1
|
Chen X, Yu N, Yang N, Zhang J, Chen J. Simultaneous determination of sixteen phthalic acid esters (PAEs) in soil and evaluation of matrix effect using a QuEChERS/GC/MS-internal standard method. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:51253-51266. [PMID: 39106010 DOI: 10.1007/s11356-024-34600-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024]
Abstract
Phthalic acid esters (PAEs) are emerging pollutants that need to be analyzed precisely. Chromatography-based determination of PAE content in soils are frequently affected by matrix effect, which may limit the quantification of different kinds of PAEs from different types of soil. Here we optimized a QuEChERS protocol combined with gas chromatography-mass spectrometry (GC-MS) for simultaneous determination of 16 PAEs in different soils. PAEs in different type of soils (fluvo-aquic soil, red soil, and black soil) were extracted with acetonitrile followed by GC-MS detection based on quantitative ion internal standard method. All 16 PAEs showed excellent linear relationships with mass peak areas (R2 > 0.99). The limits of detection (LOD) and limits of quantitation (LOQ) of all the samples were in the range of 0.91-66.97 µg/kg and 2.7-200.9 µg/kg, respectively. The accurate test at 0.5, 0.1, and 1.0 mg/kg spiking level recorded recovery rate between 80.11% and 100.99% with relative standard deviations (RSDs) ranging from 0.37 to 8.50% in tested matrices. No significant matrix effect was observed for most tested PAEs. This is a simple method with high sensitivity and strong stability, which is suitable and reproducible for quantifying large number of PAEs in different types of soil.
Collapse
Affiliation(s)
- Xiaolong Chen
- Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing, 210014, China
| | - Ningwei Yu
- College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, 650224, China
| | - Nan Yang
- College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, 650224, China
| | - Jiahui Zhang
- Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing, 210014, China
| | - Jian Chen
- Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing, 210014, China.
| |
Collapse
|
2
|
Li L, Guo Z, Deng R, Fan T, Dong D, Dai Y, Li C. The concentrations and behavior of classic phthalates and emerging phthalate alternatives in different environmental matrices and their biological health risks. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:46790-46805. [PMID: 38977546 DOI: 10.1007/s11356-024-34213-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024]
Abstract
Because of their excellent plasticity, phthalates or phthalic acid esters (PAEs) are widely used in plastic products. However, due to the recognized toxicity of PAEs and legislative requirements, the production and use of emerging PAE alternatives have rapidly grown, such as di-isononyl cyclohexane-1,2-dicarboxylate (DINCH) and di(2-ethylhexyl) terephthalate (DEHTP) which are the primary replacements for classic PAEs. Nowadays, PAEs and emerging PAE alternatives are frequently found in a variety of environmental media, including the atmosphere, sludge, rivers, and seawater/sediment. PAEs and emerging PAE alternatives are involved in endocrine-disrupting effects, and they affect the reproductive physiology of different species of fish and mammals. Therefore, their presence in the environment is of considerable concern due to their potential effects on ecosystem function and public health. Nevertheless, current research on the prevalence, destiny, and conduct of PAEs in the environment has primarily focused on classic PAEs, with little attention given to emerging PAE alternatives. The present article furnishes a synopsis of the physicochemical characteristics, occurrence, transport, fate, and adverse effects of both classic PAEs and emerging PAE alternatives on organisms in the ecosystem. Our analysis reveals that both classic PAEs and emerging PAE alternatives are widely distributed in all environmental media, with emerging PAE alternatives increasingly replacing classic PAEs. Various pathways can transform and degrade both classic PAEs and emerging PAE alternatives, and their own and related metabolites can have toxic effects on organisms. This research offers a more extensive comprehension of the health hazards associated with classic PAEs and emerging PAE alternatives.
Collapse
Affiliation(s)
- Lele Li
- School of Resources and Environmental Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei, 230009, China
- Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, 230009, China
| | - Zhi Guo
- School of Resources and Environmental Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei, 230009, China.
- Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, 230009, China.
| | - Rui Deng
- School of Resources and Environmental Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei, 230009, China
- Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, 230009, China
| | - Ting Fan
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Dazhuang Dong
- School of Resources and Environmental Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei, 230009, China
- Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, 230009, China
| | - Yaodan Dai
- School of Resources and Environmental Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei, 230009, China
- Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, 230009, China
| | - Chenxuan Li
- School of Resources and Environmental Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei, 230009, China
- Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, 230009, China
| |
Collapse
|
3
|
Liang J, Ji X, Feng X, Su P, Xu W, Zhang Q, Ren Z, Li Y, Zhu Q, Qu G, Liu R. Phthalate acid esters: A review of aquatic environmental occurrence and their interactions with plants. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134187. [PMID: 38574659 DOI: 10.1016/j.jhazmat.2024.134187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/25/2024] [Accepted: 03/30/2024] [Indexed: 04/06/2024]
Abstract
The increasing use of phthalate acid esters (PAEs) in various applications has inevitably led to their widespread presence in the aquatic environment. This presents a considerable threat to plants. However, the interactions between PAEs and plants in the aquatic environment have not yet been comprehensively reviewed. In this review, the properties, occurrence, uptake, transformation, and toxic effects of PAEs on plants in the aquatic environment are summarized. PAEs have been prevalently detected in the aquatic environment, including surface water, groundwater, seawater, and sediment, with concentrations ranging from the ng/L or ng/kg to the mg/L or mg/kg range. PAEs in the aquatic environment can be uptake, translocated, and metabolized by plants. Exposure to PAEs induces multiple adverse effects in aquatic plants, including growth perturbation, structural damage, disruption of photosynthesis, oxidative damage, and potential genotoxicity. High-throughput omics techniques further reveal the underlying toxicity molecular mechanisms of how PAEs disrupt plants on the transcription, protein, and metabolism levels. Finally, this review proposes that future studies should evaluate the interactions between plants and PAEs with a focus on long-term exposure to environmental PAE concentrations, the effects of PAE alternatives, and human health risks via the intake of plant-based foods.
Collapse
Affiliation(s)
- Jiefeng Liang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xiaomeng Ji
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xiaoxia Feng
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Pinjie Su
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Wenzhuo Xu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Qingzhe Zhang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Zhihua Ren
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, China
| | - Yiling Li
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Qingqing Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Runzeng Liu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| |
Collapse
|
4
|
Belaid A, Bekir K, Beltifa A, Sedrati M, Santana Rodríguez JJ, Ben Mansour H. Physicochemical and ecotoxicological approaches for Moknine Continental Sebkha in Tunisia. JOURNAL OF WATER AND HEALTH 2024; 22:785-796. [PMID: 38678430 DOI: 10.2166/wh.2024.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 03/06/2024] [Indexed: 04/30/2024]
Abstract
Degradation of water quality is an emerging issue in many developing countries. In this context, industrial and domestic effluents heavily contaminate the coast of Moknine Continental Sebkha in Tunisia. The present study aimed to biomonitor the seawater quality of the Moknine Continental Sebkha coast using physicochemical and ecotoxicological approaches. The ecotoxicological assessment was performed using three species representing different trophic levels, namely Vibrio fischeri, Selenastrum capricornutum, and Lepidium sativum. In the physicochemical analysis such as BOD (biochemical oxygen demand), COD (chemical oxygen demand), TSS (total suspended solids), TOC (total organic carbon), NO3- (nitrate), AOX (adsorbable organic halogen), the recorded levels of pH and total suspended solids did not comply with the Tunisian standard (NT.09.11/1983). The ecotoxicological data confirmed that the tested water samples displayed toxicity to two test indicators L. sativum and S. capricornutum. A targeted chemical screening of the Moknine Continental Sebkha coast previously performed revealed the presence of total mercury, four phthalate acid esters, and one non-phthalate plasticizer, a fact that could explain the observed ecotoxicological effects and therefore might harm the biotic area and the health of the surrounding population.
Collapse
Affiliation(s)
- Afifa Belaid
- UR Analysis and Process Applied on the Environment (UR17ES32), Higher Institute of Applied Sciences and Technology, University of Monastir, Mahdia, Tunisia
| | - Karima Bekir
- UR Analysis and Process Applied on the Environment (UR17ES32), Higher Institute of Applied Sciences and Technology, University of Monastir, Mahdia, Tunisia
| | - Asma Beltifa
- UR Analysis and Process Applied on the Environment (UR17ES32), Higher Institute of Applied Sciences and Technology, University of Monastir, Mahdia, Tunisia
| | - Mouncef Sedrati
- Geo-Ocean UMR 6538, CNRS, Ifremer, UBO - UBS, Plouzane, France
| | - José Juan Santana Rodríguez
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria 35017, Spain
| | - Hedi Ben Mansour
- UR Analysis and Process Applied on the Environment (UR17ES32), Higher Institute of Applied Sciences and Technology, University of Monastir, Mahdia, Tunisia; Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria 35017, Spain E-mail:
| |
Collapse
|
5
|
Kumari A, Rajput VD, Mandzhieva S, Minkina T, Kaur R. Morpho-biochemical Responses and Disturbed Redox Homeostasis in Barley Under Benzyl-butyl Phthalate Stress. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 110:47. [PMID: 36692586 DOI: 10.1007/s00128-022-03664-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
The present study is aimed to address the morphometric consequences, yield attributes, and biochemical responses of barley plants under the stress of an endocrine disruptor i.e., benzyl-butyl phthalate (BBP). The morphometric analyses (plant length, dry weight, and net primary productivity) revealed that the inhibition induced by BBP was concentration- and time-dependent. The seed weight and the number of seeds per spike have also significantly declined with an increase in BBP doses. Similarly, BBP exhibited significant alterations over the control in the biochemical indices viz., pigments, sugars, proteins, proline, malonaldehyde, and hydrogen peroxide contents of barley plants. Furthermore, BBP stress negatively influenced the activities of antioxidative enzymes viz., SOD, POD, CAT, APX, and GR of barley with an increase in doses and exposure durations due to the over-produced reactive oxygen species. The uptake and transport of BBP were determined and observed as a responsible cue for these toxicological implications in barley plants under BBP exposure. The correlation of barley plants' morpho-biochemical responses with BBP uptake and transport was also established using Pearson's correlation. Thus, this study indicated the toxicological behavior of meagerly explored phthalate (i.e., BBP) in the crop plant and these observations can be utilized for the generation of tolerant cultivars.
Collapse
Affiliation(s)
- Arpna Kumari
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, 143005, Amritsar, Punjab, India
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Saglara Mandzhieva
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Rajinder Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, 143005, Amritsar, Punjab, India.
| |
Collapse
|
6
|
Ma J, Lu Y, Teng Y, Tan C, Ren W, Cao X. Occurrence and health risk assessment of phthalate esters in tobacco and soils in tobacco-producing areas of Guizhou province, southwest China. CHEMOSPHERE 2022; 303:135193. [PMID: 35679984 DOI: 10.1016/j.chemosphere.2022.135193] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Flue-cured tobacco is one of the important sources of national economy in China. However, Phthalic acid esters (PAEs) are ubiquitous contaminants in the cultivation and growth management of flue-cured tobacco, and attracting more and more attention. Here, six priority PAEs were detected in tobacco and soils and their residue characteristics, pollution sources were analyzed, and their exposure risks to the health of farmers were assessed. The concentration of six total PAEs ranged from 0.78 to 4.79 mg/kg in tobacco with the average of 1.75 mg/kg, and 0.84-25.68 mg/kg in soils with the average of 5.40 mg/kg. Di-(2-ethylhexyl) phthalate (DEHP) and di-n-butyl phthalate (DBP) had the highest detection frequency (DF = 100%) both in soil and tobacco samples. DEHP was the most abundant of the total PAEs in soil and tobacco samples, with the mean contribution values of 71.0% and 58.8%, respectively. Principal component analysis (PCA) indicates that the major sources of PAEs in the tobacco-soil system were plastic films, fertilizers and pesticides. Health risk assessment suggests that the non-cancer hazard indexes (NCHI) of dimethyl phthalate (DMP), diethyl phthalate (DEP), DBP and di-n-octyl phthalate (DnOP) in all samples for farmers were at acceptable levels (NCHI < 1), and the average carcinogenic hazard indexes (CHI) of butyl benzyl phthalate (BBP) and DEHP for farmers were 3.79 × 10-13 and 8.54 × 10-11 in soils, respectively, 8.23 × 10-13 and 1.95 × 10-11 in tobacco, respectively, which were considered to be very low level (CHI < 10-6). This study provides data on PAEs in tobacco and soils and their health risks which may provide valuable information to aid the management of tobacco cultivation and risk avoidance.
Collapse
Affiliation(s)
- Jun Ma
- School of Geographic Sciences, Hunan Normal University, Changsha, 410081, China; College of Materials and Chemistry, Tongren University, Tongren, 554300, China.
| | - Yingang Lu
- College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Ying Teng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Changyin Tan
- School of Geographic Sciences, Hunan Normal University, Changsha, 410081, China.
| | - Wenjie Ren
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xueying Cao
- Rural Vitalization Research Institute, Changsha University, Changsha, 410022, China
| |
Collapse
|
7
|
Li N, Wang K, Lv Y, Zhang Z, Cao B, Chen Z, Xu K. Silicon enhanced the resistance of Chinese cabbage (Brassica rapa L. ssp. pekinensis) to ofloxacin on the growth, photosynthetic characteristics and antioxidant system. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 175:44-57. [PMID: 35180528 DOI: 10.1016/j.plaphy.2022.02.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/22/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
The negative impact of the misuse of antibiotics on agriculture and human health has become a popular research topic with the increasing usage of antibiotics; however, little information is available about the mechanisms of OFL (ofloxacin) and Si (silicon). In this experiment, we applied 7 OFL concentrations to two Chinese cabbage cultivars (Qinghua and Biyu) to screen proper OFL concentrations. OFL concentrations of 0, 1, 2.5 and 5 mg L-1 were selected for the subsequent test and 1.2 mmol L-1 Si was used as mitigation. The results showed that Biyu suffered more damage than Qinghua and the injury degree increased in a concentration-dependent manner. With increasing OFL concentrations, the photosynthetic fluorescence was weakened significantly; under 1, 2.5 and 5 mg L-1 OFL, the Pn reduced by 5.35%, 35.92% and 43.62% in Qinghua and 33.98%, 41.94% and 64.66% in Biyu, respectively. The production rate of O2-, H2O2 and the MDA content were increased and Biyu appeared higher increase rates. In addition, the antioxidant enzymes contents first increased and then decreased and that of Qinghua increased more than Biyu. Si ensured the growth under OFL and protected its photosynthetic ability. Under the OFL1+Si, OFL2.5 + Si and OFL5+Si treatments, Pn increased by 3.91%, 15.95 and 15.69% in Qinghua and 28.82%, 20.40% and 39.01% in Biyu. Si also maintained the structural integrity of leaf organelles and improved the scavenging ability of ROS by increasing the activity and relative gene expression of antioxidant enzymes. Moreover, varietal differences may play a more important role than Si.
Collapse
Affiliation(s)
- Na Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China; Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Tai'an, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, Tai'an, China; State Key Laboratory of Crop Biology, Tai'an, 271018, China
| | - Kai Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China; Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Tai'an, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, Tai'an, China; State Key Laboratory of Crop Biology, Tai'an, 271018, China
| | - Yao Lv
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China; Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Tai'an, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, Tai'an, China; State Key Laboratory of Crop Biology, Tai'an, 271018, China
| | | | - Bili Cao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China; Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Tai'an, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, Tai'an, China; State Key Laboratory of Crop Biology, Tai'an, 271018, China
| | - Zijing Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China; Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Tai'an, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, Tai'an, China; State Key Laboratory of Crop Biology, Tai'an, 271018, China
| | - Kun Xu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China; Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Tai'an, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, Tai'an, China; State Key Laboratory of Crop Biology, Tai'an, 271018, China.
| |
Collapse
|
8
|
Kumari A, Kaur R. Uptake of a plasticizer (di-n-butyl phthalate) impacts the biochemical and physiological responses of barley. PeerJ 2022; 10:e12859. [PMID: 35186466 PMCID: PMC8852270 DOI: 10.7717/peerj.12859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 01/09/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND DBP is one of the most commonly used plasticizers for imparting desirable properties to polymers. The introduction of phthalates is reported to have occurred in the late 1920s, and there has been a significant rise in their release into the environment in past decades due to a lack of covalent bonding with the parent matrix. Because of their numerous applications in day-to-day life, phthalates have become ubiquitous and also classified as endocrine disruptors. Hence, several studies have been conducted to investigate the phthalate-mediated toxicities in animals; however, plants have not been explored to the same amount. METHODS Therefore, in the present study, the accumulation and translocation along with morpho-physiological perturbations in barley plants after 15, 30, 60, and 120 days of exposure to di-n-butyl phthalate (DBP) are investigated using standard protocols. RESULTS The maximal accumulation and translocation of DBP in the roots and shoots of barley plants was observed after 60 days of exposure. The exposure of DBP from 15 to 120 days was recorded to decline all the morphological indices (i.e., dry weight, net primary productivity, seed number per spike, and seed weight) of barley plants. The pigments content declined under DBP treatment for all exposure durations except 120 days exposure. Carbohydrate content increased after 15-30 days of exposure afterward it was observed to be decreased under 60 and 120 days of exposure. The protein content was declined in DBP stressed plants for 15-120 days. Proline content was increased in all exposure durations and maximal percent increase was recorded in 120 days of exposure. MDA content showed an increase at earlier exposure durations then followed by a decline in long-term exposure. Hydrogen peroxide content increased at all exposure durations. There were significant alterations observed in the activities of all antioxidative enzymes in comparison to the control. Furthermore, DBP stressed plants after 60 days were analyzed for the macromolecular variations using Fourier transform infrared spectroscopy (FTIR). CONCLUSION Thus, the outcomes of the current work provide an appraisal of phthalates' uptake and translocation mediated phytotoxic responses in barley plants. These observations can help in developing genetically modified edible plants that are resistant to phthalates uptake, thereby ensuring food security.
Collapse
Affiliation(s)
- Arpna Kumari
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India,Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Rajinder Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
9
|
Pietrini F, Iannilli V, Passatore L, Carloni S, Sciacca G, Cerasa M, Zacchini M. Ecotoxicological and genotoxic effects of dimethyl phthalate (DMP) on Lemna minor L. and Spirodela polyrhiza (L.) Schleid. plants under a short-term laboratory assay. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150972. [PMID: 34656584 DOI: 10.1016/j.scitotenv.2021.150972] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/08/2021] [Accepted: 10/10/2021] [Indexed: 06/13/2023]
Abstract
The environmental occurrence of phthalates (PAE) is of great concern for the ecosystem and human health. Despite of their recognized toxicity on biota, a lack of knowledge is still present about the effects of PAE on plants. In this scenario, the effects of dimethyl phthalate (DMP) on duckweed plants (Lemna minor L. and Spirodela polyrhiza (L.) Schleid.), two model plant species for ecotoxicological and trophic studies, were investigated. Under a 7-day lab assay, morphological (biometric indicators), physiological (pigment content and photosynthetic performance) and molecular (DNA damage) parameters were studied. No effects were observed at growth and physiological level in both plants at 3 and 30 mg/L DMP. On the contrary, at 600 mg/L DMP, a concentration used for plant acute toxicity studies, a remarkable growth inhibition and pigment content and photosynthetic parameters reduction compared to control were observed in both plants species, particularly in Spirodela. Alkaline Comet assay in 24 h-treated plants revealed a genotoxic damage induced by DMP, particularly relevant in Spirodela. These results described for the first time the adverse effects exerted by DMP on aquatic plants, contributing to highlight the environmental risk associated to the presence of this compound in the aquatic ecosystem.
Collapse
Affiliation(s)
- Fabrizio Pietrini
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), via Salaria km 29.300, 00015 Monterotondo Scalo, Rome, Italy
| | - Valentina Iannilli
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development C.R. Casaccia, Via Anguillarese, 301, 00123 Rome, Italy
| | - Laura Passatore
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), via Salaria km 29.300, 00015 Monterotondo Scalo, Rome, Italy
| | - Serena Carloni
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), via Salaria km 29.300, 00015 Monterotondo Scalo, Rome, Italy
| | - Giulia Sciacca
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development C.R. Casaccia, Via Anguillarese, 301, 00123 Rome, Italy
| | - Marina Cerasa
- Institute on Atmospheric Pollution (IIA), National Research Council of Italy (CNR), via Salaria km 29.300, 00015 Monterotondo Scalo, Rome, Italy
| | - Massimo Zacchini
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), via Salaria km 29.300, 00015 Monterotondo Scalo, Rome, Italy.
| |
Collapse
|
10
|
Luo Q, Li Y, Wu Z, Wang X, Wang C, Shan Y, Sun L. Phytotoxicity of tris-(1-chloro-2-propyl) phosphate in soil and its uptake and accumulation by pakchoi (Brassica chinensis L. cv. SuZhou). CHEMOSPHERE 2021; 277:130347. [PMID: 33780681 DOI: 10.1016/j.chemosphere.2021.130347] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 03/13/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
This study investigated physiological and biochemical changes in pakchoi at different growth stages (25 and 50 d) under different tris-(1-chloro-2-propyl) phosphate (TCIPP) treatments (10, 100, 500, and 1000 μg kg-1). The uptake and accumulation of TCIPP by pakchoi and variation of TCIPP speciation in soil were also determined. TCIPP decreased the length and fresh weight of pakchoi root compared with those in blank controls, and this effect was significant when the concentration of TCIPP was higher than 100 μg kg-1. The fresh weight of pakchoi stems and leaves, the chlorophyll content, and the activities of superoxide dismutase, peroxidase, and catalase in the leaves first increased and then decreased with increasing TCIPP concentration. The inflection point of the variation in these indices was 100 μg kg-1 TCIPP in soil. The contents of proline and malondialdehyde increased continuously with increasing TCIPP concentration. The uptake of TCIPP by pakchoi increased linearly with increasing TCIPP concentration, and the highest TCIPP concentrations in the roots, stems, and leaves were 275.9, 80.0, and 2126.3 μg kg-1, respectively. TCIPP was easily transferred from the roots to leaves of pakchoi, with translocation factor of up to 12.6. The content of bioavailable TCIPP in soil was high, accounting for 46.5%. Planting pakchoi could significantly reduce the content of bioavailable TCIPP, with removal rate of 39.9%-54.1%. After 50 d of planting pakchoi, the removal rate of TCIPP in soil (10.4%-18.6%) was significantly higher than that in the control without plant, but the contribution of phytoextraction was small, accounting for 2.62%-26.6%.
Collapse
Affiliation(s)
- Qing Luo
- Key Laboratory of Regional Environment and Eco-Remediation of Ministry of Education, College of Environment, Shenyang University, Shenyang, 110044, China.
| | - Yujie Li
- Key Laboratory of Regional Environment and Eco-Remediation of Ministry of Education, College of Environment, Shenyang University, Shenyang, 110044, China
| | - Zhongping Wu
- Key Laboratory of Regional Environment and Eco-Remediation of Ministry of Education, College of Environment, Shenyang University, Shenyang, 110044, China
| | - Xiaoxu Wang
- Key Laboratory of Regional Environment and Eco-Remediation of Ministry of Education, College of Environment, Shenyang University, Shenyang, 110044, China
| | - Congcong Wang
- Key Laboratory of Regional Environment and Eco-Remediation of Ministry of Education, College of Environment, Shenyang University, Shenyang, 110044, China
| | - Yue Shan
- Key Laboratory of Regional Environment and Eco-Remediation of Ministry of Education, College of Environment, Shenyang University, Shenyang, 110044, China
| | - Lina Sun
- Key Laboratory of Regional Environment and Eco-Remediation of Ministry of Education, College of Environment, Shenyang University, Shenyang, 110044, China
| |
Collapse
|
11
|
Liu X, Lv Y, Gao S, Xu K. Ofloxacin induces etiolation in Welsh onion leaves. CHEMOSPHERE 2021; 267:128918. [PMID: 33218729 DOI: 10.1016/j.chemosphere.2020.128918] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 11/05/2020] [Accepted: 11/07/2020] [Indexed: 06/11/2023]
Abstract
Antibiotic pollution has become an important global issue, and ofloxacin (OFL) is widely used worldwide. However, little is known about the potential adverse effects of OFL on plants. We assessed the toxic effects of OFL on Welsh onion and explored its toxicity mechanism. The leaf pigment content increased in 0.1 mg/L of OFL but decreased in a dose-dependent manner (0.5-2 mg/L OFL) until leaf etiolation. The ultrastructure of leaves showed that the treatment of 2 mg/L OFL produced significant toxicity. Furthermore, photosynthetic and fluorescence parameters were negatively affected by OFL treatment. The photosynthetic electron transport chain was significantly inhibited by OFL treatment, especially between QA and QB. The hydrogen peroxide and malondialdehyde content also increased with OFL concentration, indicating that antioxidant enzymes' role in antibiotic response is limited. In conclusion, OFL can damage chloroplasts by promoting ROS accumulation, which results in the etiolation of Welsh onion leaves.
Collapse
Affiliation(s)
- Xuena Liu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, PR China; Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, PR China; State Key Laboratory of Crop Biology, Ministry of Agriculture, PR China
| | - Yao Lv
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, PR China; Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, PR China; State Key Laboratory of Crop Biology, Ministry of Agriculture, PR China
| | - Song Gao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, PR China; Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, PR China; State Key Laboratory of Crop Biology, Ministry of Agriculture, PR China
| | - Kun Xu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, PR China; Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, PR China; State Key Laboratory of Crop Biology, Ministry of Agriculture, PR China.
| |
Collapse
|
12
|
Tao H, Wang Y, Liang H, Zhang X, Liu X, Li J. Pollution characteristics of phthalate acid esters in agricultural soil of Yinchuan, northwest China, and health risk assessment. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2020; 42:4313-4326. [PMID: 31900822 DOI: 10.1007/s10653-019-00502-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 12/18/2019] [Indexed: 06/10/2023]
Abstract
Eighty-nine agricultural surface soil samples from different types of land of Yinchuan were collected and detected for sixteen phthalate acid ester (PAE) compounds; the pollution characteristics and pollution distribution were analyzed. In addition, the potential health risk exposures to local resident of six priority control phthalates by the US EPA were assessed. All soil samples were contaminated with PAEs, the total concentrations of Σ16PAEs were between 0.391 and 11.924 mg kg-1, and the mean concentrations were 4.427 mg kg-1 in soil. Among the sixteen PAE congeners, DMP was the most abundant component, which accounted for average 44.64% of the total PAEs, then DnBP and DEHP, which accounted for the average contribution rate, were 21.25% and 23.34%, respectively, and DpHP was not detected in all soil samples. Risk assessment indicated that the risk of non-carcinogenesis in this study was within the acceptable range; however, the carcinogenic risk of DEHP through intake dietary significantly exceeded the carcinogenic level recommended by the US EPA (1 × 10-6) and therefore presented a potential carcinogenic risk. More considerable attention should be given to the PAEs contamination status in soils and potential effects on local resident health.
Collapse
Affiliation(s)
- Hong Tao
- School of Resources and Environment, Ningxia University, Helanshan Road 489#, Xixia District, Yinchuan, 750021, China
| | - Yajuan Wang
- School of Economics and Management, Ningxia University, Helanshan Road 489#, Xixia District, Yinchuan, 750021, China.
| | - Haohua Liang
- School of Resources and Environment, Ningxia University, Helanshan Road 489#, Xixia District, Yinchuan, 750021, China
| | - Xiaohong Zhang
- School of Resources and Environment, Ningxia University, Helanshan Road 489#, Xixia District, Yinchuan, 750021, China
| | - Xiaopeng Liu
- School of Resources and Environment, Ningxia University, Helanshan Road 489#, Xixia District, Yinchuan, 750021, China
| | - Jiaoling Li
- School of Resources and Environment, Ningxia University, Helanshan Road 489#, Xixia District, Yinchuan, 750021, China
| |
Collapse
|
13
|
Ge J, Cheng J, Li Y, Li QX, Yu X. Effects of dibutyl phthalate contamination on physiology, phytohormone homeostasis, rhizospheric and endophytic bacterial communities of Brassica rapa var. chinensis. ENVIRONMENTAL RESEARCH 2020; 189:109953. [PMID: 32980024 DOI: 10.1016/j.envres.2020.109953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
Phthalates are plasticizers and are ubiquitously detected in the environment, frequently at mg/kg levels. The present study aimed to evaluate the effects of dibutyl phthalate (DBP) on germination, growth, enzyme activity, phytohormone homeostasis and bacterial communities of two cultivars of Brassica rapa var. chinensis. The germination rate was decreased up to 20% compared to the control, and the growth of the vegetables was severely inhibited at the early stage when exposed to DBP at 20 mg/kg. Antioxidant defense enzyme activities and malondialdehyde (MDA) content increased upon exposure to DBP. A dose-response of auxin (IAA) was observed after a 2 d exposure. Gibberellin (GA3) and abscisic acid (ABA) responded at day 10 under DBP stress. GA3 did not show a clear dose-response effect and ABA increased about 3 times as the DBP concentration increased from 2 to 20 mg/L. Microbial population shifts were observed, especially in rhizosphere soil and roots. No obvious change occurred for the α diversity of rhizospheric bacteria among different treatments. Chao1, Shannon and Simpson indices of the root endophytic bacteria showed a decreasing trend with increasing DBP supplementation, while all the indices increased in shoot endophytic bacteria in comparison to the control. The results indicated that exposure to DBP may compromise the fitness of the leafy vagetables and alter the endophytic and rhizospheric bacteria, which might further affect the nutrients of the vegetables and alter ecosystem functions.
Collapse
Affiliation(s)
- Jing Ge
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, 50 Zhongling Street, Nanjing, 210014, China; School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang, Jiangsu, 212013, China
| | - Jinjin Cheng
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, 50 Zhongling Street, Nanjing, 210014, China
| | - Yong Li
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, 50 Zhongling Street, Nanjing, 210014, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East-West Road, Honolulu, Hawaii, 96822, United States
| | - Xiangyang Yu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, 50 Zhongling Street, Nanjing, 210014, China.
| |
Collapse
|
14
|
Sharma R, Kaur R. Elucidating physiological and biochemical alterations in giant duckweed ( Spirodela polyrhiza L. Schleiden) under diethyl phthalate stress: insights into antioxidant defence system. PeerJ 2020; 8:e8267. [PMID: 31942254 PMCID: PMC6955107 DOI: 10.7717/peerj.8267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/22/2019] [Indexed: 11/30/2022] Open
Abstract
Background The emollient properties of phthalates have led to their extensive production and intense use in plastic products. Owing to their weak covalent bonding with the plastic polymers, phthalates enter into the environment during their manufacturing, processing, disposal, consequently found their way directly into water sources, soil, and sediments. Methods The present study envisaged the toxic effects of diethyl phthalate (DEP) on physiological and biochemical attributes of Spirodela polyrhiza, when exposed to various concentrations of DEP (0, 10, 20, 40, 80, 100, 200, and 400 ppm) for short term exposure period of seven days. Results Plants of S. polyrhiza accumulated significant amount of DEP (112 mg kg−1 fw) when exposed to various concentrations of DEP for seven days. Results depicted that DEP toxicity significantly (p ≤ 0.05) affected growth parameters and pigments in treated S. polyrhiza as compared to control. Further, high doses of DEP (400 ppm) caused significant decrement in carbohydrate (86%), protein (76%) and elevation in MDA content (42%). Meanwhile, DEP altered the activities of antioxidant enzymes (SOD, CAT, APX, GPX and GR) along with the induction of enhanced levels of proline, electrolyte leakage and phenolic content. Scanning electron microscopic and confocal studies also confirmed oxidative stress in plants under DEP stress. Conclusions Present findings will help understand the accumulation, tolerance, and detoxification mechanisms of DEP by S. polyrhiza to counteract the effects of reactive oxygen species (ROS), along with the evaluation of environmental threat for aquatic plants in aquatic ecosystems.
Collapse
Affiliation(s)
- Ritika Sharma
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Rajinder Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
15
|
Accumulation, morpho-physiological and oxidative stress induction by single and binary treatments of fluoride and low molecular weight phthalates in Spirodela polyrhiza L. Schleiden. Sci Rep 2019; 9:20006. [PMID: 31882611 PMCID: PMC6934496 DOI: 10.1038/s41598-019-56110-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 11/04/2019] [Indexed: 01/16/2023] Open
Abstract
The present study examined the interactive effects of fluoride and phthalates on their uptake, generation of reactive oxygen species and activation of antioxidative defence responses in Spirodela polyrhiza L. Schleiden. A hydroponic study was conducted in which S. polyrhiza cultured in Hoagland’s nutrient medium, was exposed to fluoride (50 ppm) and different concentrations viz., 75, 150 300 ppm of diethyl phthalate (DEP) and diallyl phthalate (DAP) individually as well as in combination for the time period of 24, 72, 120 and 168 h respectively. A significant decline in fresh weight, dry to fresh weight ratio, total chlorophyll, carotenoid content and increased anthocyanin content was observed. Fluoride and phthalates was found to be readily accumulated by S. polyrhiza in all the exposure periods. Interestingly, when binary treatments were given in nutrient medium, uptake of both fluoride and phthalate was found to be influenced by each other. In combined treatments, DEP stimulated fluoride uptake, while its own uptake was restricted by fluoride. In contrary to this, fluoride stimulated DAP uptake. Moreover, combined stress further caused significant decrement in carbohydrate, protein content and increment in MDA levels, phenolic content and electrolyte leakage. Nevertheless, phthalates showed more pronounced oxidative stress and growth inhibition compared to fluoride. To cope up with the oxidative damage, enhanced level of antioxidant enzymatic activities was observed in S. polyrhiza under both fluoride and phthalate stress as compared to control. Scanning electron microscope imaging of leaf stomata revealed that combined stress of fluoride with phthalates caused distortion in the shape of guard cells. Confocal micrographs confirmed the generation of reactive oxygen species, cell damage, disruption in membrane integrity, and enhanced levels of glutathione in plant cells. This study focussed on ecotoxicological and interactive significance of fluoride led phthalate uptake or vice versa which was also assumed to confer tolerance attributes.
Collapse
|
16
|
Li S, Chi Z, Li W. In vitro toxicity of dimethyl phthalate to human erythrocytes: From the aspects of antioxidant and immune functions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 253:239-245. [PMID: 31319240 DOI: 10.1016/j.envpol.2019.07.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/14/2019] [Accepted: 07/04/2019] [Indexed: 06/10/2023]
Abstract
In the study, the effects of dimethyl phthalate (DMP) on the antioxidant defense capacity and immune functions of human erythrocytes were experimentally explored. DMP affected the activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX) and the contents of glutathione (GSH) and malondialdehyde (MDA) in erythrocytes, thus impairing the function of antioxidant defense system of erythrocytes. When DMP concentration increased from 0 to 28 μmol L-1, the SOD and GPX activities were increased firstly and then gradually decreased. When DMP concentration was below 20 μmol L-1, the relative activity of SOD was enhanced by DMP and the effect was known as hormesis. The relative activity of GPX was also increased when the concentration of DMP was below 12 μmol L-1. The CAT activity was more significantly inhibited by DMP than the activities of SOD and GPX, whereas the relative GSH content was increased by DMP. MDA levels were significantly changed after the exposure to DMP (0-24 μmol L-1). The experimental results of the activity of SOD and CAT, and the content of MDA also suggested that DMP could inhibit the immune functions of red blood cells (RBCs), which were further proved by the decrease of two indicators (RBC-C3b and RBC-IC) due to the destruction of C3b receptor with immune adherence function on erythrocyte membrane. The study provides a deep understanding of the toxicity of DMP on erythrocytes.
Collapse
Affiliation(s)
- Shixuan Li
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, 2(#) Wenhua West Road, Weihai 264209, PR China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Zhenxing Chi
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, 2(#) Wenhua West Road, Weihai 264209, PR China; Guangzhou Key Laboratory of Environmental Exposure and Health, School of Environment, Jinan University, Guangzhou 510632, PR China.
| | - Weiguo Li
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, 2(#) Wenhua West Road, Weihai 264209, PR China
| |
Collapse
|
17
|
Vannucchi F, Francini A, Pierattini EC, Raffaelli A, Sebastiani L. Populus alba dioctyl phthalate uptake from contaminated water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:25564-25572. [PMID: 31267403 DOI: 10.1007/s11356-019-05829-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 06/24/2019] [Indexed: 06/09/2023]
Abstract
Phthalates are micro-pollutants of great concern due to their negative effects on ecosystem functioning and human health. Thanks to its capability in uptake and accumulation of organic pollutants, Populus alba L. "Villafranca" clone could be a good candidate for reducing the impacts derived by the persistence of such compounds in the environment. We investigated plant response and uptake of dioctyl phthalate (DOP) by poplar, grown in hydroponics condition, for 21 days with 0, 40, and 400 μg L-1 of d4-DOP. Treated plants, after 21 days of 400 μg L-1 d4-DOP, showed an increase in root dry biomass (+ 29%) at the expense of aerial parts (- 8%) compared with control. The root development could be sustained by the increase of Mg uptake by poplar. LC-MS/MS analysis demonstrated the uptake and accumulation in roots of d4-DOP starting from day one (3.5 ± 3.29 and 7.1 ± 3.28 in 40 and 400 μg L-1 d4-DOP respectively), despite volatilization of d4-DOP was observed from nutritive solution. The chemical interaction between d4-DOP and Zn occurred in roots of plants treated with the high d4-DOP concentration, without limiting the Zn concentration in leaves. Results confirm the high tolerance of "Villafranca" clone to xenobiotic and suggest the poplar capability in d4-DOP uptake and accumulation at root level.
Collapse
Affiliation(s)
- Francesca Vannucchi
- Institute of Life Science, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, I-56127, Pisa, Italy
| | - Alessandra Francini
- Institute of Life Science, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, I-56127, Pisa, Italy.
| | - Erika C Pierattini
- Institute of Life Science, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, I-56127, Pisa, Italy
| | - Andrea Raffaelli
- CNR-Istituto di Fisiologia Clinica, Via Moruzzi 1, I-56124, Pisa, Italy
| | - Luca Sebastiani
- Institute of Life Science, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, I-56127, Pisa, Italy
| |
Collapse
|
18
|
Phthalate Ester Contamination in Intensively Managed Greenhouse Facilities and the Assessment of Carcinogenic and Non-Carcinogenic Risk: A Regional Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16162818. [PMID: 31394816 PMCID: PMC6719942 DOI: 10.3390/ijerph16162818] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/06/2019] [Accepted: 08/06/2019] [Indexed: 11/16/2022]
Abstract
The contamination status and the potential carcinogenic and non-carcinogenic health risks from six phthalate esters (PAEs), nominated as priority pollutants by the United States Environmental Protection Agency (USEPA), were investigated in 40 typical greenhouses in three large-scale intensive greenhouse production areas in Jingmen city, Hubei province, central China. The total concentrations of PAEs in 40 soil samples and 80 vegetable samples ranged from 919 ± 134 to 7015 ± 475 µg kg−1 (dry weight, DW), and from 387 ± 63, to 11,683 ± 1313 µg kg−1 (DW), respectively. No carcinogenic risk was detected. The heat-map of the hazard quotient (HQ) values indicates the non-carcinogenic risks to children from di-n-butyl phthalate (DBP), at two sampling sites out of the 40, and from diethylhexyl phthalate (DEHP) (20 to young children and three to older children and adults) at 23 of the sites. The contamination risk from PAEs at Pengdun is of concern because only two of the 14 sampling sites selected there showed the non-carcinogenic risk to humans was unclear. The results of this study help to close a long-term knowledge gap resulting from a shortage of experimental data on PAE contamination in intensive greenhouse vegetable production in central China. The inclusion of DEHP in the Chinese list of priority pollutants is recommended, due to its increasing contamination and risk. This study provides valuable information for protected agricultural soil management and risk avoidance. It is a timely reminder to take PAE contamination and associated health risks into consideration, during the planning and introduction of intensively-managed greenhouse production systems.
Collapse
|
19
|
Kumari A, Kaur R. Modulation of biochemical and physiological parameters in Hordeum vulgare L. seedlings under the influence of benzyl-butyl phthalate. PeerJ 2019; 7:e6742. [PMID: 31041151 PMCID: PMC6476287 DOI: 10.7717/peerj.6742] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 03/06/2019] [Indexed: 01/02/2023] Open
Abstract
Background Phthalates are man-made chemical compounds with numerous applications especially known for their use as plasticizers. They have weak bonding to the polymeric matrix or products in which they are used. Owing to this reason, they are readily released into the environment which makes them ubiquitous. The agricultural soils are also reported to be polluted with phthalates up to a considerable extent which causes adverse effects on flora and fauna. A few studies have been conducted on phthalate-induced phytotoxicity, which has revealed that phthalates affect the quality and yield of edible plants. In the last decades, some crops were analyzed for phthalate-induced adversities; among them, barley was the least explored. Methods The present study has investigated the impact of benzyl-butyl phthalate (BBP) on barley (Hordeum vulgare L.) seedlings to address the biochemical, physiological consequences, and toxicological implications. After the exogenous exposure of BBP (viz. 0, 25, 50, 100, 200, 400, 800, 1,600 mg/L) for 7 days, barley seedlings were analyzed for different indices. Results The exposure of BBP mediated a significant (p ≤ 0.05, 0.01) overall elevation in the contents of pigment, proline, soluble protein, carbohydrate, hydrogen peroxide (H2O2), and malondialdehyde (MDA) in shoots and roots of barley seedlings. The activities of superoxide dismutase (SOD), guaiacol peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR) were also stimulated significantly in shoots and roots of seedlings against BBP stress except for SOD activity which declined in the roots. The polyphenols (non-enzymatic antioxidants) content was also altered in all the treated concentrations as compared to the control. Furthermore, BBP caused stomatal abnormalities, induced cytotoxicity, and loss of plasma membrane integrity. Conclusions BBP disturbed the normal physiology of barley which could also affect the yield of the crop under field conditions.
Collapse
Affiliation(s)
- Arpna Kumari
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Rajinder Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
20
|
Pan J, Jin D, Jiang H, Leng X, Zhang A, Bai Z. The phyllosphere indigenous microbiota of Brassica campestris L. change its diversity in responding to di-n-butyl phthalate pollution. World J Microbiol Biotechnol 2019; 35:21. [PMID: 30656424 DOI: 10.1007/s11274-019-2589-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 01/05/2019] [Indexed: 10/27/2022]
Abstract
In this study, the effects of di-n-butyl phthalate (DBP) on the phyllosphere bacterial community of field mustard (Brassica campestris L.) at the five-leaf stage were investigated. The indigenous alpha-diversity of the phyllosphere bacteria was altered after spraying with different concentrations of DBP. Shannon diversity indices were significantly changed on day 5 after treatment at DBP concentrations > 400 mg L-1 (P > 0.05). Nevertheless, the difference between treatment and control was not significant on day 9 after DBP treatment (P > 0.05). Exposure to DBP resulted in a decrease in Proteobacteria and Firmicutes, and an increase in Actinobacteria at all sampling intervals. These changes included significant increases in the relative abundance of Paracoccus and Rhodococcus, and significant decreases in that of Pseudomonas, Exiguobacterium, an unclassified genus of Pseudomonadaceae, and an unclassified genus of Enterobacteriaceae. This study provides new evidence for the possibility of using phyllosphere microbiota to remediate DBP contamination.
Collapse
Affiliation(s)
- Jiangang Pan
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, 014010, China. .,Inner Mongolia Key Laboratory for Biomass-Energy Conversion, Baotou, 014010, China.
| | - Decai Jin
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Haiming Jiang
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, 014010, China.,Inner Mongolia Key Laboratory for Biomass-Energy Conversion, Baotou, 014010, China
| | - Xiaoyun Leng
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, 014010, China.,Inner Mongolia Key Laboratory for Biomass-Energy Conversion, Baotou, 014010, China
| | - Aiai Zhang
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, 014010, China.,Inner Mongolia Key Laboratory for Biomass-Energy Conversion, Baotou, 014010, China
| | - Zhihui Bai
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
21
|
Zhao HM, Huang HB, Du H, Lin J, Xiang L, Li YW, Cai QY, Li H, Mo CH, Liu JS, Wong MH, Zhou DM. Intraspecific variability of ciprofloxacin accumulation, tolerance, and metabolism in Chinese flowering cabbage (Brassica parachinensis). JOURNAL OF HAZARDOUS MATERIALS 2018; 349:252-261. [PMID: 29433110 DOI: 10.1016/j.jhazmat.2018.01.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 01/04/2018] [Accepted: 01/06/2018] [Indexed: 06/08/2023]
Abstract
To investigate the mechanism of genotype differences in ciprofloxacin (CIP) accumulation, this study was designed to compare the tolerance and metabolic responses to CIP exposure between low (Cutai) and high (Sijiu) CIP-accumulation cultivars of Brassica parachinensis. Decreases in biomass and chlorophyll content were significantly greater (p < 0.05) and toxicities were more severe within cell ultrastructures of Cutai compared to Sijiu. A sequential growth test also revealed that Sijiu was more tolerant to CIP stress compared to Cutai. Meanwhile, significantly higher (p < 0.05) root parameters and higher areas of the stele and xylem may be responsible for the increased uptake and transport of CIP in Sijiu. Ultra performance liquid chromatography-electrospray ionization tandem mass spectrometry (UPLC-ESI-MS/MS) analysis revealed that CIP was metabolized to three major metabolites by the hydroxylation and breakdown of the piperazinyl substituent in the CIP molecule. The enhanced metabolic transformation of CIP in Sijiu indicated a more efficient capacity to detoxify, which in turn favored an increased accumulation of CIP in this cultivar. Thus, the present study demonstrated that the stronger tolerance and metabolism of Sijiu to CIP were responsible for its high CIP accumulation, suggesting an evolutionary mechanism for adaptation to environmental stress.
Collapse
Affiliation(s)
- Hai-Ming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - He-Biao Huang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Huan Du
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jing Lin
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lei Xiang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hui Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Jie-Sheng Liu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ming-Hung Wong
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Dong-Mei Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
22
|
Positive Association between Urinary Concentration of Phthalate Metabolites and Oxidation of DNA and Lipid in Adolescents and Young Adults. Sci Rep 2017; 7:44318. [PMID: 28290483 PMCID: PMC5349565 DOI: 10.1038/srep44318] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 02/06/2017] [Indexed: 11/25/2022] Open
Abstract
Phthalate has been used worldwide in various products for years. Little is known about the association between phthalate exposure and biomarkers of oxidative stress in adolescents and young adults. Among 886 subjects recruited from a population-based cohort during 2006 to 2008, 751 subjects (12–30 years) with complete phthalate metabolites and oxidation stress measurement were enrolled in this study. Nine urine phthalate metabolites, 8-hydroxydeoxyguanosine (8-OHdG), and 8-iso prostaglandin F2α (8-isoPGF2α) were measured in urine to assess exposure and oxidative stress to DNA and lipid, respectively. Multiple linear regression analysis revealed that an ln-unit increase in mono-methyl phthalate (MMP) concentration in urine was positively associated with an increase in urine biomarkers of oxidative stress (in μg/g; creatinine of 0.098 ± 0.028 in 8-OHdG; and 0.253 ± 0.051 in 8-isoPGF2α). There was no association between other eight phthalate metabolite concentrations and oxidative stress. In conclusion, a higher MMP concentration in urine was associated with an increase in markers of oxidative stress to DNA and lipid in this cohort of adolescents and young adults. Further studies are warranted to clarify the causal relationship between exposure to phthalate and oxidative stress.
Collapse
|
23
|
Lin Q, Chen S, Chao Y, Huang X, Wang S, Qiu R. Carboxylesterase-involved metabolism of di-n-butyl phthalate in pumpkin (Cucurbita moschata) seedlings. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 220:421-430. [PMID: 27697378 DOI: 10.1016/j.envpol.2016.09.084] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 09/25/2016] [Accepted: 09/27/2016] [Indexed: 05/10/2023]
Abstract
Uptake and accumulation by plants is a significant pathway in the migration and transformation of phthalate esters (PAEs) in the environment. However, limited information is available on the mechanisms of PAE metabolism in plants. Here, we investigated the metabolism of di-n-butyl phthalate (DnBP), one of the most frequently detected PAEs, in pumpkin (Cucurbita moschata) seedlings via a series of hydroponic experiments with an initial concentration of 10 mg L-1. DnBP hydrolysis occurred primarily in the root, and two of its metabolites, mono-n-butyl phthalate (MnBP) and phthalic acid (PA), were detected in all plant tissues. The MnBP concentration was an order of magnitude higher than that of PA in shoots, which indicated MnBP was more readily transported to the shoot than was PA because of the former's dual hydrophilic and lipophilic characteristics. More than 80% of MnBP and PA were located in the cell water-soluble component except that 96% of MnBP was distributed into the two solid cellular fractions (i.e., cell wall and organelles) at 96 h. A 13-20% and 29-54% increase of carboxylesterase (CXE) activity shown in time-dependent and concentration-dependent experiments, respectively, indicated the involvement of CXEs in plant metabolism of DnBP. The level of CXE activity in root subcellular fractions was in the order: the cell water-soluble component (88-94%) >> cell wall (3-7%) > cell organelles (3-4%), suggesting that the cell water-soluble component is the dominant locus of CXE activity and also the domain of CXE-catalyzed hydrolysis of DnBP. The addition of triphenyl phosphate, a CXE inhibitor, led to 43-56% inhibition of CXE activity and 16-25% increase of DnBP content, which demonstrated the involvement of CXEs in plant metabolism of DnBP. This study contributes to our understanding of enzymitic mechanisms of PAE transformation in plants.
Collapse
Affiliation(s)
- Qingqi Lin
- School of Environmental Science and Engineering, Sun Yat-sen University, 135 Xingang Xi Road, 510275 Guangzhou, China
| | - Siyuan Chen
- School of Environmental Science and Engineering, Sun Yat-sen University, 135 Xingang Xi Road, 510275 Guangzhou, China
| | - Yuanqing Chao
- School of Environmental Science and Engineering, Sun Yat-sen University, 135 Xingang Xi Road, 510275 Guangzhou, China; Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, 135 Xingang Xi Road, 510275 Guangzhou, China
| | - Xiongfei Huang
- School of Environmental Science and Engineering, Sun Yat-sen University, 135 Xingang Xi Road, 510275 Guangzhou, China; Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, 135 Xingang Xi Road, 510275 Guangzhou, China
| | - Shizhong Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, 135 Xingang Xi Road, 510275 Guangzhou, China; Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, 135 Xingang Xi Road, 510275 Guangzhou, China.
| | - Rongliang Qiu
- School of Environmental Science and Engineering, Sun Yat-sen University, 135 Xingang Xi Road, 510275 Guangzhou, China; Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, 135 Xingang Xi Road, 510275 Guangzhou, China.
| |
Collapse
|