1
|
Singh J, Vishavnath, Sharma V, Singh B. Development of agar-alginate marine polysaccharides-based hydrogels for agricultural applications to reduce environmental hazards. Int J Biol Macromol 2025; 295:139659. [PMID: 39793803 DOI: 10.1016/j.ijbiomac.2025.139659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 12/25/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
In order to meet global food requirement, innovation in agricultural techniques and pesticide delivery system will be required for sustainable food supply with minimal harmful impact on environment. This article discusses the synthesis of hydrogels for use in controlled release formulations (CRFs) to increase agricultural output while reducing ecotoxicity and health risks. These hydrogels were designed by graft-copolymerization reaction of polyacrylamide and polyvinyl sulfonic acid onto agar-alginate marine polysaccharides. Copolymers were characterized by SEM, AFM, XRD, FTIR and 13C NMR. One gram of copolymeric hydrogels absorbed 14.80 ± 0.53 g of water. The glyphosate herbicide was released in a slow regulated manner over 72 h which is useful to avoid herbicide loss through leaching, evaporation and to reduce environmental hazards. The herbicide released via a non-Fickian diffusion mechanism and release profile was best described by the Korsmeyer-Peppas kinetic model. The release of herbicide from hydrogels occurred slowly and consistently in simulated soil conditions for a prolonged period. A soil adsorption studies of herbicide revealed a reduction in ground water ubiquity score (GUS) for glyphosate encapsulated hydrogels as compared to commercial formulations. Soil water retention was enhanced by the addition of hydrogel in the soil. The degradation of these CRFs can provide micronutrients (N and S) to improve soil quality and minimize the risk of water pollution by reducing the leaching of herbicides.
Collapse
Affiliation(s)
- Jasvir Singh
- Department of Chemistry, Himachal Pradesh University, Shimla 171005, India.
| | - Vishavnath
- Department of Chemistry, Himachal Pradesh University, Shimla 171005, India
| | - Vikrant Sharma
- Department of Chemistry, Himachal Pradesh University, Shimla 171005, India
| | - Baljit Singh
- Department of Chemistry, Himachal Pradesh University, Shimla 171005, India
| |
Collapse
|
2
|
Campanile A, Liguori B, Lama GC, Recupido F, Donatiello S, Gagliardi M, Morone A, Verdolotti L. The Role of Superabsorbent Polymers and Polymer Composites in Water Resource Treatment and Management. Polymers (Basel) 2024; 16:2337. [PMID: 39204557 PMCID: PMC11358950 DOI: 10.3390/polym16162337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/01/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
In the last century, the issue of "water reserves" has become a remarkably strategic topic in modern science and technology. In this context, water resource treatment and management systems are being developed in both agricultural and urban area scenarios. This can be achieved using superabsorbent polymers (SAPs), highly cross-linked hydrogels with three-dimensional, hydrophilic polymer structures capable of absorbing, swelling and retaining huge amounts of aqueous solutions. SAPs are able to respond to several external stimuli, such as temperature, pH, electric field, and solution composition and concentration. They can be used in many areas, from sensor technology to drug delivery, agriculture, firefighting applications, food, and the biomedical industry. In addition, new categories of functional SAP-based materials, mainly superabsorbent polymer composites, can also encapsulate fertilizers to efficiently provide the controlled release of both water and active compounds. Moreover, SAPs have great potential in wastewater treatment for the removal of harmful elements. In this respect, in the following review, the most promising and recent advances in the use of SAPs and composite SAPs as tools for the sustainable management and remediation of water resource are reviewed and discussed by identifying opportunities and drawbacks and highlighting new challenges and aims to inspire the research community.
Collapse
Affiliation(s)
- Assunta Campanile
- Applied Chemistry Labs-Department of Chemical, Materials and Industrial Engineering, University of Naples Federico II, 80138 Naples, Italy;
| | - Barbara Liguori
- Applied Chemistry Labs-Department of Chemical, Materials and Industrial Engineering, University of Naples Federico II, 80138 Naples, Italy;
- Institute for Polymers, Composites and Biomaterials (IPCB-CNR), 80055 Portici, Italy; (G.C.L.); (F.R.)
| | - Giuseppe Cesare Lama
- Institute for Polymers, Composites and Biomaterials (IPCB-CNR), 80055 Portici, Italy; (G.C.L.); (F.R.)
| | - Federica Recupido
- Institute for Polymers, Composites and Biomaterials (IPCB-CNR), 80055 Portici, Italy; (G.C.L.); (F.R.)
| | - Silvana Donatiello
- Department of Architecture (DIARC), University of Naples Federico II, 80134 Naples, Italy; (S.D.); (M.G.); (A.M.)
| | - Mariarita Gagliardi
- Department of Architecture (DIARC), University of Naples Federico II, 80134 Naples, Italy; (S.D.); (M.G.); (A.M.)
| | - Alfonso Morone
- Department of Architecture (DIARC), University of Naples Federico II, 80134 Naples, Italy; (S.D.); (M.G.); (A.M.)
| | - Letizia Verdolotti
- Institute for Polymers, Composites and Biomaterials (IPCB-CNR), 80055 Portici, Italy; (G.C.L.); (F.R.)
| |
Collapse
|
3
|
Smagin AV, Sadovnikova NB, Belyaeva EA, Korchagina CV. Biodegradability of Gel-Forming Superabsorbents for Soil Conditioning: Kinetic Assessment Based on CO 2 Emissions. Polymers (Basel) 2023; 15:3582. [PMID: 37688209 PMCID: PMC10489987 DOI: 10.3390/polym15173582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/20/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Quantification of the biodegradability of soil water superabsorbents is necessary for a reasonable prediction of their stability and functioning. A new methodological approach to assessing the biodegradability of these polymer materials has been implemented on the basis of PASCO (USA) instrumentation for continuous registration of kinetic CO2 emission curves in laboratory incubation experiments with various hydrogels, including the well-known trade brands Aquasorb, Zeba, and innovative Russian Aquapastus composites with an acrylic polymer matrix. Original kinetic models were proposed to describe different types of respiratory curves and calculate half-life indicators of the studied superabsorbents. Comparative analysis of the new approach with the assessment by biological oxygen demand revealed for the first time the significance of CO2 dissolution in the liquid phase of gel structures during their incubation. Experiments have shown a tenfold reduction in half-life up to 0.1-0.3 years for a priori non-biodegradable synthetic superabsorbents under the influence of compost extract. The incorporation of silver ions into Aquapastus innovative composites at a dose of 0.1% or 10 ppm in swollen gel structures effectively increases their stability, prolonging the half-life to 10 years and more, or almost twice the Western stability standard for polymer ameliorants.
Collapse
Affiliation(s)
- Andrey V. Smagin
- Soil Science Department and Eurasian Center for Food Security, Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow 119991, Russia;
- Institute of Forest Science, Russian Academy of Sciences (ILAN), 21, Sovetskaya, Moscow Region, Uspenskoe 143030, Russia; (E.A.B.); (C.V.K.)
| | - Nadezhda B. Sadovnikova
- Soil Science Department and Eurasian Center for Food Security, Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow 119991, Russia;
- Institute of Forest Science, Russian Academy of Sciences (ILAN), 21, Sovetskaya, Moscow Region, Uspenskoe 143030, Russia; (E.A.B.); (C.V.K.)
| | - Elena A. Belyaeva
- Institute of Forest Science, Russian Academy of Sciences (ILAN), 21, Sovetskaya, Moscow Region, Uspenskoe 143030, Russia; (E.A.B.); (C.V.K.)
| | - Christina V. Korchagina
- Institute of Forest Science, Russian Academy of Sciences (ILAN), 21, Sovetskaya, Moscow Region, Uspenskoe 143030, Russia; (E.A.B.); (C.V.K.)
| |
Collapse
|
4
|
Manaila E, Demeter M, Calina IC, Craciun G. NaAlg-g-AA Hydrogels: Candidates in Sustainable Agriculture Applications. Gels 2023; 9:gels9040316. [PMID: 37102928 PMCID: PMC10138036 DOI: 10.3390/gels9040316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/29/2023] [Accepted: 04/04/2023] [Indexed: 04/28/2023] Open
Abstract
Nowadays, the degradation of agricultural soil due to various factors should be a major concern for everyone. In this study, a new sodium alginate-g-acrylic acid-based hydrogel was developed simultaneously by cross-linking and grafting with accelerated electrons to be used as soil remediation. The effect of irradiation dose and NaAlg contents on the gel fraction, network and structural parameters, sol-gel analysis, swelling power, and swelling kinetics of NaAlg-g-AA hydrogels have been investigated. It was demonstrated that NaAlg hydrogels show significative swelling power that is greatly dependent on their composition and irradiation dose; they keep the structure and are not degraded in different pH conditions and different water sources. Diffusion data revealed a non-Fickian transport mechanism (0.61-0.99) also specific to cross-linked hydrogels. The prepared hydrogels were proved as excellent candidates in sustainable agriculture applications.
Collapse
Affiliation(s)
- Elena Manaila
- Electron Accelerators Laboratory, National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor St., 077125 Magurele, Romania
| | - Maria Demeter
- Electron Accelerators Laboratory, National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor St., 077125 Magurele, Romania
| | - Ion Cosmin Calina
- Electron Accelerators Laboratory, National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor St., 077125 Magurele, Romania
| | - Gabriela Craciun
- Electron Accelerators Laboratory, National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor St., 077125 Magurele, Romania
| |
Collapse
|
5
|
Marczak D, Lejcuś K, Lejcuś I, Misiewicz J. Sustainable Innovation: Turning Waste into Soil Additives. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2900. [PMID: 37049194 PMCID: PMC10095766 DOI: 10.3390/ma16072900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/22/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
In recent years, a dynamic increase in environmental pollution with textile waste has been observed. Natural textile waste has great potential for environmental applications. This work identifies potential ways of sustainably managing natural textile waste, which is problematic waste from sheep farming or the cultivation of fibrous plants. On the basis of textile waste, an innovative technology was developed to support water saving and plant vegetation- biodegradable water-absorbing geocomposites (BioWAGs). The major objective of this study was to determine BioWAG effectiveness under field conditions. The paper analyses the effect of BioWAGs on the increments in fresh and dry matter, the development of the root system, and the relative water content (RWC) of selected grass species. The conducted research confirmed the high efficiency of the developed technology. The BioWAGs increased the fresh mass of grass shoots by 230-420% and the root system by 130-200% compared with the control group. The study proved that BioWAGs are a highly effective technology that supports plant vegetation and saves water. Thanks to the reuse of waste materials, the developed technology is compatible with the assumptions of the circular economy and the goals of sustainable development.
Collapse
Affiliation(s)
- Daria Marczak
- Institute of Environmental Engineering, Wrocław University of Environmental and Life Sciences, 50-363 Wrocław, Poland
| | - Krzysztof Lejcuś
- Institute of Environmental Engineering, Wrocław University of Environmental and Life Sciences, 50-363 Wrocław, Poland
| | - Iwona Lejcuś
- Institute of Meteorology and Water Management-National Research Institute, 01-673 Warszawa, Poland
| | - Jakub Misiewicz
- Institute of Environmental Engineering, Wrocław University of Environmental and Life Sciences, 50-363 Wrocław, Poland
| |
Collapse
|
6
|
Adjuik TA, Nokes SE, Montross MD. Biodegradability of bio‐based and synthetic hydrogels as sustainable soil amendments: A review. J Appl Polym Sci 2023. [DOI: 10.1002/app.53655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Toby A. Adjuik
- Department of Biosystems and Agricultural Engineering University of Kentucky Lexington Kentucky USA
- Department of Agronomy Iowa State University Ames Iowa USA
| | - Sue E. Nokes
- Department of Biosystems and Agricultural Engineering University of Kentucky Lexington Kentucky USA
| | - Michael D. Montross
- Department of Biosystems and Agricultural Engineering University of Kentucky Lexington Kentucky USA
| |
Collapse
|
7
|
Krasnopeeva EL, Panova GG, Yakimansky AV. Agricultural Applications of Superabsorbent Polymer Hydrogels. Int J Mol Sci 2022; 23:ijms232315134. [PMID: 36499461 PMCID: PMC9738811 DOI: 10.3390/ijms232315134] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
This review presents data from the past five years on the use of polymeric superabsorbent hydrogels in agriculture as water and nutrient storage and retention materials, as well as additives that improve soil properties. The use of synthetic and natural polymeric hydrogels for these purposes is considered. Although natural polymers, such as various polysaccharides, have undoubted advantages related to their biocompatibility, biodegradability, and low cost, they are inferior to synthetic polymers in terms of water absorption and water retention properties. In this regard, the most promising are semi-synthetic polymeric superabsorbents based on natural polymers modified with additives or grafted chains of synthetic polymers, which can combine the advantages of natural and synthetic polymeric hydrogels without their disadvantages. Such semi-synthetic polymers are of great interest for agricultural applications, especially in dry regions, also because they can be used to create systems for the slow release of nutrients into the soil, which are necessary to increase crop yields using environmentally friendly technologies.
Collapse
Affiliation(s)
- Elena L. Krasnopeeva
- Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg 199004, Russia
| | - Gaiane G. Panova
- Agrophysical Research Institute, Russian Academy of Sciences, St. Petersburg 195220, Russia
| | - Alexander V. Yakimansky
- Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg 199004, Russia
- Correspondence:
| |
Collapse
|
8
|
Marczak D, Lejcuś K, Kulczycki G, Misiewicz J. Towards circular economy: Sustainable soil additives from natural waste fibres to improve water retention and soil fertility. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:157169. [PMID: 35798103 DOI: 10.1016/j.scitotenv.2022.157169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/30/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Human activity is accompanied by the introduction of excessive amounts of artificial materials, including geosynthetics, into the environment, causing global environmental pollution. Moreover, climate change continues to negatively affect global water resources. With the intensification of environmental problems, material reusability and water consumption limitations have been proposed. This study replaced synthetic soil additives with biodegradable materials and analysed the potential and sustainable processing of natural fibrous materials, which form problematic waste. Waste fibres are the basis of innovative soil water storage technologies in the form of biodegradable and water-absorbing geocomposites (BioWAG). We analysed the influence of BioWAGs on plant vegetation and the environment through a three-year field experiment. Furthermore, biomass increases, drought effect reductions, and biodegradation mechanisms were analysed. Natural waste fibres had a positive influence, as they released easily accessible nutrients into the soil during biodegradation. BioWAGs had a positive influence on the biometric parameters of grass, increasing biomass growth by 430 %. Our results indicated that this is an effective method of waste fibre management that offers the possibility to manufacture innovative, environmentally friendly materials in compliance with the objectives of circular economy and the expectations of users.
Collapse
Affiliation(s)
- Daria Marczak
- Wrocław University of Environmental and Life Sciences, Institute of Environmental Engineering, Wrocław 50-363, Poland
| | - Krzysztof Lejcuś
- Wrocław University of Environmental and Life Sciences, Institute of Environmental Engineering, Wrocław 50-363, Poland.
| | - Grzegorz Kulczycki
- Wrocław University of Environmental and Life Sciences, Department of Plant Nutrition, Wrocław 50-363, Poland
| | - Jakub Misiewicz
- Wrocław University of Environmental and Life Sciences, Institute of Environmental Engineering, Wrocław 50-363, Poland
| |
Collapse
|
9
|
Gubišová M, Hudcovicová M, Matušinský P, Ondreičková K, Klčová L, Gubiš J. Superabsorbent Polymer Seed Coating Reduces Leaching of Fungicide but Does Not Alter Their Effectiveness in Suppressing Pathogen Infestation. Polymers (Basel) 2021; 14:76. [PMID: 35012099 PMCID: PMC8747295 DOI: 10.3390/polym14010076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/03/2021] [Accepted: 12/23/2021] [Indexed: 11/17/2022] Open
Abstract
Superabsorbent polymers (SAPs) applied to soil have been recognized as water reservoirs that allow plants to cope with periods of drought. Their application as a seed coat makes water available directly to the seeds during their germination and early growth phase, but on the other hand, it can affect the efficiency of plant protection substances used in seed dressing. In our experiments, we evaluated the effect of seed coating with SAP on fungicide leaching and changes in their effectiveness in suppressing Fusarium culmorum infestation. Leaching of fungicide from wheat seeds coated with SAP after fungicide dressing, as measured by the inhibition test of mycelium growth under in vitro conditions, was reduced by 14.2-15.8% compared to seeds without SAP coating. Germination of maize seeds and growth of juvenile plants in artificially infected soil did not differ significantly between seeds dressed with fungicide alone and seeds treated with SAP and fungicide. In addition, plants from the seeds coated with SAP alone grew significantly better compared to untreated seeds. Real-time PCR also confirmed this trend by measuring the amount of pathogen DNA in plant tissue. Winter wheat was less tolerant to F. culmorum infection and without fungicide dressing, the seeds were unable to germinate under strong pathogen attack. In the case of milder infection, similar results were observed as in the case of maize seeds.
Collapse
Affiliation(s)
- Marcela Gubišová
- National Agricultural and Food Centre, Research Institute of Plant Production, Bratislavská cesta 122, 921 68 Piestany, Slovakia; (M.G.); (M.H.); (L.K.); (J.G.)
| | - Martina Hudcovicová
- National Agricultural and Food Centre, Research Institute of Plant Production, Bratislavská cesta 122, 921 68 Piestany, Slovakia; (M.G.); (M.H.); (L.K.); (J.G.)
| | - Pavel Matušinský
- Department of Botany, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic; or
- Department of Plant Pathology, Agrotest Fyto, Ltd., Havlíčkova 2787, 767 01 Kromeriz, Czech Republic
| | - Katarína Ondreičková
- National Agricultural and Food Centre, Research Institute of Plant Production, Bratislavská cesta 122, 921 68 Piestany, Slovakia; (M.G.); (M.H.); (L.K.); (J.G.)
| | - Lenka Klčová
- National Agricultural and Food Centre, Research Institute of Plant Production, Bratislavská cesta 122, 921 68 Piestany, Slovakia; (M.G.); (M.H.); (L.K.); (J.G.)
| | - Jozef Gubiš
- National Agricultural and Food Centre, Research Institute of Plant Production, Bratislavská cesta 122, 921 68 Piestany, Slovakia; (M.G.); (M.H.); (L.K.); (J.G.)
| |
Collapse
|
10
|
Śpitalniak M, Bogacz A, Zięba Z. The Assessment of Water Retention Efficiency of Different Soil Amendments in Comparison to Water Absorbing Geocomposite. MATERIALS 2021; 14:ma14216658. [PMID: 34772181 PMCID: PMC8587147 DOI: 10.3390/ma14216658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/26/2021] [Accepted: 11/01/2021] [Indexed: 12/02/2022]
Abstract
Soil amendments are substances added to the soil for moisture increment or physicochemical soil process enhancement. This study aimed to assess the water conservation efficiency of available organic soil amendments like bentonite, attapulgite, biochar and inorganics like superabsorbent polymer, and nonwoven geotextile in relation to the newly developed water absorbing geocomposite (WAG) and its biodegradable version (bioWAG). Soil amendments were mixed with loamy sand soil, placed in 7.5 dm3 pots, then watered and dried in controlled laboratory conditions during 22-day long drying cycles (pot experiment). Soil moisture was recorded in three locations, and matric potential was recorded in one location during the drying process. The conducted research has confirmed that the addition of any examined soil amendment in the amount of 0.7% increased soil moisture, compared to control, depending on measurement depth in the soil profile and evaporation stage. The application of WAG as a soil amendment resulted in higher soil moisture in the centre and bottom layers, by 5.4 percent point (p.p.) and 6.4 p.p. on day 4 and by 4.5 p.p. and 8.8 p.p. on day 7, respectively, relative to the control samples. Additionally, an experiment in a pressure plate extractor was conducted to ensure the reliability of the obtained results. Soil density and porosity were also recorded. Samples containing WAG had water holding capacity at a value of −10 kPa higher than samples with biochar, attapulgite, bentonite, bioWAG and control by 3.6, 2.1, 5.7, 1 and 4.5 percentage points, respectively. Only samples containing superabsorbent polymers and samples with nonwoven geotextiles had water holding capacity at a value of −10 kPa higher than WAG, by 14.3 and 0.1 percentage points, respectively. Significant changes were noted in samples amended with superabsorbent polymers resulting in a 90% soil sample porosity and bulk density decrease from 1.70 g∙cm−3 to 1.14 g∙cm−3. It was thus concluded that the water absorbing geocomposite is an advanced and most efficient solution for water retention in soil.
Collapse
Affiliation(s)
- Michał Śpitalniak
- Institute of Environmental Engineering, The Faculty of Environmental Engineering and Geodesy, Wrocław University of Environmental and Life Sciences, Grunwaldzki Sq. 24, 50-363 Wroclaw, Poland
- Correspondence:
| | - Adam Bogacz
- Institute of Soil Sciences and Environmental Protection, The Faculty of Life Sciences and Technology, Wrocław University of Environmental and Life Sciences, ul. Grunwaldzka 53, 50-357 Wroclaw, Poland;
| | - Zofia Zięba
- Department of Civil Engineering, The Faculty of Environmental Engineering and Geodesy, Wrocław University of Environmental and Life Sciences, Grunwaldzki Sq. 24, 50-363 Wroclaw, Poland;
| |
Collapse
|
11
|
Correa S, Grosskopf AK, Lopez Hernandez H, Chan D, Yu AC, Stapleton LM, Appel EA. Translational Applications of Hydrogels. Chem Rev 2021; 121:11385-11457. [PMID: 33938724 PMCID: PMC8461619 DOI: 10.1021/acs.chemrev.0c01177] [Citation(s) in RCA: 403] [Impact Index Per Article: 100.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Indexed: 12/17/2022]
Abstract
Advances in hydrogel technology have unlocked unique and valuable capabilities that are being applied to a diverse set of translational applications. Hydrogels perform functions relevant to a range of biomedical purposes-they can deliver drugs or cells, regenerate hard and soft tissues, adhere to wet tissues, prevent bleeding, provide contrast during imaging, protect tissues or organs during radiotherapy, and improve the biocompatibility of medical implants. These capabilities make hydrogels useful for many distinct and pressing diseases and medical conditions and even for less conventional areas such as environmental engineering. In this review, we cover the major capabilities of hydrogels, with a focus on the novel benefits of injectable hydrogels, and how they relate to translational applications in medicine and the environment. We pay close attention to how the development of contemporary hydrogels requires extensive interdisciplinary collaboration to accomplish highly specific and complex biological tasks that range from cancer immunotherapy to tissue engineering to vaccination. We complement our discussion of preclinical and clinical development of hydrogels with mechanical design considerations needed for scaling injectable hydrogel technologies for clinical application. We anticipate that readers will gain a more complete picture of the expansive possibilities for hydrogels to make practical and impactful differences across numerous fields and biomedical applications.
Collapse
Affiliation(s)
- Santiago Correa
- Materials
Science & Engineering, Stanford University, Stanford, California 94305, United States
| | - Abigail K. Grosskopf
- Chemical
Engineering, Stanford University, Stanford, California 94305, United States
| | - Hector Lopez Hernandez
- Materials
Science & Engineering, Stanford University, Stanford, California 94305, United States
| | - Doreen Chan
- Chemistry, Stanford University, Stanford, California 94305, United States
| | - Anthony C. Yu
- Materials
Science & Engineering, Stanford University, Stanford, California 94305, United States
| | | | - Eric A. Appel
- Materials
Science & Engineering, Stanford University, Stanford, California 94305, United States
- Bioengineering, Stanford University, Stanford, California 94305, United States
- Pediatric
Endocrinology, Stanford University School
of Medicine, Stanford, California 94305, United States
- ChEM-H Institute, Stanford
University, Stanford, California 94305, United States
- Woods
Institute for the Environment, Stanford
University, Stanford, California 94305, United States
| |
Collapse
|
12
|
Venkatachalam D, Kaliappa S. Superabsorbent polymers: A state-of-art review on their classification, synthesis, physicochemical properties, and applications. REV CHEM ENG 2021. [DOI: 10.1515/revce-2020-0102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Superabsorbent polymers (SAP) and modified natural polymer hydrogels are widely and increasingly used in agriculture, health care textiles, effluent treatment, drug delivery, tissue engineering, civil concrete structure, etc. However, not many comprehensive reviews are available on this class of novel polymers. A review covering all the viable applications of SAP will be highly useful for researchers, industry persons, and medical, healthcare, and agricultural purposes. Hence, an attempt has been made to review SAPs with reference to their classifications, synthesis, modification by crosslinking, and physicochemical characterization such as morphology, swellability, thermal and mechanical properties, lifetime prediction, thermodynamics of swelling, absorption, release and transport kinetics, quantification of hydrophilic groups, etc. Besides, the possible methods of fine-tuning their structures for improving their absorption capacity, fast absorption kinetics, mechanical strength, controlled release features, etc. were also addressed to widen their uses. This review has also highlighted the biodegradability, commercial viability and market potential of SAPs, SAP composites, the feasibility of using biomass as raw materials for SAP production, etc. The challenges and future prospects of SAP, their safety, and environmental issues are also discussed.
Collapse
Affiliation(s)
- Dhanapal Venkatachalam
- Department of Chemistry , Bannari Amman Institute of Technology , Sathyamangalam , 638 401 , Erode Dt , Tamil Nadu , India
| | - Subramanian Kaliappa
- Biopolymer and Biomaterial Synthesis and Analytical Testing Lab, Department of Biotechnology , Bannari Amman Institute of Technology , Sathyamangalam , 638 401 , Erode Dt , Tamil Nadu , India
| |
Collapse
|
13
|
Lipowczan A, Trochimczuk AW. Phosphates-Containing Interpenetrating Polymer Networks (IPNs) Acting as Slow Release Fertilizer Hydrogels (SRFHs) Suitable for Agricultural Applications. MATERIALS 2021; 14:ma14112893. [PMID: 34071203 PMCID: PMC8199159 DOI: 10.3390/ma14112893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/14/2021] [Accepted: 05/21/2021] [Indexed: 11/16/2022]
Abstract
Novel, phosphorus-containing slow release fertilizer hydrogels (SRFHs) composed of interpenetrating polymer networks (IPNs) with very good swelling and mechanical properties have been obtained and characterized. It was found that introducing organophosphorus polymer based on a commercially available monomer, 2-methacryloyloxyethyl phosphate (MEP), as the IPN’s first component network results in much better swelling properties than for a terpolymer with acrylic acid (AAc), 2-methacryloyloxyethyl phosphate (MEP) and bis[2-(methacryloyloxy)ethyl] phosphate (BMEP) when the same weight ratios of monomers are employed. The procedure described in this paper enables the introduction of much larger amounts of phosphorus into polymer structures without significant loss of water regain ability, which is crucial in the application of such materials in the agricultural field.
Collapse
|
14
|
Applications of Absorbent Polymers for Sustainable Plant Protection and Crop Yield. SUSTAINABILITY 2021. [DOI: 10.3390/su13063253] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Natural strategies for protecting the environment as well as plant, animal and human health is considered one of the main goals of developed countries. Recently, the use of absorbent polymers and hydrogel in agriculture has demonstrated several benefits for soil amendments, saving water content, reducing the consumption of soil nutrients, minimizing the negative impacts of dehydration and moisture stress in crops and controlling several phytopathogens. The seed-coating technology for establishing the crops is a recent common practice used for improving seed protection and enhancing plant growth. Coating materials include absorbent polymers and hydrogels based on growth regulators, pesticides, fertilizers and antagonist microorganisms. The current review has highlighted the importance of different types of superabsorbent polymers and hydrogels in an integrated strategy to protect seeds, plants and soil in a balanced manner to preserve the ecosystem.
Collapse
|
15
|
Dispat N, Poompradub S, Kiatkamjornwong S. Synthesis of ZnO/SiO 2-modified starch-graft-polyacrylate superabsorbent polymer for agricultural application. Carbohydr Polym 2020; 249:116862. [PMID: 32933689 DOI: 10.1016/j.carbpol.2020.116862] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 11/17/2022]
Abstract
A bio-based superabsorbent polymer (SAP) for agricultural application was synthesized from modified starch (MS) to enhance its antibacterial property and biodegradability. The starch was modified by zinc oxide and tetraethyl orthosilicate via a sol-gel reaction under an acidic condition. Structural and morphological examinations were used to confirm the modification. The MS showed a good antibacterial activity against Staphylococcus aureus and Escherichia coli with 61.9 % and 99.9 % reduction in viable cells, respectively, after a 1 h exposure. The MS was then graft copolymerized with potassium acrylate monomer to synthesize a new MS-g-polyacrylate (PA) SAP. The grafting reaction was confirmed and the main factors for agricultural applications along with its biodegradation and antibacterial properties were achieved. The MS-g-PA SAP exhibited an excellent reusability and biodegradation. Importantly, the MS-g-PA SAP did not impose growth inhibition of mung bean (Vigna radiata), but provided some transient drought relief.
Collapse
Affiliation(s)
- Nonpan Dispat
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sirilux Poompradub
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok 10330, Thailand; Green Materials for Industrial Application Research Unit, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Suda Kiatkamjornwong
- Office of Research Affairs, Chulalongkorn University, Bangkok 10330, Thailand; FRS (T), The Royal Society of Thailand, Sanam Suepa, Dusit, Bangkok 10300, Thailand
| |
Collapse
|
16
|
The Characteristics of Swelling Pressure for Superabsorbent Polymer and Soil Mixtures. MATERIALS 2020; 13:ma13225071. [PMID: 33182827 PMCID: PMC7697157 DOI: 10.3390/ma13225071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 11/29/2022]
Abstract
Superabsorbent polymers (SAPs) are used in agriculture and environmental engineering to increase soil water retention. Under such conditions, the swelling pressure of the SAP in soil affects water absorption by SAP, and soil structure. The paper presents the results of swelling pressure of three cross-linked copolymers of acrylamide and potassium acrylate mixed at the ratios of 0.3%, 0.5% and 1.0% with coarse sand and loamy sand. The highest values of swelling pressure were obtained for the 1% proportion, for coarse sand (79.53 kPa) and loamy sand (78.23 kPa). The time required to reach 90% of swelling pressure for each type of SAP differs. Samples of coarse sand mixed with SAP K2 in all concentrations reached 90% of total swelling pressure in 100 min, while the loamy sand mixtures needed only about 60 min. The results were the basis for developing a model for swelling pressure of the superabsorbent and soil mixtures, which is a fully stochastic model. The conducted research demonstrated that the course of pressure increase depends on the available pore capacity and the grain size distribution of SAPs. The obtained results and the proposed model may be applied everywhere where mixtures of SAPs and soils are used to improve plant vegetation conditions.
Collapse
|
17
|
Ren H, Qin X, Huang B, Fernández-García V, Lv C. Responses of soil enzyme activities and plant growth in a eucalyptus seedling plantation amended with bacterial fertilizers. Arch Microbiol 2020; 202:1381-1396. [PMID: 32179939 DOI: 10.1007/s00203-020-01849-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/18/2020] [Accepted: 02/26/2020] [Indexed: 10/24/2022]
Abstract
Plant growth-promoting rhizobacteria (PGPR) are widely used to improve plant nutrient uptake and assimilation and soil physicochemical properties. We investigated the effects of bacterial (Bacillus megaterium strain DU07) fertilizer applications in a eucalyptus (clone DH32-29) plantation in Guangxi, China in February 2011. We used two types of organic matter, i.e., fermented tapioca residue ("FTR") and filtered sludge from a sugar factory ("FS"). The following treatments were evaluated: (1) no PGPR and no organic matter applied (control), (2) 3 × 109 CFU/g (colony forming unit per gram) PGPR plus FS (bacterial fertilizer 1, hereafter referred to as BF1), (3) 4 × 109 CFU/g plus FS (BF2), (4) 9 × 109 CFU/g plus FS (BF3), (5) 9 × 109 CFU/g broth plus FTR (BF4). Soil and plant samples were collected 3 months (M3) and 6 months (M6) after the seedlings were planted. In general, bacterial fertilizer amendments significantly increased plant foliar total nitrogen (TN) and soil catalase activity in the short term (month 3, M3); whereas, it significantly increased foliar TN, chlorophyll concentration (Chl-ab), proline; plant height, diameter, and volume of timber; and soil urease activity, STN, and available N (Avail N) concentrations in the long term (month 6, M6). Redundancy analysis showed that soil available phosphorus was significantly positively correlated with plant growth in M3, and soil Avail N was negatively correlated with plant growth in M6. In M3, soil catalase was more closely correlated with plant parameters than other enzyme activities and soil nutrients, and in M6, soil urease, polyphenol oxidase, and peroxidase were more closely correlated with plant parameters than other environmental factors and soil enzyme activities. PCA results showed that soil enzyme activities were significantly improved under all treatments relative to the control. Hence, photosynthesis, plant growth, and soil N retention were positively affected by bacterial fertilizer in M6, and bacterial fertilizer applications had positive and significant influence on soil enzyme activities during the trial period. Thus, bacterial fertilizer is attractive for use as an environmentally friendly fertilizer in Eucalyptus plantations following proper field evaluation.
Collapse
Affiliation(s)
- Han Ren
- Guangxi Key Laboratory of Forest Ecology and Conservation, Forestry College, Guangxi University, Nanning, 530004, China
| | - Xiaohong Qin
- Guangxi Key Laboratory of Forest Ecology and Conservation, Forestry College, Guangxi University, Nanning, 530004, China
| | - Baoling Huang
- Guangxi Key Laboratory of Forest Ecology and Conservation, Forestry College, Guangxi University, Nanning, 530004, China
| | - Víctor Fernández-García
- Area of Ecology, Faculty of Biological and Environmental Sciences, University of Leon, 24071, León, Spain
| | - Chengqun Lv
- Guangxi Key Laboratory of Forest Ecology and Conservation, Forestry College, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
18
|
Lejcuś K, Śpitalniak M, Dąbrowska J. Swelling Behaviour of Superabsorbent Polymers for Soil Amendment under Different Loads. Polymers (Basel) 2018; 10:E271. [PMID: 30966306 PMCID: PMC6414986 DOI: 10.3390/polym10030271] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 02/21/2018] [Accepted: 03/03/2018] [Indexed: 12/03/2022] Open
Abstract
One of the most important among the numerous applications of superabsorbent polymers (SAPs), also known as hydrogels, is soil improvement and supporting plant vegetation in agriculture and environmental engineering. Currently, when water scarcity involves water stress, they are becoming still more commonly used for water retention in soil. As it turns out, one of the major factors influencing the superabsorbent polymers water retention capacity (WRC) is the load of soil. The study presents test results of absorbency under load (AUL) of SAPs. The object of the analysis was cross-linked copolymer of acrylamide and potassium acrylate, of a granulation of 0.50⁻3.15 mm. The authors analysed the water absorption capacity of the superabsorbent polymers under loads characteristic for 3 different densities of soil (1.3 g∙cm-3, 0.9 g∙cm-3, 0.5 g∙cm-3) and three different depths of application (10 cm, 20 cm, and 30 cm). Soil load and bulk densities were simulated by using weights. The experiments were conducted with a Mecmesin Multitest 2.5-xt apparatus. The obtained results demonstrate a very significant reduction in water absorption capacity by SAP under load. For a 30 cm deep layer of soil of bulk density of 1.3 g∙cm-3, after 1 h, this value amounted to 5.0 g∙g-1, and for the control sample without load, this value amounted to more than 200 g∙g-1. For the lowest load in the experiment, which was 0.49 kPa (10 cm deep layer of soil of a bulk density of 0.5 g∙cm-3), this value was 33.0 g∙g-1 after 60 min. Loads do not only limit the volume of the swelling superabsorbent polymer but they also prolong the swelling time. The soil load caused a decrease in the absorption capacity from 338.5 g∙g-1 to 19.3 g∙g-1, as well as a prolongation of the swelling time. The rate parameter (time required to reach 63% of maximum absorption capacity) increased from 63 min for the control sample to more than 300 min for the largest analysed load of 3.83 kPa. The implications of soil load on superabsorbent polymer swelling are crucial for its usage and thus for the soil system. This knowledge might be employed for the more effective usage of superabsorbent polymers in agriculture and environmental engineering, in which they are commonly used to retain water and to support plant growth.
Collapse
Affiliation(s)
- Krzysztof Lejcuś
- Institute of Environmental Engineering, Wrocław University of Environmental and Life Sciences, 50-363 Wroclaw, Poland.
| | - Michał Śpitalniak
- Institute of Environmental Engineering, Wrocław University of Environmental and Life Sciences, 50-363 Wroclaw, Poland.
| | - Jolanta Dąbrowska
- Institute of Environmental Engineering, Wrocław University of Environmental and Life Sciences, 50-363 Wroclaw, Poland.
| |
Collapse
|