1
|
Jin M, Guo Z, Ye N, Sun L, Guo J. Polybrominated diphenyl ethers in student dormitory microenvironments: Concentrations, sources, and human exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 350:124010. [PMID: 38648964 DOI: 10.1016/j.envpol.2024.124010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/09/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
Microenvironments, such as student dormitories, differ from general residential environments. They are characterized by small spaces, poor air circulation, high personnel densities, and electronic products, such as computers that are turned on for extended periods, leading to increased pollution concentrations. The limited space and poor air circulation reduce migration of contaminants, such as polybrominated diphenyl ethers (PBDEs), making it easier for PBDEs to accumulate. However, few studies have been conducted on small group dwellings, including student dormitory dwellings. We collected dust samples from student dormitories of a university to analyze the characteristics and traceability of PBDEs in dormitory microenvironments. The results showed that PBDE congeners were widely present in university dormitories and the order of median concentration of ∑10PBDEs was as follows: male old-fashioned dormitory (273 ng/g) > female four-person dormitory (132 ng/g) > female two-person dormitory (132 ng/g) > male two-person dormitory (96.2 ng/g) > female old-fashioned dormitory (91.6 ng/g) > male four-person apartment (51.8 ng/g). BDE-209 was the most abundant PBDE congener, followed by BDE-47, and BDE-28. PBDEs were also found in typical electrical appliances, with higher concentrations in laptops than in desktops, and higher concentrations in desktops than in idle ones. According to Spearman correlation and Principal Component Analysis (PCA), we also found that boards and wallpaper materials were common sources of contamination in the microenvironment of student dormitories, and that female dormitories had more sources of PBDE emissions. Human exposure to PBDEs in students is below the US Environmental Protection Agency reference dose. Although exposure to PBDEs generated in dormitories does not pose a significant health risk, the potential hazards of PBDEs to the reagent environment remain to be investigated.
Collapse
Affiliation(s)
- Mantong Jin
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Zhaoxuan Guo
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Nanxi Ye
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Liwei Sun
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jingjing Guo
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
2
|
Jiang J, Li T, Wang E, Zhang Y, Han J, Tan L, Li X, Fan Y, Wu Y, Chen Q, Jin J. Polybrominated diphenyl ethers in dust, hair and urine: Exposure, excretion. CHEMOSPHERE 2024; 352:141380. [PMID: 38368958 DOI: 10.1016/j.chemosphere.2024.141380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/21/2024] [Accepted: 02/02/2024] [Indexed: 02/20/2024]
Abstract
Polybrominated diphenyl ethers (PBDEs) have been detected in various environmental media and human tissues. PBDEs concentrations in dust from college buildings and homes and in paired hair and urine samples from students were determined. This is of great significance to explore the accumulation and excretion patterns of PBDEs in the human body. The median PBDEs concentrations in the dust (College: 84.59 ng/g; Home: 170.32 ng/g) and hair (undergraduate: 6.16 ng/g; Home: 3.25 ng/g) samples were generally lower than were found in the majority of previous studies. The PBDEs concentrations in the hair and urine samples were subjected to principal component analysis, and the results combined with the PBDEs detection rates confirmed that hair is a useful non-invasive sampling medium for assessing PBDEs exposure and the risks posed. Body mass indices (BMIs) were used to divide students who had not been exposed to large amounts of PBDEs into groups. Body fat percentage is an important factor affecting the accumulation of PBDE in the human body. Environmental factors were found to affect the PBDEs concentrations in the hair and urine samples less for normal-weight students (BMI≤24) than overweight students (BMI>24). Short-term environmental changes to more readily affect the PBDEs concentrations in the tissues of the normal-weight than overweight students. PBDEs with seven or more bromine substituents were found not to be readily excreted in urine. Performing molecular docking simulations of the binding of isomers BDE-99 and BDE-100 to megalin. The binding energy was higher for BDE-100 and megalin than for BDE-99 and megalin, meaning BDE-99 would be more readily excreted than BDE-100.
Collapse
Affiliation(s)
- Junjie Jiang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Tianwei Li
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Erde Wang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Yan Zhang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Jiali Han
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Linli Tan
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Xiang Li
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Yuhao Fan
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Ye Wu
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Qianhui Chen
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Jun Jin
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China; Engineering Research Center of Food Environment and Public Health, Beijing, 100081, China.
| |
Collapse
|
3
|
Qin M, Ma WL, Yang PF, Li WL, Wang L, Shi LL, Li L, Li YF. A level IV fugacity-based multimedia model based on steady-state particle/gas partitioning theory and its application to study the spatio-temporal trends of PBDEs in atmosphere of northeast China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168622. [PMID: 37979874 DOI: 10.1016/j.scitotenv.2023.168622] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/20/2023]
Abstract
Particle/gas (P/G) partitioning can significantly affect the environmental behavior of atmospheric pollutants. In this study, we established a large-scale level IV fugacity-based multimedia model (the S-L4MF Model) based on the steady-state P/G partitioning theory. The spatial and temporal trends with the atmospheric contamination of polybrominated diphenyl ethers (PBDEs) in northeastern China under various climate conditions were simulated by the model. There is a reasonable agreement between the simulated and measured gaseous and particulate concentrations of 3 selected PBDE congeners (BDE-47, -99 and -209). For BDE-47, -99 and -209, 91.9 %, 94.8 % and 86.2 % of data points in the evaluation of the spatial trend, whereas 97.4 %, 98.2 % and 91.6 % of data points in the evaluation of the temporal trend, exhibit discrepancies between the modeled and measured data within 1 order of magnitude. The S-L4MF Model performed better than the other model with the same configuration but an equilibrium-state P/G partitioning assumption. The sensitivity and uncertainty analysis indicated that the air temperature and hexadecane-air partition coefficient were the dominant influencing factors on atmospheric concentrations. In addition, the model was successfully applied to study the inter-annual and seasonal variations of gaseous and particulate concentrations of the three PBDEs during 1971-2020 in Harbin, a northeastern Chinese city. Finally, we illustrated the potential to use the model to understand P/G partitioning behavior and the effects of snow and ice on atmospheric concentrations. In summary, the S-L4MF Model provided a powerful and effective tool for studying the environmental behavior of atmospheric organic pollutants, especially in cold regions.
Collapse
Affiliation(s)
- Meng Qin
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (HIT), Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), School of Environment, HIT, Harbin 150090, China
| | - Wan-Li Ma
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (HIT), Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), School of Environment, HIT, Harbin 150090, China.
| | - Pu-Fei Yang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (HIT), Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), School of Environment, HIT, Harbin 150090, China
| | - Wen-Long Li
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA
| | - Lei Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environmental, Nanjing 210042, China
| | - Li-Li Shi
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environmental, Nanjing 210042, China
| | - Li Li
- School of Public Health, University of Nevada, Reno, Reno, NV 89557, USA
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (HIT), Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), School of Environment, HIT, Harbin 150090, China; IJRC-PTS-NA, Toronto, Ontario M2J 3N8, Canada
| |
Collapse
|
4
|
Sun Y, Xu Y, Wu H, Hou J. A critical review on BDE-209: Source, distribution, influencing factors, toxicity, and degradation. ENVIRONMENT INTERNATIONAL 2024; 183:108410. [PMID: 38160509 DOI: 10.1016/j.envint.2023.108410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/24/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
As the most widely used polybrominated diphenyl ether, BDE-209 is commonly used in polymer-based commercial and household products. Due to its unique physicochemical properties, BDE-209 is ubiquitous in a variety of environmental compartments and can be exposed to organisms in various ways and cause toxic effects. The present review outlines the current state of knowledge on the occurrence of BDE-209 in the environment, influencing factors, toxicity, and degradation. BDE-209 has been detected in various environmental matrices including air, soil, water, and sediment. Additionally, environmental factors such as organic matter, total suspended particulate, hydrodynamic, wind, and temperature affecting BDE-209 are specifically discussed. Toxicity studies suggest BDE-209 may cause systemic toxic effects on living organisms, reproductive toxicity, embryo-fetal toxicity, genetic toxicity, endocrine toxicity, neurotoxicity, immunotoxicity, and developmental toxicity, or even be carcinogenic. BDE-209 has toxic effects on organisms mainly through epigenetic regulation and induction of oxidative stress. Evidence regarding the degradation of BDE-209, including biodegradation, photodegradation, Fenton degradation, zero-valent iron degradation, chemical oxidative degradation, and microwave radiation degradation is summarized. This review may contribute to assessing the environmental risks of BDE-209 to help develop rational management plans.
Collapse
Affiliation(s)
- Yuqiong Sun
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Yanli Xu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Haodi Wu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Jing Hou
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| |
Collapse
|
5
|
Gu C, Wang L, Jin Z, Fan X, Gao Z, Yang X, Sun C, Jiang X. Congener-specificity, dioxygenation dependency and association with enzyme binding for biodegradation of polybrominated diphenyl ethers by typical aerobic bacteria: Experimental and theoretical studies. CHEMOSPHERE 2023; 314:137697. [PMID: 36586449 DOI: 10.1016/j.chemosphere.2022.137697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are a group of organic pollutants that have attracted much concerns of scientific community over the ubiquitous distribution, chemical persistence and toxicological risks in the environment. Though a great number of aerobic bacteria have been isolated for the rapid removal of PBDEs, the knowledge about biodegradation characteristics and mechanism is less provided yet. Herein, the congener-specificity of aerobic biodegradation of PBDEs by typical bacteria, i.e. B. xenovorans LB400 was identified with the different biodegradation kinetics, of which the changes were largely hinged on the bromination pattern. The more bromination isomerically at ortho-sites other than meta-sites or the single bromination at one of aromatic rings might always exert the positive effect. The biodegradation of PBDEs should be thermodynamically constrained to some extent because the calculated Gibbs free energy changes of initial dioxygenation by quantum chemical method increased with the increase of bromination. Within the transition state theory, the high correlativity between the apparent biodegradation rates and Gibbs free energy changes implied the predominance and rate-limiting character of initial dioxygenation, while the regioselectivity of dioxygenation at the ortho/meta-sites was also manifested for the more negative charge population. The molecular binding with the active domain of dioxygenase BphA1 in aerobe was firstly investigated using docking approach. As significantly illustrated with the positive relationship, the higher binding affinity with BphA1 should probably signify the more rapid biodegradation. Besides the edge-on π-π stacking of PBDEs with F227 or Y277 and π-cation formulation with histidines (H233, H239) in BphA1, the reticular hydrophobic contacts appeared as the major force to underpin the high binding affinity and rapid biodegradation of PBDEs. Overall, the experimental and theoretical results would not only help understand the aerobic biodegradation mechanism, but facilitate enhancing applicability or strategy development of engineering bacteria for bioremediation of PBDEs in the environment.
Collapse
Affiliation(s)
- Chenggang Gu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of the Chinese Academy of Sciences, Beijing, 100049, China.
| | - Lei Wang
- Nanjing Audit University Jinshen College, Nanjing, 210042, China
| | - Zhihua Jin
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiuli Fan
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhengyuan Gao
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinglun Yang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Cheng Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Xin Jiang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
6
|
Paliya S, Mandpe A, Bombaywala S, Kumar MS, Kumar S, Morya VK. Polybrominated diphenyl ethers in the environment: a wake-up call for concerted action in India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:44693-44715. [PMID: 34227009 DOI: 10.1007/s11356-021-15204-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are a class of persistent organic pollutants (POPs) used as flame retardants in the products utilized in day-to-day life. Their bioaccumulation, low volatility, and high persistence in the environment have led to their global spread even to remote and distant regions. The present study identifies gaps in the investigation of the neurotoxic potential of PBDEs, their effects on brain development, toxicokinetic, and their potential as a carcinogen. In India, to date, only human breast milk was assessed for levels of PBDEs, and it is suggested that other human tissues can also be explored. No data on the reproductive toxicity of PBDEs are reported from Indian cohorts. Long-range transport and deposition of PBDEs in colder regions necessitates monitoring of Himalayan regions in India. An inventory of PBDEs is required to be made for addressing the worrisome situation of the unregulated import of E-waste from the developed countries in India. The study also emphasizes providing guidelines for the articulation of policies regarding sound surveillance and management of PBDE production, consumption, and release in the Indian context. It is recommended that a separate cell for monitoring and follow-up of PBDEs should be established in India. Also, the development of better alternatives and environment-friendly remediation technologies for PBDEs is the need of the hour.
Collapse
Affiliation(s)
- Sonam Paliya
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, India
| | - Ashootosh Mandpe
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, India
| | - Sakina Bombaywala
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, India
| | - Manukonda Suresh Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, India
| | - Sunil Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India.
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, India.
| | - Vivek Kumar Morya
- Adhita Biosciences Pvt. Ltd, SIIC Extension, IIT Kanpur, Kanpur, 208 016, India
| |
Collapse
|
7
|
Koelmel JP, Lin EZ, Nichols A, Guo P, Zhou Y, Godri Pollitt KJ. Head, Shoulders, Knees, and Toes: Placement of Wearable Passive Samplers Alters Exposure Profiles Observed. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:3796-3806. [PMID: 33625210 DOI: 10.1021/acs.est.0c05522] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Chemical exposures are a major risk factor for many diseases. Comprehensive characterization of personal exposures is necessary to highlight chemicals of concern and factors that influence these chemical exposure dynamics. For this purpose, wearable passive samplers can be applied to assess longitudinal personal exposures to airborne contaminants. Questions remain regarding the impact of sampler placement at different locations of the body on the exposure profiles observed and how these placements affect the monitoring of seasonal dynamics in exposures. This study assessed personal air contaminant exposure using passive samplers worn in parallel across 32 participant's wrists, chest, and shoes over 24 h. Samplers were analyzed by thermal desorption gas chromatography high-resolution mass spectrometry. Personal exposure profiles were similar for about one-third of the 275 identified chemicals, irrespective of sampler placement. Signals of certain semivolatile organic compounds (SVOCs) were enhanced in shoes and, to a lesser extent, wrist samplers, as compared to those in chest samplers. Signals of volatile organic compounds were less impacted by sampler placement. Results showed that chest samplers predominantly captured more volatile exposures, as compared to those of particle-bound exposures, which may indicate predominant monitoring of chemicals via the inhalation route of exposure for chest samplers. In contrast, shoe samplers were more sensitive to particle-bound SVOCs. Seventy-one chemicals changed across participants between winter and summer in the same manner for two or more different sampler placements on the body, whereas 122 chemicals were observed to have seasonal differences in only one placement. Hence, the placement in certain cases significantly impacts exposure dynamics observed. This work shows that it is essential in epidemiological studies undertaking exposure assessment to consider the consequence of the placement of exposure monitors.
Collapse
Affiliation(s)
- Jeremy P Koelmel
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, New Haven, Connecticut 06510, United States
| | - Elizabeth Z Lin
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, New Haven, Connecticut 06510, United States
| | - Amy Nichols
- Department of Chemical and Environmental Engineering, Yale University, 17 Hillhouse Avenue, New Haven, Connecticut 06520, United States
| | - Pengfei Guo
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, New Haven, Connecticut 06510, United States
| | - Yakun Zhou
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, New Haven, Connecticut 06510, United States
| | - Krystal J Godri Pollitt
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, New Haven, Connecticut 06510, United States
| |
Collapse
|
8
|
Yu Y, Li X, Hu J, Jiang Z, Zhang X, Li G, Ma S, Lei B, Fang X, Fan R, An T. Mechanisms of transplacental transport and barrier of polybrominated diphenyl ethers: A comprehensive human, Sprague-Dawley rat, BeWo cell and molecular docking study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116091. [PMID: 33234377 DOI: 10.1016/j.envpol.2020.116091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/25/2020] [Accepted: 11/12/2020] [Indexed: 06/11/2023]
Abstract
Although studies have reported that polybrominated diphenyl ethers (PBDEs) can transfer from mothers to fetuses, the underlying transplacental transport and barrier mechanisms are still unclear. Therefore, we conducted a series of comprehensive experiments in humans, Sprague-Dawley rats, and a BeWo cell monolayer model, as well as a molecular docking study. PBDEs in mothers can transfer to fetuses with a ratio of approximately 0.46, suggesting that the placenta could not efficiently acts as a barrier to PBDE transplacental transport. Similar results were observed in pregnant rats, although varying times were required for different congeners to reach a steady-state in fetuses. The transport ratios at pregnancy day 14 in rats were generally higher than those at pregnancy day 18, which demonstrated that the barrier capacity of immature placentas was lower than that of mature placentas. None concentration-dependent transplacental transport was observed in BeWo cells with efflux ratios of 1.73-2.32, which suggested passive diffusion mechanisms govern the influx of PBDEs through placenta. The accumulated ratios of PBDEs and the inhibitor assay indicated that the effluent channel of P-glycoprotein was partially inhibited by PBDEs. Using molecular docking studies, three pocket sites were identified for different congeners in P-glycoprotein, which demonstrated that the inhibition of P-glycoprotein efflux pump through the pocket sites.
Collapse
Affiliation(s)
- Yingxin Yu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Xiaojing Li
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Junjie Hu
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, Guangdong, PR China
| | - Zi'an Jiang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Xiaolan Zhang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Guiying Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Shengtao Ma
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Bingli Lei
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Xiangming Fang
- Shanghai Huangpu Maternity & Infant Health Hospital, Shanghai, 200020, PR China
| | - Ruifang Fan
- School of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China.
| |
Collapse
|
9
|
Wania F, Shunthirasingham C. Passive air sampling for semi-volatile organic chemicals. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:1925-2002. [PMID: 32822447 DOI: 10.1039/d0em00194e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
During passive air sampling, the amount of a chemical taken up in a sorbent from the air without the help of a pump is quantified and converted into an air concentration. In an equilibrium sampler, this conversion requires a thermodynamic parameter, the equilibrium sorption coefficient between gas-phase and sorbent. In a kinetic sampler, a time-averaged air concentration is obtained using a sampling rate, which is a kinetic parameter. Design requirements for kinetic and equilibrium sampling conflict with each other. The volatility of semi-volatile organic compounds (SVOCs) varies over five orders of magnitude, which implies that passive air samplers are inevitably kinetic samplers for less volatile SVOCs and equilibrium samplers for more volatile SVOCs. Therefore, most currently used passive sampler designs for SVOCs are a compromise that requires the consideration of both a thermodynamic and a kinetic parameter. Their quantitative interpretation depends on assumptions that are rarely fulfilled, and on input parameters, that are often only known with high uncertainty. Kinetic passive air sampling for SVOCs is also challenging because their typically very low atmospheric concentrations necessitate relatively high sampling rates that can only be achieved without the use of diffusive barriers. This in turn renders sampling rates dependent on wind conditions and therefore highly variable. Despite the overall high uncertainty arising from these challenges, passive air samplers for SVOCs have valuable roles to play in recording (i) spatial concentration variability at scales ranging from a few centimeters to tens of thousands of kilometers, (ii) long-term trends, (iii) air contamination in remote and inaccessible locations and (iv) indoor inhalation exposure. Going forward, thermal desorption of sorbents may lower the detection limits for some SVOCs to an extent that the use of diffusive barriers in the kinetic sampling of SVOCs becomes feasible, which is a prerequisite to decreasing the uncertainty of sampling rates. If the thermally stable sorbent additionally has a high sorptive capacity, it may be possible to design true kinetic samplers for most SVOCs. In the meantime, the passive air sampling community would benefit from being more transparent by rigorously quantifying and explicitly reporting uncertainty.
Collapse
Affiliation(s)
- Frank Wania
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada.
| | | |
Collapse
|
10
|
Wu Z, He C, Han W, Song J, Li H, Zhang Y, Jing X, Wu W. Exposure pathways, levels and toxicity of polybrominated diphenyl ethers in humans: A review. ENVIRONMENTAL RESEARCH 2020; 187:109531. [PMID: 32454306 DOI: 10.1016/j.envres.2020.109531] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/21/2020] [Accepted: 04/12/2020] [Indexed: 05/06/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are extensively used as brominated flame retardants (BFRs) in different types of materials, which have been listed as Persistent Organic Pollutants (POPs) by the Stockholm Convention in 2009 and 2017. Due to their ubiquities in the environment and toxicities, PBDEs have posed great threat to both human health and ecosystems. The aim of this review is to offer a comprehensive understanding of the exposure pathways, levels and trends and associated health risks of PBDEs in human body in a global scale. We systematically reviewed and described the scientific data of PBDE researches worldwide from 2010 to March 2020, focusing on the following three areas: (1) sources and human external exposure pathways of PBDEs; (2) PBDE levels and trends in humans; (3) human data of PBDEs toxicity. Dietary intake and dust ingestion are dominant human exposure pathways. PBDEs were widely detected in human samples, especially in human serum and human milk. Data showed that PBDEs are generally declining in human samples worldwide as a result of their phasing out. Due to the common use of PBDEs, their levels in humans from the USA were generally higher than that in other countries. High concentrations of PBDEs have been detected in humans from PBDE production regions and e-waste recycling sites. BDE-47, -153 and -99 were proved to be the primary congeners in humans. Human toxicity data demonstrated that PBDEs have extensively endocrine disruption effects, developmental effects, and carcinogenic effects among different populations.
Collapse
Affiliation(s)
- Zhineng Wu
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China.
| | - Chang He
- Queensland Alliance for Environmental Health Science (QAEHS), The University of Queensland, 4102, Brisbane, Australia
| | - Wei Han
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Jie Song
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
| | - Huijun Li
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yadi Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Xiaohua Jing
- School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455002, China
| | - Weidong Wu
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
11
|
Bu Z, Xu X, Xu Q, Mmereki D, Wang J, Cheng Z, Li K, Dong C. Indoor polybrominated diphenyl ethers in urban China: An exposure and risk assessment based on settled dust from selected urban regions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 714:136808. [PMID: 31982732 DOI: 10.1016/j.scitotenv.2020.136808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/14/2020] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
In this study, measurements of seven typical polybrominated diphenyl ethers (PBDEs) in indoor settled dust were summarized in selected urban regions of China. BDE-209 was the most dominant congener in settled dust (1.4-101 μg/g), with a mean contribution of 95%. Indoor exposures to PBDEs were estimated via inhalation, dust ingestion, and dermal absorption. The average daily intake of ΣPBDE was 4.9 to 19.1 ng/day/kg for all the population groups, with >80% of the total exposures from dust ingestion. Exposures in commuting environments (contributing 60%-80% of the total exposures) were higher than those in other microenvironments. The means of hazard indexes ranged from 1.66 × 10-3 to 5.26 × 10-3, which were mainly as a result of exposure to BDE-209, BDE-47, and BDE-99. The average lifetime cancer risks were from 0.03 × 10-9 to 2.37 × 10-9, which indicated the acceptable health risks resulting from indoor PBDE exposure for the Chinese population. The present study could provide valuable information that could be helpful for decision-makers, analysts and researchers to develop, implement and evaluate the effectiveness of interventions for the reduction of exposures to semi-volatile organic compounds (SVOCs) for large population groups in China.
Collapse
Affiliation(s)
- Zhongming Bu
- Department of Energy and Environmental System Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Xiaoxue Xu
- Hangzhou Architectural and Civil Engineering Design Institute Company Limited, Hangzhou 310020, China
| | - Qi Xu
- Department of Energy and Environmental System Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Daniel Mmereki
- Occupational Health Division, School of Public Health, University of the Witwatersrand, Parktown Education Campus, 2193 Johannesburg, South Africa
| | - Jiahui Wang
- Institute of Urban Construction, Hangzhou Polytechnic, Hangzhou 311402, China
| | - Zhu Cheng
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Ke Li
- Department of Energy and Environmental System Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Cong Dong
- Department of Energy and Environmental System Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| |
Collapse
|
12
|
Jiang Y, Yuan L, Lin Q, Ma S, Yu Y. Polybrominated diphenyl ethers in the environment and human external and internal exposure in China: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 696:133902. [PMID: 31470322 DOI: 10.1016/j.scitotenv.2019.133902] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/10/2019] [Accepted: 08/12/2019] [Indexed: 05/12/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are widely used as brominated flame retardants. Because of their toxicity and persistence, some PBDEs were restricted under the Stockholm Convention in 2009. Since then, many studies have been carried out on PBDEs in China and in many other countries. In the present review, the occurrences and contamination of PBDEs in air, water, sediment, soil, biota and daily food, human blood, hair, and other human tissues in China are comprehensively reviewed and described. The human exposure pathways and associated health risks of PBDEs are summarized. The data showed no obvious differences between North and South China, but concentrations from West China were generally lower than in East China, which can be mainly attributed to the production and widespread use of PBDEs in eastern regions. High levels of PBDEs were generally observed in the PBDE production facilities (e.g., Jiangsu Province and Shandong Province, East China) and e-waste recycling sites (Taizhou City, Zhejiang Province, East China, and Guiyu City and Qingyuan City, both located in Guangdong Province, South China) and large cities, whereas low levels were detected in rural and less-developed areas, especially in remote regions such as the Tibetan Plateau. Deca-BDE is generally the major congener. Existing problems for PBDE investigations in China are revealed, and further studies are also discussed and anticipated. In particular, non-invasive matrices such as hair should be more thoroughly studied; more accurate estimations of human exposure and health risks should be performed, such as adding bioaccessibility or bioavailability to human exposure assessments; and the degradation products and metabolites of PBDEs in human bodies should receive more attention. More investigations should be carried out to evaluate the quantitative relationships between internal and external exposure so as to provide a scientific basis for ensuring human health.
Collapse
Affiliation(s)
- Yufeng Jiang
- School of Environmental & Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, PR China
| | - Longmiao Yuan
- School of Environmental & Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, PR China
| | - Qinhao Lin
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Shentao Ma
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Synergy Innovation Institute of GDUT, Shantou 515100, China
| | - Yingxin Yu
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China.
| |
Collapse
|
13
|
Jia HH, Wang XT, Cheng HX, Zhou Y, Fu R. Pine needles as biomonitors of polybrominated diphenyl ethers and emerging flame retardants in the atmosphere of Shanghai, China: occurrence, spatial distributions, and possible sources. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:12171-12180. [PMID: 30830665 DOI: 10.1007/s11356-019-04558-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 02/13/2019] [Indexed: 06/09/2023]
Abstract
In this study, pine needles were used as biomonitors to investigate the levels, spatial distributions, and possible sources of polybrominated diphenyl ethers (PBDEs) and four emerging halogenated flame retardants (HFRs) in the atmosphere of Shanghai, China. The four emerging HFRs were hexabromocyclododecane (HBCD), decabromodiphenylethane (DBDPE), 1,2-bis(2,4,6-tribromophenoxy) ethane (BTBPE), and dechlorane plus (DP), with the first 3 HFRs being non-polybrominated diphenyl ether brominated flame retardants (non-PBDE BFRs). The total concentrations ranged from 3.71 to 4020 ng g-1 dry weight (dw) for 52 PBDE congeners (Σ52BDEs), < MDL (method detection limit) to 15.2 ng g-1 dw for three non-PBDE BFRs (Σ3non-PBDE BFRs), and 0.815 to 1090 pg g-1 dw for two DP isomers (ΣDP), respectively. High levels of PBDEs, three non-PBDE BFRs, and DP were found in pine needles from suburbs and Pudong, which was a consequence of industrial activities. The fraction of anti-DP isomer (fanti) in pine needles ranged from 0.515 to 0.939 with a mean value of 0.721, and most of the fanti values were consistent with those of technical DP formulations. Principal component analysis-multiple linear regression (PCA-MLR) model identified four sources of PBDEs in pine needles with the quantified contributions: degradation of technical PBDE formulations (49.5%), technical deca-BDE (6.9%), technical penta-BDE (25.1%), and technical octa-BDE (18.5%). These findings are expected to help understand the pollution level, fate, and possible sources of HFRs in the atmosphere of Shanghai and provide a basis for air pollution control and management in Shanghai.
Collapse
Affiliation(s)
- Hao-Hao Jia
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
- Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai University, Shanghai, 200444, China
| | - Xue-Tong Wang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
- Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai University, Shanghai, 200444, China.
| | - Hang-Xin Cheng
- Key Laboratory of Geochemical Cycling of Carbon and Mercury in the Earth's Critical Zone, Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang, 065000, China.
- Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geoscience, Langfang, 065000, China.
| | - Ying Zhou
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
- Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai University, Shanghai, 200444, China
| | - Rui Fu
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
- Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
14
|
Sugeng EJ, de Cock M, Leonards PEG, van de Bor M. Electronics, interior decoration and cleaning patterns affect flame retardant levels in the dust from Dutch residences. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 645:1144-1152. [PMID: 30248839 DOI: 10.1016/j.scitotenv.2018.07.127] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 07/10/2018] [Accepted: 07/10/2018] [Indexed: 05/06/2023]
Abstract
Consumer products such as furniture foam and electronic device casings are treated with flame retardant chemicals (FRs) to prevent the spread of fire. Many FRs are able to leach out of a product and end up in house dust. FRs in house dust can be taken up by humans through inhalation, ingestion or dermal adsorption. This study aims to identify factors in the home environment that are associated with FR levels in house dust. House dust and a wide range of data on characteristics of electronics, including age and use, interior decoration, domestic house and cleaning patterns, were collected from 50 households in the Netherlands. Decabromodiphenyl ether (BDE209) and several organophosphate flame retardants were measured in dust at detection percentages ranging from 58 to 94%, with median concentrations ranging from 32 ng/g (resorcinol-bis(diphenyl)phosphate (PBDPP)) to 825 ng/g (tris(chloropropyl)phosphate (TCIPP)). For the first time, age, hours of operation and use of the standby function of electronic devices were found to affect FR levels in dust. We found that if the total number of electronic devices purchased before 2008 increased by 1 device, BDE209 levels in house dust significantly increased by 66%. In addition, house dust from homes with carpeted floors was significantly associated with a 70-80% lower concentration of several FRs compared to homes with smooth floors (e.g., laminate). Less frequent vacuum cleaning and dusting were significantly associated with 41 to 88% higher concentrations of several FRs in dust. These associations suggest that actions such as frequent vacuum cleaning and dusting as well as different FR regulations for electronic devices affect indoor exposure levels.
Collapse
Affiliation(s)
- Eva J Sugeng
- Department of Environment and Health, Vrije Universiteit Amsterdam, O|2 Building, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands.
| | - Marijke de Cock
- Department of Environment and Health, Vrije Universiteit Amsterdam, O|2 Building, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| | - Pim E G Leonards
- Department of Environment and Health, Vrije Universiteit Amsterdam, O|2 Building, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| | - Margot van de Bor
- Department of Environment and Health, Vrije Universiteit Amsterdam, O|2 Building, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| |
Collapse
|
15
|
Su PH, Tomy GT, Hou CY, Yin F, Feng DL, Ding YS, Li YF. Gas/particle partitioning, particle-size distribution of atmospheric polybrominated diphenyl ethers in southeast Shanghai rural area and size-resolved predicting model. CHEMOSPHERE 2018; 197:251-261. [PMID: 29353675 DOI: 10.1016/j.chemosphere.2018.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/02/2018] [Accepted: 01/02/2018] [Indexed: 06/07/2023]
Abstract
A size-segregated gas/particle partitioning coefficient KPi was proposed and evaluated in the predicting models on the basis of atmospheric polybrominated diphenyl ether (PBDE) field data comparing with the bulk coefficient KP. Results revealed that the characteristics of atmospheric PBDEs in southeast Shanghai rural area were generally consistent with previous investigations, suggesting that this investigation was representative to the present pollution status of atmospheric PBDEs. KPi was generally greater than bulk KP, indicating an overestimate of TSP (the mass concentration of total suspended particles) in the expression of bulk KP. In predicting models, KPi led to a significant shift in regression lines as compared to KP, thus it should be more cautious to investigate sorption mechanisms using the regression lines. The differences between the performances of KPi and KP were helpful to explain some phenomenon in predicting investigations, such as PL0 and KOA models overestimate the particle fractions of PBDEs and the models work better at high temperature than at low temperature. Our findings are important because they enabled an insight into the influence of particle size on predicting models.
Collapse
Affiliation(s)
- Peng-Hao Su
- Department of Environmental Engineering, Shanghai Maritime University, Shanghai, 201306, PR China; IJRC-PTS, Shanghai Maritime University, Shanghai 201306, PR China
| | - Gregg T Tomy
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Chun-Yan Hou
- Department of Environmental Engineering, Shanghai Maritime University, Shanghai, 201306, PR China; IJRC-PTS, Shanghai Maritime University, Shanghai 201306, PR China.
| | - Fang Yin
- Department of Environmental Engineering, Shanghai Maritime University, Shanghai, 201306, PR China; IJRC-PTS, Shanghai Maritime University, Shanghai 201306, PR China
| | - Dao-Lun Feng
- Department of Environmental Engineering, Shanghai Maritime University, Shanghai, 201306, PR China; IJRC-PTS, Shanghai Maritime University, Shanghai 201306, PR China
| | - Yong-Sheng Ding
- Department of Environmental Engineering, Shanghai Maritime University, Shanghai, 201306, PR China; IJRC-PTS, Shanghai Maritime University, Shanghai 201306, PR China
| | - Yi-Fan Li
- IJRC-PTS-NA, Toronto, Ontario M2N 6X9, Canada
| |
Collapse
|
16
|
Chakraborty P, Zhang G, Cheng H, Balasubramanian P, Li J, Jones KC. Passive air sampling of polybrominated diphenyl ethers in New Delhi, Kolkata, Mumbai and Chennai: Levels, homologous profiling and source apportionment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 231:1181-1187. [PMID: 28911793 DOI: 10.1016/j.envpol.2017.08.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 08/02/2017] [Accepted: 08/11/2017] [Indexed: 05/24/2023]
Abstract
Several studies in the recent past reported new sources for industrial persistent organic pollutants (POPs) from metropolitan cities of India. To fill the data gap for atmospheric polybrominated diphenyl ethers (PBDEs), polyurethane foam disk passive air sampling (PUF-PAS) was conducted along urban-suburban-rural transects in four quadrilateral cities viz., New Delhi, Kolkata, Mumbai and Chennai from northern, eastern, western and southern India respectively. Average concentration of Σ8PBDEs in pg/m3 for New Delhi, Kolkata, Mumbai and Chennai were 198, 135, 264 and 144 respectively. We observed a distinct urban > suburban > rural trend for atmospheric PBDEs in Mumbai. Principal component analysis (PCA) attributed three different source types. BDE-47, -99, -100, -153 and -154 loaded in the first component were relatively high in the sites where industrial and informal electronic waste (e-waste) recycling activities were prevalent. Penta congener, BDE-99 and tetra congener, BDE-47 contributed 50%-75% of total PBDEs. Ratio of BDE-47 and -99 in Indian cities reflected the usage of penta formulations like Bromkal -70DE and DE-71 in the commercial and electrical products. PC-2 was loaded with BDE-28 and -35. Percentage of BDE-28 and BDE-35 (>10%) were comparatively much higher than commercial penta products. Abundance of BDE-28 in majority sites can be primarily due to re-emission from surface soil. PC-3 was loaded with BDE-183 and elevated levels were observed mostly in the industrial corridor of Indian cities. BDE-183 was notably high in the urban industrial sites of New Delhi. We suspect this octa-BDE congener resulted from recycling process of plastic products containing octa-BDE formulation used as flame retardants.
Collapse
Affiliation(s)
- Paromita Chakraborty
- Department of Civil Engineering, SRM Research Institute, SRM University, Kattankulathur 603203, India.
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Hairong Cheng
- Department of Environmental Engineering, School of Resource and Environmental Science, Wuhan University, Wuhan 430069, China
| | | | - Jun Li
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Kevin C Jones
- Lancaster Environmental Centre, Lancaster University, LA1 4YQ Lancaster, UK
| |
Collapse
|
17
|
Malliari E, Kalantzi OI. Children's exposure to brominated flame retardants in indoor environments - A review. ENVIRONMENT INTERNATIONAL 2017; 108:146-169. [PMID: 28863388 DOI: 10.1016/j.envint.2017.08.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 08/17/2017] [Accepted: 08/18/2017] [Indexed: 05/19/2023]
Abstract
The aim of this review is to present up-to-date research on children's exposure to brominated flame retardants (BFRs) in indoor environments. Large geographical variations were observed for all BFRs [polybrominated diphenyl ethers (PBDEs), hexabromocyclododecane (HBCDD), tetrabromobisphenol A (TBBPA)], with the highest concentrations of PBDEs measured in North America (BDE-47) and Europe (BDE-209), where higher concentrations of PBDEs are present in dust from houses, daycare centers and primary schools. In Asia the highest PBDE concentrations were measured in China, near e-waste recycling areas. In the Middle East, Australia and Africa BFR levels were low in most indoor spaces. Asian countries also have the highest concentrations of TBBPA and HBCDD, followed by European countries. Fewer studies have been conducted measuring novel and emerging BFRs (NBFRs or EBFRs), of which decabromodiphenylethane (DBDPE) has the highest concentration in indoor environments, especially in China. The vast majority of children's exposure studies have been conducted in houses, sampling either dust or air, and considerably fewer in schools, daycare centers, cars and public facilities, despite BFR levels being comparable to (or sometimes even higher than) house dust. Relatively fewer studies focused on children's tissues such as serum, and only two studied exposure via mouthing toys. Alternative noninvasive sampling matrices that may act as surrogates for exposure to BFRs such as handwipes and silicone wristbands have recently started to gain momentum, because of the ease of sampling, faster collection time and better correlations to serum than house dust. Feces sampling is another promising alternative to children's serum that warrants further research. While many studies have associated different indoor environment characteristics, there is a knowledge gap on the association between children's behaviour and activity patterns and their exposure to BFRs, as well as data on infant exposure to BFRs via baby products. Results from the studies showed that dust ingestion was the dominant exposure pathway for most studied BFRs compared to indoor air inhalation and dermal contact, especially for infants and toddlers who have higher exposures than older children.
Collapse
|
18
|
Khan MU, Besis A, Li J, Zhang G, Malik RN. New insight into the distribution pattern, levels, and risk diagnosis of FRs in indoor and outdoor air at low- and high-altitude zones of Pakistan: Implications for sources and exposure. CHEMOSPHERE 2017; 184:1372-1387. [PMID: 28693104 DOI: 10.1016/j.chemosphere.2017.06.056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 06/08/2017] [Accepted: 06/14/2017] [Indexed: 06/07/2023]
Abstract
Data regarding flame retardants (FRs) in indoor and outdoor air and their exposure to population are scarce and especially unknown in the case of Pakistan. The current study was designed to probe FR concentrations and distribution pattern in indoor and outdoor air at different altitudinal zones (DAZs) of Pakistan with special emphasis on their risk to the exposed population. In this study, passive air samplers for the purpose of FR deposition were deployed in indoor and outdoor air at the industrial, rural, and background/colder zones/sites. All the indoor and outdoor air samples collected from DAZs were analyzed for the target FRs (9.30-472.30 pg/m3), showing a decreasing trend as follows: ∑NBFRs > ∑PBDEs > ∑DP. However, significant correlations among FRs in the indoor and outdoor air at DAZs signified a similar source of FR origin that is used in different consumer goods. Furthermore, air mass trajectories revealed that movement of air over industrial area sources influenced concentrations of FRs at rural sites. The FR concentrations, estimated daily intake (EDI) and the hazard quotient (HQ), were recorded to be higher in toddlers than those in adults. In addition, indoor air samples showed higher FR levels, EDI and HQ, than outdoor air samples. An elevated FR concentrations and their prevalent exposure risks were recorded in the industrial zones followed by rural and background zones. The HQ for BDE-47 and BDE-99 in the indoor and outdoor air samples at different industrial and rural sites were recorded to be >1 in toddlers and adults, this further warrants a health risk in the population. However, FR investigation in indoor and outdoor air samples will provide a baseline data in Pakistan to take further steps by the government and agencies for its implementations.
Collapse
Affiliation(s)
- Muhammad Usman Khan
- Environmental Biology and Ecotoxicology Laboratory, Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, PO 45320, Islamabad, Pakistan.
| | - Athanasios Besis
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Jun Li
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Riffat Naseem Malik
- Environmental Biology and Ecotoxicology Laboratory, Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, PO 45320, Islamabad, Pakistan
| |
Collapse
|
19
|
Han B, Hu LW, Bai Z. Human Exposure Assessment for Air Pollution. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1017:27-57. [PMID: 29177958 DOI: 10.1007/978-981-10-5657-4_3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Assessment of human exposure to air pollution is a fundamental part of the more general process of health risk assessment. The measurement methods for exposure assessment now include personal exposure monitoring, indoor-outdoor sampling, mobile monitoring, and exposure assessment modeling (such as proximity models, interpolation model, air dispersion models, and land-use regression (LUR) models). Among these methods, personal exposure measurement is considered to be the most accurate method of pollutant exposure assessment until now, since it can better quantify observed differences and better reflect exposure among smaller groups of people at ground level. And since the great differences of geographical environment, source distribution, pollution characteristics, economic conditions, and living habits, there is a wide range of differences between indoor, outdoor, and individual air pollution exposure in different regions of China. In general, the indoor particles in most Chinese families comprise infiltrated outdoor particles, particles generated indoors, and a few secondary organic aerosol particles, and in most cases, outdoor particle pollution concentrations are a major contributor to indoor concentrations in China. Furthermore, since the time, energy, and expense are limited, it is difficult to measure the concentration of pollutants for each individual. In recent years, obtaining the concentration of air pollutants by using a variety of exposure assessment models is becoming a main method which could solve the problem of the increasing number of individuals in epidemiology studies.
Collapse
Affiliation(s)
- Bin Han
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.,Atmospheric Chemistry & Aerosol Division, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Li-Wen Hu
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, 74 Zhongshan 2nd Road, Yuexiu District,, Guangzhou, 510080, Guangdong, China
| | - Zhipeng Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China. .,Atmospheric Chemistry & Aerosol Division, Chinese Research Academy of Environmental Sciences, Beijing, China.
| |
Collapse
|
20
|
Gou YY, Que DE, Chuang CY, Chao HR, Shy CG, Hsu YC, Lin CW, Chuang KP, Tsai CC, Tayo LL. Dust levels of polybrominated diphenyl ethers (PBDEs) and polybrominated dibenzo-p-dioxins/furans (PBDD/Fs) in the Taiwanese elementary school classrooms: Assessment of the risk to school-age children. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 572:734-741. [PMID: 27515016 DOI: 10.1016/j.scitotenv.2016.07.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/06/2016] [Accepted: 07/06/2016] [Indexed: 06/06/2023]
Abstract
Elementary school classroom dust is an important source of exposure to polybrominated dibenzo-p-dioxins/furans and diphenyl ethers (PBDD/DF/DEs) for school-age children. Our goal is thus to investigate concentrations of PBDD/DF/DEs in elementary school classroom dust to further assess the impact on school-age children via ingestion. The dust from classrooms, including both normal (NR) and computer classrooms (CR), was collected from six urban and four rural schools. Fourteen PBDEs and twelve PBDD/Fs were measured using high-resolution gas-chromatography/high-resolution mass-spectrometry. The mean levels of Σ14PBDEs in NR and CR dust from the urban classrooms were 370 and 2510ng/g and those whose dust from the rural classrooms were 464 and 1780ng/g. The means of ΣPBDD/Fs were 0.0401ng-WHO2005-TEQ/g (concentration: 4.72ng/g) in urban NR dust, 0.0636ng-WHO2005-TEQ/g (7.51ng/g) in urban CR dust, 0.0281ng-WHO2005TEQ/g (3.60ng/g) in rural NR dust, and 0.0474ng-WHO2005TEQ/g (6.28ng/g) in rural CR dust. The PBDEs pattern in NR dust was quite different from that in CR dust, but the PBDD/Fs patterns in NR and CR dust were similar. A linearly significant correlation coefficient (n=20, r=0.862, p<0.001) was found between ΣPBDEs and ΣPBDD/Fs in NR and CR dust, indicating that the PBDEs and PBDD/Fs in the dust may be from the same sources in the elementary school classrooms. This study assessed the risks (daily intake and cancer and non-cancer risks) of PBDEs and PBDD/Fs for the children from the classroom dust, and the calculated risk values did not exceed the related thresholds. With regard to the exposure scenarios for school-age children in an indoor environment, the results suggest that they might ingest more dust PBDD/DF/DEs in their homes than in the schools. In conclusion, the exposure of Taiwanese elementary school children to PBDD/DF/DEs via indoor dust was with a safe range based on our findings.
Collapse
Affiliation(s)
- Yan-You Gou
- Emerging Compounds Research Center, Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Neipu, Pingtung County 912, Taiwan
| | - Danielle E Que
- School of Chemical Engineering, Chemistry, Biological Engineering and Material Science and Engineering, Mapúa Institute of Technology, Intramuros, Manila 1002, Philippines
| | - Chun-Yu Chuang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu City 300, Taiwan
| | - How-Ran Chao
- Emerging Compounds Research Center, Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Neipu, Pingtung County 912, Taiwan.
| | - Cherng-Gueih Shy
- Department of Radiology, Pingtung Christian Hospital, Pingtung City, Pingtung 900, Taiwan
| | - Yi-Chyun Hsu
- Department of Environmental Engineering, Kun Shan University, Yung-Kang Dist., Tainan City 71003, Taiwan
| | - Chun-Wen Lin
- Department of Child Care, National Pingtung University of Science and Technology, Pingtung County 912, Taiwan
| | - Kuo Pin Chuang
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Neipu, Pingtung County 912, Taiwan
| | - Chih-Chung Tsai
- Graduate Institute of Science Education and Environmental Education, National Kaohsiung Normal University, Yan-Chou District, Kaohsiung City 824, Taiwan
| | - Lemmuel L Tayo
- School of Chemical Engineering, Chemistry, Biological Engineering and Material Science and Engineering, Mapúa Institute of Technology, Intramuros, Manila 1002, Philippines
| |
Collapse
|