure to Cd and Se elevated the glutathione (GSH) accumulations in the rice shoots and roots, with the degree of increase being the following: co-applied with selenite > co-applied with selenate > Cd alone treatment. Exposure to Cd increased the catalase (CAT) activity in the roots significantly, whereas it decreased in the shoots. After selenite or selenate supplementation, the CAT activity in the rice roots increased compared with applying only Cd. Compared with the control, the addition of Cd or Se had no significant effect on the activities of peroxidase (POD) or ascorbate peroxidase (APX). Our results showed that Se affected the Cd accumulation in rice seedlings by altering the Cd subcellular distribution and decreasing the ROS induced by Cd stress. Such effects were more significant in the selenite than in the selenate applied treatment.
Collapse
Affiliation(s)
- Yanan Wan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Kang Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Zhe Liu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yao Yu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Qi Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Huafen Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
33
|
Yu Y, Yuan S, Zhuang J, Wan Y, Wang Q, Zhang J, Li H. Effect of selenium on the uptake kinetics and accumulation of and oxidative stress induced by cadmium in Brassica chinensis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 162:571-580. [PMID: 30031318 DOI: 10.1016/j.ecoenv.2018.07.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/15/2018] [Accepted: 07/10/2018] [Indexed: 06/08/2023]
Abstract
Pak choi can readily accumulate cadmium (Cd) into its edible parts; this can pose a threat to human health. Although not essential for higher plants, selenium (Se) can be favorable for plant growth and antioxidative defense under heavy metal stress conditions. A pak choi hydroponic experiment was conducted to investigate the effect of two forms of Se on the Cd uptake kinetics and accumulation and oxidative stress. The results showed that selenite and selenate remarkably enhanced Cd uptake kinetics in pak choi. The maximum Cd uptake rate increased by more than 100% after treatment with 5 µM of selenite and selenate, and it further increased after treatment with 20 µM of both Se forms. The effects of Se on Cd content depended on the Se form, exposure time, and Cd dosage. Selenite reduced the Cd content in shoots by 41% after 3 days of treatment with 10 µM Cd, whereas selenate increased this rate by 89%. Both forms of Se decreased Cd content in the shoots by 40% after 7 days of treatment with 10 µM Cd, but they increased the Cd content by approximately 30% after treatment with 50 µM Cd. Se enhanced Cd-induced oxidative stress in pak choi. Malondialdehyde (MDA) generation was promoted by more than 33% by selenite and selenate treatments in combination with 10 µM Cd, and it was further enhanced by 106% and 185% at 50 µM Cd, respectively. Selenite also increased the H2O2 content at both Cd doses, but selenate did not have significant effects on H2O2 production. The effects of Se on antioxidative enzyme activity also depended on the dose of Cd. Selenite and selenate inhibited catalase activity by 11% and 29%, respectively, at 10 µM Cd, and by 13% and 42%, respectively, at 50 µM Cd. Moreover, both forms of Se increased superoxide dismutase activity after treatment with 10 µM Cd but inhibited its activity at 50 µM Cd. Therefore, Se exhibits dual effects on Cd accumulation and oxidative stress in pak choi and might cause further stress when combined with higher doses of Cd.
Collapse
Affiliation(s)
- Yao Yu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China
| | - Sili Yuan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China
| | - Jian Zhuang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China
| | - Yanan Wan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China
| | - Qi Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China
| | - Jingsuo Zhang
- Beijing Municipal Station of Agro-environmental Monitoring, Beijing 100029, PR China
| | - Huafen Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
34
|
Hou S, Zheng N, Tang L, Ji X. Effects of cadmium and copper mixtures to carrot and pakchoi under greenhouse cultivation condition. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 159:172-181. [PMID: 29751225 DOI: 10.1016/j.ecoenv.2018.04.060] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/23/2018] [Accepted: 04/26/2018] [Indexed: 06/08/2023]
Abstract
A pot experiment was undertaken to investigate the effects of Cd and Cu mixtures to growth and nutrients (sugar, carotene or vitamin C) of carrot and pakchoi under greenhouse cultivation condition. The study included: (a) physical-chemical properties of soil and soil animals in response to Cd and Cu stress; (b) bioaccumulation of heavy metals, length, biomass, contents of sugar and carotene (vitamin C) of carrot and pakchoi; (c) estimation the effects of Cd and Cu mixtures by multivariate regression analysis. The results implied that heavy metals impacted negative influence on soil animals' abundance. The metals contents in plants increased obviously with Cd and Cu contamination in soil. The biomass production and nutrients declined with Cd and Cu contents increasing. Cd (20 mg kg-1) treatment caused maximum reduction of sugar content (45.29%) in carrot root; maximum reduction in carotene content (75.73%) in carrot, 75.1% sugar content reduction and 70.58% vitamin C content reduction in pakchoi shoots were observed with addition of Cd (20 mg kg-1) and Cu (400 mg kg-1) mixture. The results of multivariate regression analysis indicated that combination of Cd and Cu exerts negative effects to both carrot and pakchoi, and both growth and nutrients were negatively correlated with metals concentrations. It is concluded that the Cd and Cu mixtures caused toxic damage to vegetable plants as Cd and Cu gradient concentrations increased.
Collapse
Affiliation(s)
- Shengnan Hou
- Northeast Institute of Geography and Agricultural Ecology, Chinese Academy of Sciences, Changchun, Jilin, China; University of Chinese Academy of Sciences, Beijing, China
| | - Na Zheng
- Northeast Institute of Geography and Agricultural Ecology, Chinese Academy of Sciences, Changchun, Jilin, China; The College of Environment and Resources, Jilin University, China.
| | - Lin Tang
- Northeast Institute of Geography and Agricultural Ecology, Chinese Academy of Sciences, Changchun, Jilin, China; The College of Environment and Resources, Jilin University, China
| | - Xiaofeng Ji
- Northeast Institute of Geography and Agricultural Ecology, Chinese Academy of Sciences, Changchun, Jilin, China; University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
35
|
Rizwan M, Ali S, Zia Ur Rehman M, Rinklebe J, Tsang DCW, Bashir A, Maqbool A, Tack FMG, Ok YS. Cadmium phytoremediation potential of Brassica crop species: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 631-632:1175-1191. [PMID: 29727943 DOI: 10.1016/j.scitotenv.2018.03.104] [Citation(s) in RCA: 205] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 03/08/2018] [Accepted: 03/09/2018] [Indexed: 05/08/2023]
Abstract
Cadmium (Cd) is a highly toxic metal released into the environment through anthropogenic activities. Phytoremediation is a green technology used for the stabilization or remediation of Cd-contaminated soils. Brassica crop species can produce high biomass under a range of climatic and growing conditions, allowing for considerable uptake and accumulation of Cd, depending on species. These crop species can tolerate Cd stress via different mechanisms, including the stimulation of the antioxidant defense system, chelation, compartmentation of Cd into metabolically inactive parts, and accumulation of total amino-acids and osmoprotectants. A higher Cd-stress level, however, overcomes the defense system and may cause oxidative stress in Brassica species due to overproduction of reactive oxygen species and lipid peroxidation. Therefore, numerous approaches have been followed to decrease Cd toxicity in Brassica species, including selection of Cd-tolerant cultivars, the use of inorganic and organic amendments, exogenous application of soil organisms, and employment of plant-growth regulators. Furthermore, the coupling of genetic engineering with cropping may also help to alleviate Cd toxicity in Brassica species. However, several field studies demonstrated contrasting results. This review suggests that the combination of Cd-tolerant Brassica cultivars and the application of soil amendments, along with proper agricultural practices, may be the most efficient means of the soil Cd phytoattenuation. Breeding and selection of Cd-tolerant species, as well as species with higher biomass production, might be needed in the future when aiming to use Brassica species for phytoremediation.
Collapse
Affiliation(s)
- Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, 38000 Faisalabad, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, 38000 Faisalabad, Pakistan
| | - Muhammad Zia Ur Rehman
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment and Energy, Sejong University, 98 Gunja-Dong, Guangjin-Gu, Seoul, South Korea
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Arooj Bashir
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, 38000 Faisalabad, Pakistan
| | - Arosha Maqbool
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, 38000 Faisalabad, Pakistan
| | - F M G Tack
- Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Yong Sik Ok
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI) & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
36
|
Pereira MP, Corrêa FF, de Castro EM, de Oliveira JPV, Pereira FJ. Leaf ontogeny of Schinus molle L. plants under cadmium contamination: the meristematic origin of leaf structural changes. PROTOPLASMA 2017; 254:2117-2126. [PMID: 28343257 DOI: 10.1007/s00709-017-1103-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 03/10/2017] [Indexed: 06/06/2023]
Abstract
Previous works show the development of thicker leaves on tolerant plants growing under cadmium (Cd2+) contamination. The aim of this study was to evaluate the Cd2+ effects on the leaf meristems of the tolerant species Schinus molle. Plants were grown in nutrient solution containing 0, 10, and 50 μM of Cd2+. Anatomical analysis was performed on leaf primordia sampled at regular time intervals. Under the lowest Cd2+ level (10 μM), increased ground meristem thickness, diameter of the cells, cell elongation rate, and leaf dry mass were found. However, 50 μM of Cd2+ reduced all these variables. In addition, the ground meristem cells became larger when exposed to any Cd2+ level. The epidermis, palisade parenchyma, and vascular tissues developed earlier in Cd2+-exposed leaves. The modifications found on the ground meristem may be related to the development of thicker leaves on S. molle plants exposed to low Cd2+ levels. Furthermore, older leaves showed higher Cd2+ content when compared to the younger ones, preventing the Cd2+ toxicity to these leaves. Thus, low Cd2+ concentrations change the ground meristem structure and function reflecting on the development of thicker and enhanced leaves.
Collapse
Affiliation(s)
- Marcio Paulo Pereira
- Departamento de Biologia, Programa de Pós-Graduação em Botânica Aplicada, Universidade Federal de Lavras, UFLA, Lavras, Minas Gerais, 37200-000, Brazil
| | - Felipe Fogaroli Corrêa
- Departamento de Biologia, Programa de Pós-Graduação em Botânica Aplicada, Universidade Federal de Lavras, UFLA, Lavras, Minas Gerais, 37200-000, Brazil
| | - Evaristo Mauro de Castro
- Departamento de Biologia, Programa de Pós-Graduação em Botânica Aplicada, Universidade Federal de Lavras, UFLA, Lavras, Minas Gerais, 37200-000, Brazil
| | - Jean Paulo Vitor de Oliveira
- Departamento de Biologia, Programa de Pós-Graduação em Botânica Aplicada, Universidade Federal de Lavras, UFLA, Lavras, Minas Gerais, 37200-000, Brazil
| | - Fabricio José Pereira
- Instituto de Ciências da Natureza, Universidade Federal de Alfenas, Unifal, Campus Alfenas, Alfenas, MG, CEP 37130-000, Brazil.
| |
Collapse
|
37
|
Rizwan M, Ali S, Adrees M, Ibrahim M, Tsang DCW, Zia-Ur-Rehman M, Zahir ZA, Rinklebe J, Tack FMG, Ok YS. A critical review on effects, tolerance mechanisms and management of cadmium in vegetables. CHEMOSPHERE 2017; 182:90-105. [PMID: 28494365 DOI: 10.1016/j.chemosphere.2017.05.013] [Citation(s) in RCA: 248] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/01/2017] [Accepted: 05/02/2017] [Indexed: 05/20/2023]
Abstract
Cadmium (Cd) accumulation in vegetables is an important environmental issue that threatens human health globally. Understanding the response of vegetables to Cd stress and applying management strategies may help to reduce the Cd uptake by vegetables. The aim of the present review is to summarize the knowledge concerning the uptake and toxic effects of Cd in vegetables and the different management strategies to combat Cd stress in vegetables. Leafy vegetables grown in Cd contaminated soils potentially accumulate higher concentrations of Cd, posing a threat to food commodities. The Cd toxicity decreases seed germination, growth, biomass and quality of vegetables. This reduces the photosynthesis, stomatal conductance and alteration in mineral nutrition. Toxicity of Cd toxicity also interferes with vegetable biochemistry causing oxidative stress and resulting in decreased antioxidant enzyme activities. Several management options have been employed for the reduction of Cd uptake and toxicity in vegetables. The exogenous application of plant growth regulators, proper mineral nutrition, and the use of organic and inorganic amendments might be useful for reducing Cd toxicity in vegetables. The use of low Cd accumulating vegetable cultivars in conjunction with insolubilizing amendments and proper agricultural practices might be a useful technique for reducing Cd exposure in the food chain.
Collapse
Affiliation(s)
- Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, 38000, Faisalabad, Pakistan.
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, 38000, Faisalabad, Pakistan
| | - Muhammad Adrees
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, 38000, Faisalabad, Pakistan
| | - Muhammad Ibrahim
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, 38000, Faisalabad, Pakistan
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Muhammad Zia-Ur-Rehman
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan
| | - Zahir Ahmad Zahir
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan
| | - Jörg Rinklebe
- University of Wuppertal, Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; Department of Environment and Energy, Sejong University, 98 Gunja-dong, Gwnagjin-gu, Seoul, 143-747, South Korea
| | - Filip M G Tack
- Department of Applied Analytical and Physical Chemistry, Ghent University, Gent, Belgium
| | - Yong Sik Ok
- O-Jeong Eco-Resilience Institute (OJERI), Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
38
|
Huang Y, He C, Shen C, Guo J, Mubeen S, Yuan J, Yang Z. Toxicity of cadmium and its health risks from leafy vegetable consumption. Food Funct 2017; 8:1373-1401. [PMID: 28232985 DOI: 10.1039/c6fo01580h] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cadmium (Cd) is a highly toxic heavy metal and has spread widely in the environment in recent decades. This review summarizes current knowledge about Cd contamination of leafy vegetables, its toxicity, exposure, health risks, and approaches to reducing its toxicity in humans. Leafy vegetable consumption has been identified as a dominant exposure pathway of Cd in the human body. An overview of Cd pollution in leafy vegetables as well as the main sources of Cd is given. Notable estimated daily intakes and health risks of Cd exposure through vegetable consumption for humans are revealed in occupational exposure areas and even in some reference areas. Vegetable consumption is one of the most significant sources of exposure to Cd, particularly in occupational exposure regions. Therefore, numerous approaches have been developed to minimize the accumulation of Cd in leafy vegetables, among which the breeding of Cd pollution-safe cultivars is one of the most effective tools. Furthermore, dietary supplements from leafy vegetables perform positive roles in alleviating Cd toxicity in humans with regard to the effects of essential mineral elements, vitamins and phytochemicals taken into the human body via leafy vegetable consumption.
Collapse
Affiliation(s)
- Yingying Huang
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Xingang Xi Road 135, Guangzhou, 510275, China.
| | | | | | | | | | | | | |
Collapse
|