1
|
Seifikar F, Habibi-Yangjeh A. Floating photocatalysts as promising materials for environmental detoxification and energy production: A review. CHEMOSPHERE 2024; 355:141686. [PMID: 38513952 DOI: 10.1016/j.chemosphere.2024.141686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/08/2024] [Accepted: 03/10/2024] [Indexed: 03/23/2024]
Abstract
The oxygenation process of the catalyst surface, the incident-light harvesting capability, and facile recycling of utilized photocatalysts play key role in the outstanding photocatalytic performances. The typical existing photocatalysts in powder form have many drawbacks, such as difficult separation from the treated water, insufficient surface oxygenation, poor active surface area, low incident-light harvesting ability, and secondary pollution of the environment. A great number of scientific works introduced novel and fresh ideas related to designing floating photocatalytic systems by immobilizing highly active photocatalysts onto a floatable substrate. Thanks to direct contact with the illuminated light and oxygen molecules in the interface of water/air, the photocatalytic performance is maximized through production of more reactive species, employed in the photocatalytic reactions. Furthermore, facile recovering of the utilized photocatalysts for next processes avoids secondary pollution as well as diminishes the process's price. This review highlights the performance of developed floating photocatalysts for diverse applications. Furthermore, different floating substrates and possible mechanisms in floating photocatalysts are briefly mentioned. In addition, several emerging self-floating photocatalytic systems are taken attention and discussed. Specially, coupling photo-thermal and photocatalytic effects seems to be a good strategy for introducing a new class of floating photocatalyst to utilize the free, abundant, and green sunlight energy for the aims of water desalination and purification. Despite of a large number of attempts about the floating photocatalysts, there are still plenty of rooms for more in-depth research to be carried out for attaining the required characteristics of the large scale utilizations of these materials.
Collapse
Affiliation(s)
- Fatemeh Seifikar
- Department of Chemistry, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Aziz Habibi-Yangjeh
- Department of Chemistry, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran.
| |
Collapse
|
2
|
Development of advanced floating poly(lactic acid)-based materials for colored wastewater treatment. J Supercrit Fluids 2021. [DOI: 10.1016/j.supflu.2021.105328] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
3
|
Shi Z, Li Y, Dong L, Guan Y, Bao M. Deep remediation of oil spill based on the dispersion and photocatalytic degradation of biosurfactant-modified TiO 2. CHEMOSPHERE 2021; 281:130744. [PMID: 34029969 DOI: 10.1016/j.chemosphere.2021.130744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/21/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
The employment of dispersant was an effective method to treat marine oil spill pollution. However, conventional dispersants only showed a single oil dispersion. Here, by modifying TiO2 nanoparticles with biosurfactant-Rhamnolipids (Rha), a highly efficient particulate dispersant with photocatalytic activity was developed. Rha-TiO2 showed both excellent oil spill dispersion and facilitated photodegradation for oil simultaneously. The oil droplets dispersed by Rha-TiO2 in seawater exhibited long time stability, which indicated the synergistic emulsification interactions between TiO2 and Rha in artificial sea water (ASW). The dispersion mechanism of Rha-TiO2 was analyzed, we found the TiO2 nanoparticles alone weren't effectively emulsified oil in high salinity ASW, but the addition of a small amount of Rha could modify the surface wettability of TiO2 nanoparticles to form the stable emulsion. In addition, the addition of a small amount of Rha could reduce the surface tension of the oil-water interface, which contribute to increasing the content of TiO2 nanoparticles at the oil-water interface, form a steric rigid layer around the oil droplets to prevent droplet coalescence and facilitate the further photocatalytic degradation of oil. In short, the Rha-TiO2 nanoparticles could effective disperse oil in ASW, meanwhile the TiO2 also played the role of photocatalytic degradation of oil pollution. Hence, this study developed a novel photocatalytic particulate dispersant to remediate marine oil spill and delivered a new feasible solution for practical oil spill treatment in the future.
Collapse
Affiliation(s)
- Zhixin Shi
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao, 266100, PR China
| | - Yiming Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao, 266100, PR China.
| | - Limei Dong
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao, 266100, PR China
| | - Yihao Guan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao, 266100, PR China
| | - Mutai Bao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao, 266100, PR China
| |
Collapse
|
4
|
Huang XH, Hu T, Bu H, Li WX, Li ZL, Hu HJ, Chen WZ, Lin MZ, Li Y, Jiang GB. Transparent floatable magnetic alginate sphere used as photocatalysts carrier for improving photocatalytic efficiency and recycling convenience. Carbohydr Polym 2020; 254:117281. [PMID: 33357857 DOI: 10.1016/j.carbpol.2020.117281] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 01/16/2023]
Abstract
Practical application of powder photocatalysts is far from satisfying due to their low photon utilization, inconvenient recovery and potential environmental risk. In this study, an easily recoverable, environmentally friendly and highly transparent floatable magnetic photocatalyst carrier was prepared based on biopolymer alginate and Fe3O4 particles. Further, three different types of photocatalysts were chosen as model semiconductor photocatalysts and loaded on the shell of the carriers. The freeze process facilitated the formation of internal cavities that enhanced floating ability and transparency of the spheres. Meanwhile, the excellent floating performance offered massive reaction sites for pollutants reacting with photocatalysts, O2 and photons on the air/water interface. Photodegradation results showed all three floatable hybrid photocatalysts exhibited enhanced photocatalytic efficiencies compared to the virgin photocatalysts. In short, the carrier can integrate excellent floating ability, environmental friendliness and full recycling with good stability, and it can greatly improve the photocatalytic efficiency of various powder semiconductor photocatalysts.
Collapse
Affiliation(s)
- Xian-Hang Huang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Matrials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Tian Hu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Matrials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Huaitian Bu
- Department of Materials and Nanotechnology, SINTEF Industry, Forskningsveien 1, 0373, Oslo, Norway
| | - Wei-Xiong Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Matrials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Zeng-Lin Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Matrials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Han-Jian Hu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Matrials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Wen-Zhao Chen
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Matrials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Min-Zhao Lin
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Matrials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Yongtao Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China.
| | - Gang-Biao Jiang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Matrials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China.
| |
Collapse
|
5
|
Wang L, Yu X, Liao J, Xue B, Tian S, Zhu W. Application of Fe 2O 3/ZrO 2 loaded polyhedron ball on photocatalytic degradation of diesel pollutants in seawater under visible light. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 81:1983-1993. [PMID: 32666951 DOI: 10.2166/wst.2020.252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fe2O3/ZrO2 nanocomposite photocatalyst was successfully prepared by coprecipitation method for the degradation of diesel pollutants in seawater under visible light. The effects of doping ratio, calcination temperature, photocatalyst dosage, initial diesel concentration, H2O2 concentration, and reaction time on the photocatalytic removal efficiency were investigated. Moreover, the optimal conditions for Fe2O3/ZrO2 nanocomposite photocatalyst to degrade marine diesel pollution were determined. The removal efficiency of diesel by nanocomposite photocatalyst could reach 97.03%. A photocatalyst-loaded polypropylene polyhedral ball was prepared, and the removal efficiency of diesel by photocatalyst-loaded polypropylene polyhedral ball decreased from 99.35 to 68.84% after four recycling cycles.
Collapse
Affiliation(s)
- Liping Wang
- College of Ocean Technique and Environment Department, Dalian Ocean University, Dalian, China E-mail:
| | - Xiaocai Yu
- College of Ocean Technique and Environment Department, Dalian Ocean University, Dalian, China E-mail:
| | - Jiaqi Liao
- College of Ocean Technique and Environment Department, Dalian Ocean University, Dalian, China E-mail:
| | - Bining Xue
- College of Ocean Technique and Environment Department, Dalian Ocean University, Dalian, China E-mail:
| | - Siyao Tian
- College of Ocean Technique and Environment Department, Dalian Ocean University, Dalian, China E-mail:
| | - Wanting Zhu
- College of Ocean Technique and Environment Department, Dalian Ocean University, Dalian, China E-mail:
| |
Collapse
|
6
|
Qiu H, Zhang R, Yu Y, Shen R, Gao H. BiOI-on-SiO 2 microspheres: A floating photocatalyst for degradation of diesel oil and dye wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 706:136043. [PMID: 31862589 DOI: 10.1016/j.scitotenv.2019.136043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/08/2019] [Accepted: 12/08/2019] [Indexed: 06/10/2023]
Abstract
The powder-based photocatalytic material is often difficult on wide application and then loaded on a matrix for separating conveniently from the liquid. Submerged photocatalysts may not take advantage of the light energy adequately. Thus, this boundedness may reduce their utilization and potentially cause the secondary pollution on the environment. In this paper, the micron-sized silica sphere is used as a floating substrate, and the visible-light-driven photocatalytic material iodine oxygen bismuth is prepared onto the hollow silica microspheres. The composite spheres as the visible-light-driven photocatalytic material have been characterized by XPS, XRD, SEM, EDX, PL, etc. It confirmed that BiOI combined on the SiO2 microsphere (mSiO2) by Bi-O-Si. The photogenerated electrons of the composite have a low probability of recombination and have a narrow band energy (1.82 eV). The composite was used to photodegrade diesel-containing wastewater and rhodamine B, and the superoxide group (·O2-) was found to be the main degradation active factor. And by GC-MS test, it is known that the superoxide group (·O2-) can degrade long-chain alkanes into short chains or form branches. Detailed studies on the acute exposure experiments of Vibrio qinghaiensis sp.-Q67 and zebrafish embryos showed that the composites can effectively reduce the toxicity of BiOI and mSiO2.
Collapse
Affiliation(s)
- Hongxuan Qiu
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | - Run Zhang
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | - Yichang Yu
- Research Center of Environmental Engineering Technology, Chongqing Academy of Ecological and Environmental Sciences, Chongqing 401147, People's Republic of China
| | - Rong Shen
- College of Bioengineering, Beijing Polytechnic, Beijing 100176, People's Republic of China.
| | - Hongwen Gao
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| |
Collapse
|