1
|
Futane A, Senthil M, S J, Srinivasan A, R K, Narayanamurthy V. Sweat analysis for urea sensing: trends and challenges. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4405-4426. [PMID: 37646163 DOI: 10.1039/d3ay01089a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
With increasing population there is a rise in pathological diseases that the healthcare facilities are grappling with. Sweat-based wearable technologies for continuous monitoring have overcome the demerits associated with sweat sampling and sensing. Hence, sweat as an alternative biofluid holds great promise for the quantification of a host of biomarkers and understanding the functioning of the body, thereby deducing ailments quickly and economically. This comprehensive review accounts for recent advances in sweat-based LOCs (Lab-On-Chips), which are a likely alternative to the existing blood-urea sample testing that is invasive and time-consuming. The present review is focused on the advancements in sweat-based Lab-On-Chips (LOCs) as an alternative to invasive and time-consuming blood-urea sample testing. In addition, different sweat collection methods (direct skin, near skin and microfluidic) and their mechanism for urea sensing are explained in detail. The mechanism of urea in biofluids in protein metabolism, balancing nitrogen levels and a crucial factor of kidney function is described. In the end, research and technological advancements are explained to address current challenges and enable its widespread implementation.
Collapse
Affiliation(s)
- Abhishek Futane
- Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
| | - Mallika Senthil
- Department of Biomedical Engineering, Rajalakshmi Engineering, College, Chennai, India 602105
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jayashree S
- Department of Biomedical Engineering, Rajalakshmi Engineering, College, Chennai, India 602105
| | - Arthi Srinivasan
- Faculty of Chemical and Process Engineering Technology, University Malaysia Pahang (UMP), Lebuhraya Tun Razak, 26300 Gambang, Kunatan, Pahang, Malaysia
| | - Kalpana R
- Department of Biomedical Engineering, Rajalakshmi Engineering, College, Chennai, India 602105
| | - Vigneswaran Narayanamurthy
- Advance Sensors and Embedded Systems (ASECs), Centre for Telecommunication Research & Innovation, Fakulti Teknologi Kejuruteraan Elektrik Dan Elektronik, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal, Melaka 76100, Malaysia
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India.
| |
Collapse
|
2
|
Cho KH, Jung SH, Choi MS, Jung YJ, Lee CG, Choi NC. Effect of water filtration infrared-A (wIRA) sauna on inorganic ions excreted through sweat from the human body. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:18260-18267. [PMID: 36207634 PMCID: PMC9546416 DOI: 10.1007/s11356-022-23437-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Sweat discharged as a result of exposure to sauna plays an important role in removing inorganic ions accumulated in the body, including heavy metals. In this study, inorganic ions (toxic and nutrient elements) excreted in the form of sweat from the body using a water-filtered infrared-A (wIRA) sauna were determined using inductively coupled plasma sector field mass spectrometry. The analyzed elements included eight toxic elements (Al, As, Be, Cd, Ni, Pb, Ti, and Hg) and 10 nutrient elements (Ca, Co, Cr, Cu, Fe, Mg, Mn, Se, V, and Zn), and their correlations were determined. Analysis of the sweat obtained from 22 people using the wIRA sauna showed a higher inorganic ion concentration than that obtained from conventional activities, such as exercise or the use of wet sauna, and the concentration of toxic elements in sweat was higher in females than in males. Correlation analysis of the ions revealed a correlation between the discharge of toxic elements, such as As, Be, Cd, and Ni, and discharge of Se and V, and Ni was only correlated with Mn. This study provides fundamental information on nutritional element supplementation when using wIRA sauna for detoxification.
Collapse
Affiliation(s)
- Kang-Hee Cho
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | | | | | - Yong-Jin Jung
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Chang-Gu Lee
- Department of Environmental and Safety Engineering, Ajou University, Suwon, 16499, Republic of Korea
| | - Nag-Choul Choi
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Idrees F, Batool AI, Rehman MFU, Habib SS, Akram A. Assessment of Genetic Damage in Coal Miners of Punjab, Pakistan. Biol Trace Elem Res 2022; 201:3144-3151. [PMID: 36094694 DOI: 10.1007/s12011-022-03412-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/02/2022] [Indexed: 11/26/2022]
Abstract
Coal miners are continuously exposed to coal mine dust and airborne particulate that act as a potential risk to their health. The present study evaluates the DNA damage in coal miners using the Buccal Micronucleus Cytome (BMCyt) assay. The samples of the blood and buccal epithelial cells of 40 coal miners and 20 control subjects were taken from coal mines of Pail and Padhrar, Pakistan, to establish buccal anomaly frequencies of metal levels in the blood. Besides this, work history and duration hours were also analyzed. Results revealed that micronucleus frequencies positively correlated with the metal concentrations in the miner's blood. The change in the extent of nuclear damage per unit change in the year was 0.170 for micronuclei; however, with addition in each year of working experience, nuclear buds and broken egged nuclei increased by 0.316 and 0.194 units, where each year increases karyolysis by 0.349 units and karyorrhexis by 0.308 units, respectively. An increase in work hours and working years was positively correlated with cytogenetic damage. Nuclear damage in coal miners due to occupational exposure is obvious and increases with increasing work experience. Hence, the Buccal Micronucleus Cytome assay has proved to be an effective cytogenetic biomonitoring tool for assessing genetic and nuclear damage in coal miners.
Collapse
Affiliation(s)
- Fariha Idrees
- Department of Zoology, University of Sargodha, Sargodha, Punjab, 40100, Pakistan.
| | - Aima Iram Batool
- Department of Zoology, University of Sargodha, Sargodha, Punjab, 40100, Pakistan
| | | | - Syed Sikandar Habib
- Department of Zoology, University of Sargodha, Sargodha, Punjab, 40100, Pakistan
| | - Aksa Akram
- Department of Zoology, University of Sargodha, Sargodha, Punjab, 40100, Pakistan
| |
Collapse
|
4
|
Sarkar K, Bishnoi M, Singh DP. Designing, fabrication and evaluation of a rapid, point-of-care and noninvasive system for the detection of lead (Pb 2+). Biomed Microdevices 2021; 23:56. [PMID: 34705117 DOI: 10.1007/s10544-021-00599-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2021] [Indexed: 10/20/2022]
Abstract
Non-invasive collection of biological sample such as sweat, urine, saliva, hairs and, stool and onsite detection of anlaytes in those samples is an interesting and viable approach for rapid screening of various toxicants in body. Environmental exposure/presence of lead (82Pb) and its rapid detection provide one such opportunity. A chemical spot based colorimetric method and a transdermal patch device based on this spot test, is developed for rapid and qualitative assessment of inorganic lead (Pb2+) in non-coloured biological or environmental liquid samples. The transdermal patch system contains two important parts, a chemical spot prepared on a thin glass sheet and, an absorbent paper (11 µm pore size). A one step colour development reaction is able to identify the presence or absence of Pb2+. In-vitro evaluation for sensitivity and cut-off value determination, within run and between run precision testing, specificity testing were done. In-vivo evaluation of the developed patch system was performed in occupationally lead-exposed subjects and in control volunteers. In-vivo field testing results were further validated with gold standard test for lead detection. Blood lead levels and patch lead levels were found to be positively correlated (r = 0.57, P < 0.0001). In addition, the sensitivity and specificity of device in identification of Pb2+ was found to be 75.93% (95% CI = 62.36%-86.51%) and 95.24% (95% CI = 76.18%-99.88%). The developed system appears as a reliable, non-invasive rapid test with minimum step involve for identification of Pb2+ in a given system.
Collapse
Affiliation(s)
- Kamalesh Sarkar
- Division of Clinical Epidemiology, ICMR-National Institute of Occupational Health, Meghani Nagar, Ahmedabad, 380016, India
| | - Mahendra Bishnoi
- Division of Nutritional Biotechnology, DBT-National Agri-Food Biotechnology Institute, SAS Nagar, Sector 81, Mohali, 140306, India
| | - Dhirendra Pratap Singh
- Division of Toxicology, ICMR-National Institute of Occupational Health, Meghani Nagar, Ahmedabad, 380016, India.
| |
Collapse
|
5
|
Yang D, Liu Y, Liu S, Li C, Zhao Y, Li L, Lu S. Exposure to heavy metals and its association with DNA oxidative damage in municipal waste incinerator workers in Shenzhen, China. CHEMOSPHERE 2020; 250:126289. [PMID: 32114348 DOI: 10.1016/j.chemosphere.2020.126289] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 01/31/2020] [Accepted: 02/18/2020] [Indexed: 06/10/2023]
Abstract
Burning municipal waste produces a great deal of harmful heavy metals, which may lead to elevated exposure in incinerator workers and residents living nearby. However, relevant human exposure studies remain scarce, especially in China. This study aimed to determine the concentrations of ten heavy metals in urine of incinerator workers (n = 119, as the exposed group) and residents living nearby (n = 215, as the control group) from Shenzhen (China), and explore the associations between heavy metal exposure and DNA oxidative stress (indicated by 8-hydroxy-2'-deoxyguanosine or 8-OHdG) in humans. The median urinary concentrations of manganese (Mn), iron (Fe), chromium (Cr), arsenic (As), selenium (Se) and 8-OHdG in the exposed group were significantly higher than those in the control group (p < 0.05), suggesting occupational exposure elevated heavy metal intake for the incinerator workers. Nevertheless, there is no correlation statistically significant between the concentrations of any heavy metal and 8-OHdG in urine in the exposed group, indicating heavy metals releasing from waste incineration were not important factors to induce DNA oxidative stress. To our knowledge, this study firstly reported the concentrations of heavy metal in urine and their associations with DNA oxidative damage in waste incinerator workers in Shenzhen, China.
Collapse
Affiliation(s)
- Dongfeng Yang
- School of Public Health, University of South China, Hengyang, 421001, China; Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Yanling Liu
- Nanshan District Center for Disease Control and Prevention, Shenzhen, 518054, China
| | - Shan Liu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, China
| | - Chun Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, China
| | - Yang Zhao
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, China
| | - Le Li
- School of Public Health, University of South China, Hengyang, 421001, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
6
|
Chen YL, Kuan WH, Liu CL. Comparative Study of the Composition of Sweat from Eccrine and Apocrine Sweat Glands during Exercise and in Heat. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E3377. [PMID: 32408694 PMCID: PMC7277079 DOI: 10.3390/ijerph17103377] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/01/2020] [Accepted: 05/11/2020] [Indexed: 11/30/2022]
Abstract
This preliminarily study was made to examine the differences in sweat excretions from human eccrine and apocrine sweat glands in dynamic exercise and heat conditions. Sweat samples were collected from six young males while they were either running on a treadmill or sitting in a sauna cabinet. Sweat samples of at least 5 mL from the eccrine (upper-back) and apocrine (armpit) sweat glands were collected during a 20-min running (or inactive overheating) period. The samples were then analyzed for urea, uric acid, and electrolyte (Na+, Cl-, and K+) excretions. The results from a two-way repeated-measures analysis of variance (ANOVA) revealed that the secretions of urea and K+ were significantly higher during running than during inactive overheating for both glands, as were Na+ secretions for the apocrine glands (all P < 0.05). Under the same sweating conditions, urea and K+ excretions from the apocrine glands were also higher than those from the eccrine glands (all P < 0.05). Significant differences were observed between the Na+ secretions of the apocrine and eccrine glands under the running condition. The effects of various sweating methods and sweat glands on Cl- secretions were nonsignificant, and little uric acid was excreted. A higher urea excretion level during running rather than in hot conditions could be attributed to an elevated metabolic rate.
Collapse
Affiliation(s)
- Yi-Lang Chen
- Department of Industrial Engineering and Management, Ming Chi University of Technology, New Taipei 24301, Taiwan;
- Department of Industrial Design, Chang Gung University, Taoyuan 33302, Taiwan
| | - Wen-Hui Kuan
- Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, New Taipei 24301, Taiwan
- Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chiayi 61363, Taiwan
| | - Chao-Lin Liu
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei 24301, Taiwan;
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| |
Collapse
|
7
|
Xu J, Zhao M, Pei L, Liu X, Wei L, Li A, Mei Y, Xu Q. Effects of heavy metal mixture exposure on hematological and biomedical parameters mediated by oxidative stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:134865. [PMID: 31841905 DOI: 10.1016/j.scitotenv.2019.134865] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/16/2019] [Accepted: 10/05/2019] [Indexed: 06/10/2023]
Affiliation(s)
- Jing Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Meiduo Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Lu Pei
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Xiaolin Liu
- Jinzhou Medical University, Jinzhou 121001, Liaoning Province, China
| | - Lanping Wei
- Jinzhou Central Hospital, Jinzhou 121001, Liaoning Province, China
| | - Ang Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Yayuan Mei
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Qun Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China.
| |
Collapse
|
8
|
Baker LB. Physiology of sweat gland function: The roles of sweating and sweat composition in human health. Temperature (Austin) 2019; 6:211-259. [PMID: 31608304 PMCID: PMC6773238 DOI: 10.1080/23328940.2019.1632145] [Citation(s) in RCA: 267] [Impact Index Per Article: 53.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/06/2019] [Accepted: 06/08/2019] [Indexed: 12/21/2022] Open
Abstract
The purpose of this comprehensive review is to: 1) review the physiology of sweat gland function and mechanisms determining the amount and composition of sweat excreted onto the skin surface; 2) provide an overview of the well-established thermoregulatory functions and adaptive responses of the sweat gland; and 3) discuss the state of evidence for potential non-thermoregulatory roles of sweat in the maintenance and/or perturbation of human health. The role of sweating to eliminate waste products and toxicants seems to be minor compared with other avenues of excretion via the kidneys and gastrointestinal tract; as eccrine glands do not adapt to increase excretion rates either via concentrating sweat or increasing overall sweating rate. Studies suggesting a larger role of sweat glands in clearing waste products or toxicants from the body may be an artifact of methodological issues rather than evidence for selective transport. Furthermore, unlike the renal system, it seems that sweat glands do not conserve water loss or concentrate sweat fluid through vasopressin-mediated water reabsorption. Individuals with high NaCl concentrations in sweat (e.g. cystic fibrosis) have an increased risk of NaCl imbalances during prolonged periods of heavy sweating; however, sweat-induced deficiencies appear to be of minimal risk for trace minerals and vitamins. Additional research is needed to elucidate the potential role of eccrine sweating in skin hydration and microbial defense. Finally, the utility of sweat composition as a biomarker for human physiology is currently limited; as more research is needed to determine potential relations between sweat and blood solute concentrations.
Collapse
Affiliation(s)
- Lindsay B. Baker
- Gatorade Sports Science Institute, PepsiCo R&D Physiology and Life Sciences, Barrington, IL, USA
| |
Collapse
|
9
|
Hu Y, Zhou J, Du B, Liu H, Zhang W, Liang J, Zhang W, You L, Zhou J. Health risks to local residents from the exposure of heavy metals around the largest copper smelter in China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 171:329-336. [PMID: 30616149 DOI: 10.1016/j.ecoenv.2018.12.073] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/19/2018] [Accepted: 12/23/2018] [Indexed: 06/09/2023]
Abstract
Non-ferrous smelting releases lots of heavy metals to the environment. Although numerous studies have focused on pollution in the environment, fewer have studied the adverse health effects. In the current study, samples of food, hair and urine were collected and analyzed for zinc (Zn), iron (Fe), chromium (Cr), nickel (Ni), lead (Pb) and copper (Cu) from residents of 3 villages near the largest copper smelter in China. The estimated daily intake (EDI), target hazard quotient (THQ), and Hazard Index (HI) were used to estimate and analyze the health risks to local residents (children, adults, and seniors). The Zn, Cr, Ni, Fe, Pb and Cu concentrations in food ranged from 16.02 to 61.48 mg kg-1, 0.23-13.64 mg kg-1, 0.10-5.90 mg kg-1, 19.16-170.05 mg kg-1, 0.15-3.62 mg kg-1, and 0.53-2.74 mg kg-1, respectively. Zn, Cr, Ni and Pb concentrations in all vegetables were above the national tolerance limits. Children had higher EDIs of heavy metals than that of adults and seniors. The THQ of single elements and the HI of combined elements indicated that the EDI of Pb and Cu showed the highest potential health risks, followed by the EDI of Zn and Fe, and Ni, Cr. High EDI of heavy metals resulted in much higher concentrations of heavy metals in hair and urine samples than those of normal Chinese residents, showing that residents around the smelter have potential health risks through daily food intake. The main sources of these heavy metals were from the consumption of rice and vegetables and it is imperative that measures should be taken to control this urgent problem.
Collapse
Affiliation(s)
- Yuanmei Hu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China; National Engineering and Technology Research Center for Red Soil Improvement, Red Soil Ecological Experiment Station, Chinese Academy of Sciences, Yingtan 335211, China
| | - Jun Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; College of Resource and Environment, Anhui Science and Technology University, Fengyang, Anhui 233100, China; National Engineering and Technology Research Center for Red Soil Improvement, Red Soil Ecological Experiment Station, Chinese Academy of Sciences, Yingtan 335211, China.
| | - Buyun Du
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, No. 8 Jiang-wang-miao Street, Nanjing, Jiangsu 210042, China
| | - Hailong Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China; National Engineering and Technology Research Center for Red Soil Improvement, Red Soil Ecological Experiment Station, Chinese Academy of Sciences, Yingtan 335211, China
| | - Wantong Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; National Engineering and Technology Research Center for Red Soil Improvement, Red Soil Ecological Experiment Station, Chinese Academy of Sciences, Yingtan 335211, China
| | - Jiani Liang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; National Engineering and Technology Research Center for Red Soil Improvement, Red Soil Ecological Experiment Station, Chinese Academy of Sciences, Yingtan 335211, China
| | - Wenhui Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; National Engineering and Technology Research Center for Red Soil Improvement, Red Soil Ecological Experiment Station, Chinese Academy of Sciences, Yingtan 335211, China
| | - Laiyong You
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China; National Engineering and Technology Research Center for Red Soil Improvement, Red Soil Ecological Experiment Station, Chinese Academy of Sciences, Yingtan 335211, China
| | - Jing Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; National Engineering and Technology Research Center for Red Soil Improvement, Red Soil Ecological Experiment Station, Chinese Academy of Sciences, Yingtan 335211, China; Jiangxi Engineering Research Center of Eco-Remediation of Heavy Metal Pollution, Jiangxi Academy of Science, Nanchang 330096, China.
| |
Collapse
|
10
|
Rehman UU, Khan S, Muhammad S. Associations of potentially toxic elements (PTEs) in drinking water and human biomarkers: a case study from five districts of Pakistan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:27912-27923. [PMID: 30058038 DOI: 10.1007/s11356-018-2755-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 07/13/2018] [Indexed: 06/08/2023]
Abstract
Potentially toxic elements (PTEs) are hazardous contaminants with great global environmental/ecological concerns due to their toxic, persistence, and bio-accumulative nature. This study investigates the concentrations of PTEs (Cd, Co, Cu, Fe, Ni, Mn, Pb, and Zn) in drinking water sources and consumers' biomarkers such as hair, nails, urine, and blood. For this purpose, drinking water (n = 190) and consumer biomarker (n = 60) samples were collected from five districts of the Southern Khyber Pakhtunkhwa, Pakistan. Samples were extracted and analyzed for selected PTEs concentrations using an inductively coupled plasma mass spectrometer (ICP-MS, PerkinElmer Optima 7000 DV, USA). The concentrations of PTEs were observed within the drinking water guidelines set by the World Health Organization (WHO), except for Fe, Mn, and Pb. The determined concentrations of PTEs were used to evaluate the health risk through exposure, particularly hazard quotient (HQ) and hazard index (HI). The PTEs contamination of drinking water has led to the highest mean ADI values (39.0 and 91.8 μg/kg/day) and HQ values (0.306 and 0.130) for Zn in adults and children, respectively. The mean values of HQ and HI for selected PTEs were observed within the safe health limits (< 1). Among studied biomarkers, hair showed the highest concentrations for Mn, Zn, Cd, and Pb, plasma for Co and Cu, nails for Ni, and red blood cells (RBCs) for Fe only. This study concluded that chronic exposure of PTEs through drinking water consumption has led to their bioaccumulation in human biomarkers.
Collapse
Affiliation(s)
- Ubaid Ur Rehman
- Department of Environmental Sciences, University of Peshawar, Peshawar, 25120, Pakistan
| | - Sardar Khan
- Department of Environmental Sciences, University of Peshawar, Peshawar, 25120, Pakistan.
| | - Said Muhammad
- Department of Earth Sciences, COMSATS University, Tobe Camp, Abbottabad, 22060, Pakistan.
| |
Collapse
|
11
|
Gola D, Malik A, Namburath M, Ahammad SZ. Removal of industrial dyes and heavy metals by Beauveria bassiana: FTIR, SEM, TEM and AFM investigations with Pb(II). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:20486-20496. [PMID: 28965177 DOI: 10.1007/s11356-017-0246-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 09/19/2017] [Indexed: 06/07/2023]
Abstract
Presence of industrial dyes and heavy metal as a contaminant in environment poses a great risk to human health. In order to develop a potential technology for remediation of dyes (Reactive remazol red, Yellow 3RS, Indanthrene blue and Vat novatic grey) and heavy metal [Cu(II), Ni(II), Cd(II), Zn(II), Cr(VI) and Pb(II)] contamination, present study was performed with entomopathogenic fungi, Beauveria bassiana (MTCC no. 4580). High dye removal (88-97%) was observed during the growth of B. bassiana while removal percentage for heavy metals ranged from 58 to 75%. Further, detailed investigations were performed with Pb(II) in terms of growth kinetics, effect of process parameters and mechanism of removal. Growth rate decreased from 0.118 h-1 (control) to 0.031 h-1, showing 28% reduction in biomass at 30 mg L-1 Pb(II) with 58.4% metal removal. Maximum Pb(II) removal was observed at 30 °C, neutral pH and 30 mg L-1 initial metal concentration. FTIR analysis indicated the changes induced by Pb(II) in functional groups on biomass surface. Further, microscopic analysis (SEM and atomic force microscopy (AFM)) was performed to understand the changes in cell surface morphology of the fungal cell. SEM micrograph showed a clear deformation of fungal hyphae, whereas AFM studies proved the increase in surface roughness (RSM) in comparison to control cell. Homogenous bioaccumulation of Pb(II) inside the fungal cell was clearly depicted by TEM-high-angle annular dark field coupled with EDX. Present study provides an insight into the mechanism of Pb(II) bioremediation and strengthens the significance of using entomopathogenic fungus such as B. bassiana for metal and dye removal.
Collapse
Affiliation(s)
- Deepak Gola
- Applied Microbiology Laboratory, Centre for Rural Development and Technology, New Delhi, India
| | - Anushree Malik
- Applied Microbiology Laboratory, Centre for Rural Development and Technology, New Delhi, India.
| | - Maneesh Namburath
- Applied Microbiology Laboratory, Centre for Rural Development and Technology, New Delhi, India
| | - Shaikh Ziauddin Ahammad
- Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology, Hauz Khas, Delhi, India
| |
Collapse
|