1
|
Zheng J, Huang X, Gao L, Xu X, Hou L, Cai T, Jia S. Deciphering the core bacterial community structure and function and their response to environmental factors in activated sludge from pharmaceutical wastewater treatment plants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123635. [PMID: 38428794 DOI: 10.1016/j.envpol.2024.123635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/29/2024] [Accepted: 02/21/2024] [Indexed: 03/03/2024]
Abstract
Pharmaceutical wastewater is recognized for its heightened concentrations of organic pollutants, and biological treatment stands out as an effective technology to remove these organic pollution. Therefore, a comprehensive exploration of core bacterial community compositions, functions, and their responses to environmental factors in pharmaceutical wastewater treatment plants (PWWTPs) is important for understanding the removal mechanism of these organic pollutants. This study comprehensively investigated 36 activated sludge (AS) samples from 15 PWWTPs in China. The results revealed that Proteobacteria (45.41%) was the dominant phylum in AS samples, followed by Bacteroidetes (19.54%) and Chloroflexi (4.13%). While the dominant genera were similar in both aerobic and anaerobic treatment processes, their relative abundances exhibited significant variations. Genera like HA73, Kosmotoga, and Desulfovibrio were more abundant during anaerobic treatment, while Rhodoplanes, Bdellovibrio, and Hyphomicrobium dominated during aerobic treatment. 13 and 10 core operational taxonomic units (OTUs) were identified in aerobic and anaerobic sludge, respectively. Further analysis revealed that core OTUs belonging to genera Kosmotoga, Desulfovibrio, Thauera, Hyphomicrobium, and Chelativorans, were associated with key functions, including sulfur metabolism, methane metabolism, amino acid metabolism, carbohydrate metabolism, toluene degradation, and nitrogen metabolism. Furthermore, this study highlighted the crucial roles of environmental factors, such as COD, NH4+-N, SO42-, and TP, in shaping both the structure and core functions of bacterial communities within AS of PWWTPs. Notably, these factors indirectly affect functional attributes by modulating the bacterial community composition and structure in pharmaceutical wastewater. These findings provide valuable insights for optimizing the efficiency of biochemical treatment processes in PWWTPs.
Collapse
Affiliation(s)
- Jinli Zheng
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xin Huang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Linjun Gao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xu Xu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lijun Hou
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tianming Cai
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shuyu Jia
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
2
|
Zuo J, Xu L, Guo J, Xu S, Ma S, Jiang C, Yang D, Wang D, Zhuang X. Microbial community structure analyses and cultivable denitrifier isolation of Myriophyllum aquaticum constructed wetland under low C/N ratio. J Environ Sci (China) 2023; 127:30-41. [PMID: 36522062 DOI: 10.1016/j.jes.2022.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 06/17/2023]
Abstract
With the rapid expansion of livestock production, the amount of livestock wastewater accumulated rapidly. Lack of biodegradable organic matter makes denitrification of livestock wastewater after anaerobic digestion more difficult. In this study, Myriophyllum aquaticum constructed wetlands (CWs) with efficient nitrogen removal performance were established under different carbon/nitrogen (C/N) ratios. Analysis of community composition reveals the change of M. aquaticum CWs in microbial community structure with C/N ratios. The proportion of Proteobacteria which is one of the dominant phyla among denitrifier communities increased significantly under low C/N ratio conditions. Besides, to obtain cultivable denitrifier that could be added into CWs in situ, 33 strains belonging to phylum Proteobacteria were isolated from efficient M. aquaticum CWs, while the best-performing denitrification strain M3-1 was identified as Bacillus velezensis JT3-1 (GenBank No. CP032506.1). Redundancy analysis and quadratic models showed that C/N ratio had significant effects on disposal of nitrate (NO3--N) and the strains isolated could perform well in denitrification when C/N ratio is relatively low. In addition, they have relatively wide ranges of carbon sources, temperature and a high NO3- removal rate of 9.12 mg/(L·hr) at elevated concentrations of 800 mg/L nitrate. Thus, strains isolated from M. aquaticum CWs with low C/N ratio have a practical application value in the treatment of nitrate-containing wastewater. These denitrifying bacteria could be added to CWs to enhance nitrogen removal efficiency of CWs for livestock wastewater with low C/N ratio in the future.
Collapse
Affiliation(s)
- Jialiang Zuo
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Sino-Danish Center, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Lina Xu
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jianlin Guo
- Ningxia Zhongke Jingke Testing Technology Company, Yinchuan 750000, China
| | - Shengjun Xu
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Shuanglong Ma
- College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Cancan Jiang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Dongmin Yang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Danhua Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xuliang Zhuang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
3
|
Nolte TM, Peijnenburg WJGM, Miguel ABR, Zhang YN, Hendriks AJ. Stoichiometric ratios for biotics and xenobiotics capture effective metabolic coupling to re(de)fine biodegradation. WATER RESEARCH 2022; 217:118333. [PMID: 35421691 DOI: 10.1016/j.watres.2022.118333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/07/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Preserving human and environmental health requires anthropogenic pollutants to be biologically degradable. Depending on concentration, both nutrients and pollutants induce and activate metabolic capacity in the endemic bacterial consortium, which in turn aids their degradation. Knowledge on such 'acclimation' is rarely implemented in risk assessment cost-effectively. As a result, an accurate description of the mechanisms and kinetics of biodegradation remains problematic. In this study, we defined a yield 'effectivity', comprising the effectiveness at which a pollutant (substrate) enhances its own degradation by inducing (biomass) cofactors involved therein. Our architecture for calculation represents the interplay between concentration and metabolism via both stoichiometric and thermodynamic concepts. The calculus for yield 'effectivity' is biochemically intuitive, implicitly embeds co-metabolism and distinguishes 'endogenic' from 'exogenic' substances' reflecting various phenomena in biodegradation and bio-transformation studies. We combined data on half-lives of pollutants/nutrients in wastewater and surface water with transition-state rate theory to obtain also experimental values for effective yields. These quantify the state of acclimation: the portion of biodegradation kinetics attributable to (contributed by) 'natural metabolism', in view of similarity to natural substances. Calculated and experimental values showed statistically significant correspondence. Particularly, carbohydrate metabolism and nucleic acid metabolism appeared relevant for acclimation (R2 = 0.11-0.42), affecting rates up to 104.9(±0.7) times: under steady-state acclimation, a compound stoichiometrically identical to carbohydrates or nucleic acids, is 103.2 to 104.9 times faster aerobically degraded than a compound marginally similar. Our new method, simulating (contribution by) the state of acclimation, supplements existing structure-biodegradation and kinetic models for predicting biodegradation in wastewater and surface water. The accuracy of prediction may increase when characterizing nutrients/co-metabolites in terms of, e.g., elemental analysis. We discuss strengths and limitations of our approach by comparison to empirical and mechanism-based methods.
Collapse
Affiliation(s)
- Tom M Nolte
- Radboud University Nijmegen, Department of Environmental Science, Institute for Water and Wetland Research, 6500 GL Nijmegen, the Netherlands.
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, PO Box 9518, 2300 RA, Leiden, the Netherlands; National Institute of Public Health and the Environment, PO Box 1, 3720 BA Bilthoven, the Netherlands
| | - Ana B Rios- Miguel
- Radboud University Nijmegen, Department of Microbiology, Institute for Water and Wetland Research, 6500 GL Nijmegen, the Netherlands
| | - Ya-Nan Zhang
- School of Environment, Northeast Normal University, NO. 2555 Jingyue Street, Changchun, Jilin 130117, China
| | - A Jan Hendriks
- Radboud University Nijmegen, Department of Environmental Science, Institute for Water and Wetland Research, 6500 GL Nijmegen, the Netherlands
| |
Collapse
|
4
|
López-Velázquez K, Villanueva-Rodríguez M, Mejía-González G, Herrera-López D. Removal of 17α-ethinylestradiol and caffeine from wastewater by UASB-Fenton coupled system. ENVIRONMENTAL TECHNOLOGY 2021; 42:3771-3782. [PMID: 32155103 DOI: 10.1080/09593330.2020.1740799] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 03/04/2020] [Indexed: 06/10/2023]
Abstract
In aquatic systems, some substances considered as endocrine disruptors have been detected, which can be due to their incomplete elimination in wastewater treatment plants (WWTPs) and inadequate disposal of pharmaceuticals. Among these contaminants are 17α-ethinylestradiol (EE2) and caffeine (CAF). Moreover, it has been reported that this kind of contaminants may provoke different adverse effects in many aquatic organisms. Because of that, in the present study, up-flow anaerobic sludge blanket reactors (UASB) coupled with the Fenton process was evaluated for EE2 and CAF removal spiked in wastewater samples. First, the best reaction conditions were established in each process. For UASB reactor, two hydraulic retention times (HRT 8 and 24 h) were evaluated, achieving the highest chemical organic demand (COD) removal (70 %) and drug elimination (84 %-86 %) with HRT 24 h. Subsequently, Fenton process was conducted at pH 3 with different levels of Fe2+ (0.05-0.5 mmol/L) and molar ratios Fe2+:H2O2 (1:1-1:10). Better results were obtained with 0.5 mmol Fe2+/L, and 1:10 ratio molar Fe2+:H2O2. Finally, UASB-Fenton coupled system allowed 80 % of COD decrease, almost complete removal of drugs and the toxicity of samples on Vibrio fischeri was reduced from 73 % to 30 %, demonstrating that this coupled system is a promising and efficient system for pharmaceutical compounds removal from wastewater.
Collapse
Affiliation(s)
| | - Minerva Villanueva-Rodríguez
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León (UANL), San Nicolás de los Garza, Nuevo León, México
| | | | | |
Collapse
|
5
|
From Laboratory Tests to the Ecoremedial System: The Importance of Microorganisms in the Recovery of PPCPs-Disturbed Ecosystems. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10103391] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The presence of a wide variety of emerging pollutants in natural water resources is an important global water quality challenge. Pharmaceuticals and personal care products (PPCPs) are known as emerging contaminants, widely used by modern society. This objective ensures availability and sustainable management of water and sanitation for all, according to the 2030 Agenda. Wastewater treatment plants (WWTP) do not always mitigate the presence of these emerging contaminants in effluents discharged into the environment, although the removal efficiency of WWTP varies based on the techniques used. This main subject is framed within a broader environmental paradigm, such as the transition to a circular economy. The research and innovation within the WWTP will play a key role in improving the water resource management and its surrounding industrial and natural ecosystems. Even though bioremediation is a green technology, its integration into the bio-economy strategy, which improves the quality of the environment, is surprisingly rare if we compare to other corrective techniques (physical and chemical). This work carries out a bibliographic review, since the beginning of the 21st century, on the biological remediation of some PPCPs, focusing on organisms (or their by-products) used at the scale of laboratory or scale-up. PPCPs have been selected on the basics of their occurrence in water resources. The data reveal that, despite the advantages that are associated with bioremediation, it is not the first option in the case of the recovery of systems contaminated with PPCPs. The results also show that fungi and bacteria are the most frequently studied microorganisms, with the latter being more easily implanted in complex biotechnological systems (78% of bacterial manuscripts vs. 40% fungi). A total of 52 works has been published while using microalgae and only in 7% of them, these organisms were used on a large scale. Special emphasis is made on the advantages that are provided by biotechnological systems in series, as well as on the need for eco-toxicological control that is associated with any process of recovery of contaminated systems.
Collapse
|
6
|
Wang S, Cui Y, Li A, Zhang W, Wang D, Chen Z, Liang J. Deciphering of organic matter and nutrient removal and bacterial community in three sludge treatment wetlands under different operating conditions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 260:110159. [PMID: 32090846 DOI: 10.1016/j.jenvman.2020.110159] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 01/11/2020] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
Sludge treatment wetlands (STWs) can effectively stabilize sludge, but the microbial community structure in this process is not well characterized. The purpose of this study was to investigate the characteristics of organic matter and nutrient removal and bacterial community in sludge treatment wetlands for treating sewage sludge. Three STWs units included unit STW1 with aeration tubes, unit STW2 with aeration tubes and reed planting and unit STW3 with reed planting. The degradation of organic matter and nutrient, sludge dewatering performance and microbial community dynamics in STWs were examined in feeding and resting periods. Our results showed that during the entire process of the experiment, total solids (TS) in STWs increased to 24-31%, volatile solids (VS) in STWs reduced to 43-47%, while the total kjeldahl nitrogen (TKN) and total phosphorous (TP) concentrations in STWs decreased to 25.1-35.5 mg/g d. w and 5.4-6.2 mg/g d. w. However, the removal efficiencies of organic matter and nutrient in STWs in the feeding period were higher than those in the resting period. Meanwhile, unit STW2 has the best removal performance in organic matter and nutrients during the whole experiment. Microbial community analysis using Illumina MiSeq sequencing technology showed that growth of plants in STWs improved bacterial diversity and richness which corresponded to high removal rates of organic matter and nutrient. Besides, principal coordinate analysis (PCoA) showed that the bacterial community composition in STWs obviously altered between the feeding and the resting periods.
Collapse
Affiliation(s)
- Shiquan Wang
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian, 116600, China; School of Environment Science & Technology, Dalian University of Technology, Dalian, 116024, China; China-Arab Joint International Research Laboratory for Featured Resources and Environmental Governance in Arid Regions, Ningxia University, Yinchuan, 750021, China
| | - Yubo Cui
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian, 116600, China.
| | - Aimin Li
- School of Environment Science & Technology, Dalian University of Technology, Dalian, 116024, China
| | - Wanjun Zhang
- College of Environment and Resources, Dalian Minzu University, Dalian, 116600, China
| | - Dong Wang
- School of Environment Science & Technology, Dalian University of Technology, Dalian, 116024, China
| | - Zhaobo Chen
- College of Environment and Resources, Dalian Minzu University, Dalian, 116600, China
| | - Junyu Liang
- College of Environment and Resources, Dalian Minzu University, Dalian, 116600, China
| |
Collapse
|
7
|
Shifflett SD, Schubauer-Berigan J. Assessing the risk of utilizing tidal coastal wetlands for wastewater management. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 236:269-279. [PMID: 30738297 PMCID: PMC7341721 DOI: 10.1016/j.jenvman.2018.12.082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/14/2018] [Accepted: 12/22/2018] [Indexed: 05/26/2023]
Abstract
Coastal tidal wetlands are well recognized for the key ecosystem services they provide such as flood protection, water quality improvement, and carbon sequestration. In the southeastern United States, some communities rely on coastal wetlands for the management of secondarily treated effluents in forested and emergent wetlands. Advocates for this practice have argued that wetlands can assimilate nitrogen from wastewater, which can improve cypress-tupelo swamp productivity, and enhance marsh accretion rates to mitigate the effects of sea level rise. In contrast, evolving research on coastal wetlands and the environmental impacts of wastewater treatment pose new questions about the potential risks introduced by this practice. This review seeks to: (1) assess current research on plant productivity in fertilized coastal wetlands; (2) highlight the occurrence and fate of pharmaceuticals and personal care products (PPCPs) in municipal wastewater operations; and (3) identify knowledge gaps. Nutrient additions via wastewater augmented aboveground productivity, but decreased belowground productivity and root-to-shoot ratios. Removal efficiencies of some PPCPs by coastal wetlands have been substantial (75% - 99%), but most remain unevaluated. Furthermore, their fate and effect on local ecosystem function and biogeochemical processes remain in question. This review demonstrates that there is more research needed at both local and watershed scales to evaluate how these risk factors impact ecosystem integrity and to better understand the tradeoffs with this wastewater management practice.
Collapse
Affiliation(s)
- Shawn Dayson Shifflett
- Oak Ridge Institute for Science and Education (ORISE) Research Participation Program, U.S. Environmental Protection Agency, 26 W. Martin Luther King Drive, Cincinnati, OH, 45268, USA.
| | - Joseph Schubauer-Berigan
- Office of Research and Development, National Risk Management Research Laboratory, U.S. Environmental Protection Agency, 26 W. Martin Luther King Drive, Cincinnati, OH, 45268, USA.
| |
Collapse
|
8
|
Ecology and Biotechnological Potential of Bacteria Belonging to the Genus Pseudovibrio. Appl Environ Microbiol 2018; 84:AEM.02516-17. [PMID: 29453252 DOI: 10.1128/aem.02516-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Members of the genus Pseudovibrio have been isolated worldwide from a great variety of marine sources as both free-living and host-associated bacteria. So far, the available data depict a group of alphaproteobacteria characterized by a versatile metabolism, which allows them to use a variety of substrates to meet their carbon, nitrogen, sulfur, and phosphorous requirements. Additionally, Pseudovibrio-related bacteria have been shown to proliferate under extreme oligotrophic conditions, tolerate high heavy-metal concentrations, and metabolize potentially toxic compounds. Considering this versatility, it is not surprising that they have been detected from temperate to tropical regions and are often the most abundant isolates obtained from marine invertebrates. Such an association is particularly recurrent with marine sponges and corals, animals that play a key role in benthic marine systems. The data so far available indicate that these bacteria are mainly beneficial to the host, and besides being involved in major nutrient cycles, they could provide the host with both vitamins/cofactors and protection from potential pathogens via the synthesis of antimicrobial secondary metabolites. In fact, the biosynthetic abilities of Pseudovibrio spp. have been emerging in recent years, and both genomic and analytic studies have underlined how these organisms promise novel natural products of biotechnological value.
Collapse
|