1
|
Liu X, Li T, Cui X, Tao R, Gao Z. Antifungal mechanism of nanosilver biosynthesized with Trichoderma longibrachiatum and its potential to control muskmelon Fusarium wilt. Sci Rep 2024; 14:20242. [PMID: 39215137 PMCID: PMC11364820 DOI: 10.1038/s41598-024-71282-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
Fusarium oxysporum (Schl.) f.sp. melonis, which causes muskmelon wilt disease, is a destructive filamentous fungal pathogen, attracting more attention to the search for effective fungicides against this pathogen. In particular, Silver nanoparticles (AgNPs) have strong antimicrobial properties and they are not easy to develop drug resistance, which provides new ideas for the prevention and control of muskmelon Fusarium wilt (MFW). This paper studied the effects of AgNPs on the growth and development of muskmelon, the control efficacy on Fusarium wilt of muskmelon and the antifungal mechanism of AgNPs to F. oxysporum. The results showed that AgNPs could inhibit the growth of F. oxysporum on the PDA and in the PDB medium at 100-200 mg/L and the low concentration of 25 mg/L AgNPs could promote the seed germination and growth of muskmelon seedlings and reduce the incidence of muskmelon Fusarium wilt. Further studies on the antifungal mechanism showed that AgNPs could impair the development, damage cell structure, and interrupt cellular metabolism pathways of this fungus. TEM observation revealed that AgNPs treatment led to damage to the cell wall and membrane and accumulation of vacuoles and vessels, causing the leakage of intracellular contents. AgNPs treatment significantly hampered the growth of mycelia in the PDB medium, even causing a decrease in biomass. Biochemical properties showed that AgNPs treatment stimulated the generation of reactive oxygen species (ROS) in 6 h, subsequently producing malondialdehyde (MDA) and increasing protective enzyme activity. After 6 h, the protective enzyme activity decreased. These results indicated that AgNPs destroy the cell structure and affect the metabolisms, eventually leading to the death of fungus.
Collapse
Affiliation(s)
- Xian Liu
- College of Bioscience and Technology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Tong Li
- College of Bioscience and Technology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xiaohui Cui
- College of Bioscience and Technology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Ran Tao
- College of Bioscience and Technology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Zenggui Gao
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
2
|
Wasule DL, Shingote PR, Saxena S. Exploitation of functionalized green nanomaterials for plant disease management. DISCOVER NANO 2024; 19:118. [PMID: 39023655 PMCID: PMC11258113 DOI: 10.1186/s11671-024-04063-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 07/01/2024] [Indexed: 07/20/2024]
Abstract
A crucial determining factor in agricultural productivity is biotic stress. In addition, supply of quality food to the ever-increasing world's population has raised the food demand tremendously. Therefore, enhanced agricultural crop productivity is the only option to mitigate these concerns. It ultimately demanded the often and indiscriminate use of synthetic agrochemicals such as chemical fertilizers, pesticides, insecticides, herbicides, etc. for the management of various biotic stresses including a variety of plant pathogens. However, the food chain and biosphere are severely impacted due to the use of such harmful agrochemicals and their byproducts. Hence, it is need of hour to search for novel, effective and ecofriendly approaches for the management of biotic stresses in crop plants. Particularly, in plant disease management, efforts are being made to take advantage of newly emerged science i.e. nanotechnology for the creation of inorganic nanoparticles (NPs) such as metallic, oxide, sulphide, etc. through different routes and their application in plant disease management. Among these, green nanomaterials which are synthesized using environmentally friendly methods and materials reported to possess unique properties (such as high surface area, adjustable size and shape, and specific functionalities) making them ideal candidates for targeted disease control. Nanotechnology can stop crop losses by managing specific diseases from soil, plants, and hydroponic systems. This review mainly focuses on the application of biologically produced green NPs in the treatment of plant diseases caused due to bacteria, viruses, and fungi. The utilization of green synthesis of NPs in the creation of intelligent targeted pesticide and biomolecule control delivery systems, for disease management is considered environmentally friendly due to its pursuit of less hazardous, sustainable, and environmentally friendly methods.
Collapse
Affiliation(s)
- Dhiraj L Wasule
- Vasantrao Naik College of Agricultural Biotechnology, Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola, Maharashtra, 444104, India
| | - Prashant R Shingote
- Vasantrao Naik College of Agricultural Biotechnology, Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola, Maharashtra, 444104, India.
| | - Shreshtha Saxena
- Vasantrao Naik College of Agricultural Biotechnology, Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola, Maharashtra, 444104, India
| |
Collapse
|
3
|
Jali P, Acharya S, Mahalik G. Antimicrobial efficacy of nano-particles for crop protection and sustainable agriculture. DISCOVER NANO 2024; 19:117. [PMID: 39009869 PMCID: PMC11250757 DOI: 10.1186/s11671-024-04059-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/24/2024] [Indexed: 07/17/2024]
Abstract
Plant diseases cause colossal crop loss worldwide and are the major yield constraining component in agriculture. Nanotechnology, which has the possible to revolutionize numerous fields of science, innovation, drug, and agriculture. Nanotechnology can be utilized for combating the plant infectious diseases and nano-materials can be utilized as transporter of dynamic elements of pesticides, host defense etc. to the pathogens. The analysis of diseases, finding of pathogens may turn out to be substantially more precise and fast with the utilization of nanosensors. As worldwide demand for food production raises against an evolving atmosphere, nanotechnology could reasonably alleviate numerous challenges in disease managing by diminishing chemical inputs and advancing quick recognition of pathogens. The major goal of this review is to increase growth and productivity using supplements with nanoparticles. (i.e., metals, metal oxides, and carbon) to treat crop diseases and make agricultural practices more productive and sustainable. Prominently, this improved crop may not only be straight connected to the diminished occurrence of pathogenic microorganisms, yet in might possibly add nutritional benefits of the nanoparticles themselves, particularly for the micronutrients important for generating host resistance.
Collapse
Affiliation(s)
- Pallavi Jali
- Department of Botany, Utkal University, Vani Vihar, Bhubaneswar, Odisha, India
| | - Srinivas Acharya
- Department of Environmental Science, Government Autonomous College, Phulbani, Odisha, India.
| | - Gyanranjan Mahalik
- Department of Botany, School of Applied Sciences, Centurion University of Technology and Management, Jatani, Odisha, India.
| |
Collapse
|
4
|
Yayci A, Sassmann T, Boes A, Jakob F, Töpel A, Loreth A, Rauch C, Pich A, Schwaneberg U. Adhesion Peptide-Functionalized Biobased Microgels for Controlled Delivery of Pesticides. Angew Chem Int Ed Engl 2024; 63:e202319832. [PMID: 38652238 DOI: 10.1002/anie.202319832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024]
Abstract
Widespread use of plant protection agents in agriculture is a major cause of pollution. Apart from active ingredients, the environmental impact of auxiliary synthetic polymers should be minimized if they are highly persistent. An alternative to synthetic polymers is the use of natural polysaccharides, which are abundant and biodegradable. In this study, we explore pectin microgels functionalized with anchor peptides (P-MAPs) to be used as an alternative biobased pesticide delivery system. Using copper as the active ingredient, P-MAPs effectively prevented infection of grapevine plants with downy mildew under semi-field conditions on par with commercial copper pesticides. By using anchor peptides, the microgels tightly bind to the leaf surface, exhibiting excellent rain fastness and prolonged fungicidal activity. Finally, P-MAPs are shown to be easily degradable by enzymes found in nature, demonstrating their negligible long-term impact on the environment.
Collapse
Affiliation(s)
- Abdulkadir Yayci
- DWI - Leibniz-Institute for Interactive Materials, Forckenbeckstrasse 50, 52056, Aachen, Germany
| | - Tim Sassmann
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
- DWI - Leibniz-Institute for Interactive Materials, Forckenbeckstrasse 50, 52056, Aachen, Germany
| | - Alexander Boes
- DWI - Leibniz-Institute for Interactive Materials, Forckenbeckstrasse 50, 52056, Aachen, Germany
| | - Felix Jakob
- DWI - Leibniz-Institute for Interactive Materials, Forckenbeckstrasse 50, 52056, Aachen, Germany
| | - Alexander Töpel
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
- DWI - Leibniz-Institute for Interactive Materials, Forckenbeckstrasse 50, 52056, Aachen, Germany
| | - Anne Loreth
- Julius-Kühn-Institute, Institute for Plant Protection in Fruit Crops and Viticulture, Geilweilerhof, 76833, Siebeldingen, Germany
| | - Carolin Rauch
- Julius-Kühn-Institute, Institute for Plant Protection in Fruit Crops and Viticulture, Geilweilerhof, 76833, Siebeldingen, Germany
| | - Andrij Pich
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
- DWI - Leibniz-Institute for Interactive Materials, Forckenbeckstrasse 50, 52056, Aachen, Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
- DWI - Leibniz-Institute for Interactive Materials, Forckenbeckstrasse 50, 52056, Aachen, Germany
| |
Collapse
|
5
|
Maia Júnior FF, Sales Junior R, Barbosa GF, Hussain S, Jara-Cornejo E, Khan S. Design and Fabrication of a Biomimetic Smart Material for Electrochemical Detection of Carbendazim Pesticides in Real Samples with Enhanced Selectivity. BIOSENSORS 2024; 14:304. [PMID: 38920608 PMCID: PMC11202226 DOI: 10.3390/bios14060304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024]
Abstract
Agricultural products are vitally important for sustaining life on earth and their production has notably grown over the years worldwide in general and in Brazil particularly. Elevating agricultural practices consequently leads to a proportionate increase in the usage of pesticides that are crucially important for enhanced crop yield and protection. These compounds have been employed excessively in alarming concentrations, causing the contamination of soil, water, and air. Additionally, they pose serious threats to human health. The current study introduces an innovative tool for producing appropriate materials coupled with an electrochemical sensor designed to measure carbendazim levels. The sensor is developed using a molecularly imprinted polymer (MIP) mounted on a glassy carbon electrode. This electrode is equipped with multi-walled carbon nanotubes (MWCNTs) for improved performance. The combined system demonstrates promising potential for accurately quantifying carbendazim. The morphological characteristics of the synthesized materials were investigated using field emission scanning electron microscopy (FESEM) and the Fourier-transform infrared (FTIR) technique. The analytical curve was drawn using the electrochemical method in the range of 2 to 20 ppm while for HPLC 2-12 ppm; the results are presented as the maximum adsorption capacity of the MIP (82.4%) when compared with NIP (41%) using the HPLC method. The analysis conducted using differential pulse voltammetry (DPV) yielded a limit of detection (LOD) of 1.0 ppm and a repeatability of 5.08% (n = 10). The results obtained from the analysis of selectivity demonstrated that the proposed electrochemical sensor is remarkably efficient for the quantitative assessment of carbendazim, even in the presence of another interferent. The sensor was successfully tested for river water samples for carbendazim detection, and recovery rates ranging from 94 to 101% were obtained for HPLC and 94 to 104% for the electrochemical method. The results obtained show that the proposed electrochemical technique is viable for the application and quantitative determination of carbendazim in any medium.
Collapse
Affiliation(s)
- Francisco Franciné Maia Júnior
- Department of Natural Sciences, Mathematics, and Statistics, Federal Rural University of the Semi-Arid, Mossoró 59625-900, RN, Brazil
| | - Rui Sales Junior
- Department of Natural Sciences, Mathematics, and Statistics, Federal Rural University of the Semi-Arid, Mossoró 59625-900, RN, Brazil
| | - Geovani Ferreira Barbosa
- Department of Natural Sciences, Mathematics, and Statistics, Federal Rural University of the Semi-Arid, Mossoró 59625-900, RN, Brazil
| | - Sajjad Hussain
- Faculty of Materials and Chemical Engineering, GIK Institute of Engineering Sciences and Technology, Swabi 23640, Pakistan;
| | - Eduardo Jara-Cornejo
- Technology of Materials for Environmental Remediation (TecMARA) Research Group, Faculty of Sciences, National University of Engineering, Av. Tupac Amaru 210, Rimac, Lima 15032, Peru;
| | - Sabir Khan
- Department of Natural Sciences, Mathematics, and Statistics, Federal Rural University of the Semi-Arid, Mossoró 59625-900, RN, Brazil
- Technology of Materials for Environmental Remediation (TecMARA) Research Group, Faculty of Sciences, National University of Engineering, Av. Tupac Amaru 210, Rimac, Lima 15032, Peru;
- Department of Exact Sciences and Technology, State University of Santa Cruz, Ilhéus 45662-900, BA, Brazil
| |
Collapse
|
6
|
Jafari A, Nazari E, Ghaderpoori M, Rashidipour M, Nazari A, Chehelcheraghi F, Kamarehie B, Rezaee R. Loaded paraquaton polymeric nanocapsules and evaluation for cardiotoxicity in Wistar rats. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:1284-1298. [PMID: 36800924 DOI: 10.1080/09603123.2023.2181317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Present work was conducted to prepare and evaluate, loaded paraquat nano-hydrogels using chitosan, sodium polytriphosphate, and xanthan via ionic gelification method. The fabricated L-PQ formulations were analyzed for surface morphology and functional groups using SEM and FTIR, respectively. The stability of the synthesized nanoparticle was, also, analyzed in terms of diameter size, zeta potential, dispersion index, and pH. Furthermore, the cardiotoxicity effects of the synthesized nanogels were investigated on Wistar rats in terms of enzymatic activity, echocardiographic, and histological analysis. The proper stability of the prepared formulation was also confirmed by diameter size, zeta potential, dispersion index, and pH. The efficiency of encapsulation was about 90±3.2% and the release of PQ in the loaded nanogel was about 90±2.3%. A decrease in ST (shortening time) segment by formulated PQ, either in peritoneal or gavage exposure pathway, indicates the effectiveness of the capsule layer against the penetration of toxin into the body.
Collapse
Affiliation(s)
- Ali Jafari
- Department of Environmental Health Engineering, School of Public Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Efat Nazari
- Environmental Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mansour Ghaderpoori
- Environmental Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Marzieh Rashidipour
- Razi Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Afshin Nazari
- Department of Physiology and Pharmacology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Farzaneh Chehelcheraghi
- Department of Anatomical Sciences, School of Medicine Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Bahram Kamarehie
- Environmental Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Reza Rezaee
- Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
7
|
Anjum S, Vyas A, Sofi T. Fungi-mediated synthesis of nanoparticles: characterization process and agricultural applications. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4727-4741. [PMID: 36781932 DOI: 10.1002/jsfa.12496] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/31/2022] [Accepted: 02/13/2023] [Indexed: 06/08/2023]
Abstract
In the field of nanotechnology, the use of biologically active products from fungi for the reduction and synthesis of nanoparticles as an alternative to toxic chemicals has received extensive attention, due to their production of large quantities of proteins, high yields, easy handling, and the low toxicity of the residues. Fungi have become valuable tools for the manufacture of nanoparticles in comparison with other biological systems because of their enhanced growth control and diversity of metabolites, including enzymes, proteins, peptides, polysaccharides, and other macro-molecules. The ability to use different species of fungi and to perform the synthesis under different conditions enables the production of nanoparticles with different physicochemical characteristics. Fungal nanotechnology has been used to develop and offer products and services in the agricultural, medicinal, and industrial sectors. Agriculturally, it has found applications in plant disease management, crop improvement, biosensing, and the production of environmentally friendly, non-toxic pesticides and fertilizers to enhance agricultural production in general. The subject of this review is the application of fungi in the synthesis of inorganic nanoparticles, characterization, and possible applications of fungal nanoparticles in the diverse agricultural sector. The literature shows potential uses of fungi in biogenic synthesis, enabling the production of nanoparticles with different physiognomies. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shahnaz Anjum
- Department of Botany, Lovely Professional University, Phagwara, India
- Division of Plant Pathology, FoH, Sher-e-Kashmir University of Agricultural Sciences and Technology, Kashmir, India
| | - Ashish Vyas
- Department of Microbiology and Biochemistry, Lovely Professional University, Phagwara, India
| | - Tariq Sofi
- Division of Plant Pathology, FoH, Sher-e-Kashmir University of Agricultural Sciences and Technology, Kashmir, India
| |
Collapse
|
8
|
Bushra R, Ahmad M, Seidi F, Qurtulen, Song J, Jin Y, Xiao H. Polysaccharide-based nanoassemblies: From synthesis methodologies and industrial applications to future prospects. Adv Colloid Interface Sci 2023; 318:102953. [PMID: 37399637 DOI: 10.1016/j.cis.2023.102953] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/23/2023] [Accepted: 06/19/2023] [Indexed: 07/05/2023]
Abstract
Polysaccharides, due to their remarkable features, have gained significant prominence in the sustainable production of nanoparticles (NPs). High market demand and minimal production cost, compared to the chemically synthesised NPs, demonstrate a drive towards polysaccharide-based nanoparticles (PSNPs) benign to environment. Various approaches are used for the synthesis of PSNPs including cross-linking, polyelectrolyte complexation, and self-assembly. PSNPs have the potential to replace a wide diversity of chemical-based agents within the food, health, medical and pharmacy sectors. Nevertheless, the considerable challenges associated with optimising the characteristics of PSNPs to meet specific targeting applications are of utmost importance. This review provides a detailed compilation of recent accomplishments in the synthesis of PSNPs, the fundamental principles and critical factors that govern their rational fabrication, as well as various characterisation techniques. Noteworthy, the multiple use of PSNPs in different disciplines such as biomedical, cosmetics agrochemicals, energy storage, water detoxification, and food-related realms, is accounted in detail. Insights into the toxicological impacts of the PSNPs and their possible risks to human health are addressed, and efforts made in terms of PSNPs development and optimising strategies that allow for enhanced delivery are highlighted. Finally, limitations, potential drawbacks, market diffusion, economic viability and future possibilities for PSNPs to achieve widespread commercial use are also discussed.
Collapse
Affiliation(s)
- Rani Bushra
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Mehraj Ahmad
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; College of Light Industry and Food, Department of Food Science and Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| | - Farzad Seidi
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Qurtulen
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Junlong Song
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Yongcan Jin
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| |
Collapse
|
9
|
Hazra RS, Roy J, Jiang L, Webster DC, Rahman MM, Quadir M. Biobased, Macro-, and Nanoscale Fungicide Delivery Approaches for Plant Fungi Control. ACS APPLIED BIO MATERIALS 2023. [PMID: 37405899 DOI: 10.1021/acsabm.3c00171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
In this report, two polymeric matrix systems at macro and nanoscales were prepared for efficacious fungicide delivery. The macroscale delivery systems used millimeter-scale, spherical beads composed of cellulose nanocrystals and poly(lactic acid). The nanoscale delivery system involved micelle-type nanoparticles, composed of methoxylated sucrose soyate polyols. Sclerotinia sclerotiorum (Lib.), a destructive fungus affecting high-value industrial crops, was used as a model pathogen against which the efficacy of these polymeric formulations was demonstrated. Commercial fungicides are applied on plants frequently to overcome the transmission of fungal infection. However, fungicides alone do not persist on the plants for a prolonged period due to environmental factors such as rain and airflow. There is a need to apply fungicides multiple times. As such, standard application practices generate a significant environmental footprint due to fungicide accumulation in soil and runoff in surface water. Thus, approaches are needed that can either increase the efficacy of commercially active fungicides or prolong their residence time on plants for sustained antifungal coverage. Using azoxystrobin (AZ) as a model fungicide and canola as a model crop host, we hypothesized that the AZ-loaded macroscale beads, when placed in contact with plants, will act as a depot to release the fungicide at a controlled rate to protect plants against fungal infection. The nanoparticle-based fungicide delivery approach, on the other hand, can be realized via spray or foliar applications. The release rate of AZ from macro- and nanoscale systems was evaluated and analyzed using different kinetic models to understand the mechanism of AZ delivery. We observed that, for macroscopic beads, porosity, tortuosity, and surface roughness governed the efficiency of AZ delivery, and for nanoparticles, contact angle and surface adhesion energy were directing the efficacy of the encapsulated fungicide. The technology reported here can also be translated to a wide variety of industrial crops for fungal protection. The strength of this study is the possibility of using completely plant-derived, biodegradable/compostable additive materials for controlled agrochemical delivery formulations, which will contribute to reducing the frequency of fungicide applications and the potential accumulation of formulation components in soil and water.
Collapse
Affiliation(s)
- Raj Shankar Hazra
- Materials and Nanotechnology Program, North Dakota State University, Fargo, North Dakota 58108, United States
- Department of Mechanical Engineering, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Jayanta Roy
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Long Jiang
- Materials and Nanotechnology Program, North Dakota State University, Fargo, North Dakota 58108, United States
- Department of Mechanical Engineering, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Dean C Webster
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Md Mukhlesur Rahman
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Mohiuddin Quadir
- Materials and Nanotechnology Program, North Dakota State University, Fargo, North Dakota 58108, United States
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58108, United States
| |
Collapse
|
10
|
Dutta P, Kumari A, Mahanta M, Upamanya G, Heisnam P, Borua S, Kaman PK, Mishra AK, Mallik M, Muthukrishnan G, Sabarinathan KG, Puzari KR, Vijayreddy D. Nanotechnological approaches for management of soil-borne plant pathogens. FRONTIERS IN PLANT SCIENCE 2023; 14:1136233. [PMID: 36875565 PMCID: PMC9981975 DOI: 10.3389/fpls.2023.1136233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Soil borne pathogens are significant contributor of plant yield loss globally. The constraints in early diagnosis, wide host range, longer persistence in soil makes their management cumbersome and difficult. Therefore, it is crucial to devise innovative and effective management strategy to combat the losses caused by soil borne diseases. The use of chemical pesticides is the mainstay of current plant disease management practices that potentially cause ecological imbalance. Nanotechnology presents a suitable alternative to overcome the challenges associated with diagnosis and management of soil-borne plant pathogens. This review explores the use of nanotechnology for the management of soil-borne diseases using a variety of strategies, such as nanoparticles acting as a protectant, as carriers of actives like pesticides, fertilizers, antimicrobials, and microbes or by promoting plant growth and development. Nanotechnology can also be used for precise and accurate detection of soil-borne pathogens for devising efficient management strategy. The unique physico-chemical properties of nanoparticles allow greater penetration and interaction with biological membrane thereby increasing its efficacy and releasability. However, the nanoscience specifically agricultural nanotechnology is still in its toddler stage and to realize its full potential, extensive field trials, utilization of pest crop host system and toxicological studies are essential to tackle the fundamental queries associated with development of commercial nano-formulations.
Collapse
Affiliation(s)
- Pranab Dutta
- School of Crop Protection, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Imphal, India
| | - Arti Kumari
- School of Crop Protection, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Imphal, India
| | - Madhusmita Mahanta
- School of Crop Protection, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Imphal, India
| | - Gunadhya Kr Upamanya
- Sarat Chandra Singha (SCS) College of Agriculture, Assam Agricultural University, Dhubri, India
| | - Punabati Heisnam
- College of Horticulture and Forestry, Central Agricultural University (Imphal), Pasighat, India
| | - Sarodee Borua
- Krishi Vigya Kendra (KVK)-Tinsukia, Assam Agricultural University, Tinsukia, India
| | - Pranjal K. Kaman
- Department of Plant Pathology, Assam Agricultural University, Jorhat, Assam, India
| | - A. K. Mishra
- Department of Plant Pathology, Dr. Rajendra Prasad Central Agricultural University, Muzaffarpur, India
| | - Meenakshi Mallik
- Indian Council of Agricultural Research-National Centre for Integrated Pest management (ICAR-NCIPM), Pusa, New Delhi, India
| | - Gomathy Muthukrishnan
- Agricultural College and Research Institute, Killikulam, Tamil Nadu Agricultural University (TNAU), Tuticorin, India
| | - Kuttalingam G. Sabarinathan
- Agricultural College and Research Institute, Killikulam, Tamil Nadu Agricultural University (TNAU), Tuticorin, India
| | - Krishti Rekha Puzari
- School of Crop Protection, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Imphal, India
| | - Dumpapenchala Vijayreddy
- School of Crop Protection, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Imphal, India
| |
Collapse
|
11
|
Saberi Riseh R, Hassanisaadi M, Vatankhah M, Soroush F, Varma RS. Nano/microencapsulation of plant biocontrol agents by chitosan, alginate, and other important biopolymers as a novel strategy for alleviating plant biotic stresses. Int J Biol Macromol 2022; 222:1589-1604. [DOI: 10.1016/j.ijbiomac.2022.09.278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/19/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022]
|
12
|
Kumar R, Kumar N, Rajput VD, Mandzhieva S, Minkina T, Saharan BS, Kumar D, Sadh PK, Duhan JS. Advances in Biopolymeric Nanopesticides: A New Eco-Friendly/Eco-Protective Perspective in Precision Agriculture. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12223964. [PMID: 36432250 PMCID: PMC9692690 DOI: 10.3390/nano12223964] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 05/26/2023]
Abstract
Pesticides are essential to contemporary agriculture and are required to safeguard plants from hazardous pests, diseases, and weeds. In addition to harming the environment, overusing these pesticides causes pests to become resistant over time. Alternative methods and agrochemicals are therefore required to combat resistance. A potential solution to pesticide resistance and other issues may be found in nanotechnology. Due to their small size, high surface-area-to-volume ratio, and ability to offer novel crop protection techniques, nanoformulations, primarily biopolymer-based ones, can address specific agricultural concerns. Several biopolymers can be employed to load pesticides, including starch, cellulose, chitosan, pectin, agar, and alginate. Other biopolymeric nanomaterials can load pesticides for targeted delivery, including gums, carrageenan, galactomannans, and tamarind seed polysaccharide (TSP). Aside from presenting other benefits, such as reduced toxicity, increased stability/shelf life, and improved pesticide solubility, biopolymeric systems are also cost-effective; readily available; biocompatible; biodegradable; and biosafe (i.e., releasing associated active compounds gradually, without endangering the environment) and have a low carbon footprint. Additionally, biopolymeric nanoformulations support plant growth while improving soil aeration and microbial activity, which may favor the environment. The present review provides a thorough analysis of the toxicity and release behavior of biopolymeric nanopesticides for targeted delivery in precision crop protection.
Collapse
Affiliation(s)
- Ravinder Kumar
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa 125055, India
| | - Naresh Kumar
- Regional Forensic Science Laboratory, Mandi 175002, India
| | - Vishnu D. Rajput
- Academy of Biology, and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia
| | - Saglara Mandzhieva
- Academy of Biology, and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia
| | - Tatiana Minkina
- Academy of Biology, and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia
| | - Baljeet Singh Saharan
- Department of Microbiology, CCS Haryana Agricultural University, Hisar 125004, India
| | | | - Pardeep Kumar Sadh
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa 125055, India
| | | |
Collapse
|
13
|
Kumar R, Nain V, Duhan JS. An Ecological Approach to Control Pathogens of Lycopersicon esculentum L. by Slow Release of Mancozeb from Biopolymeric Conjugated Nanoparticles. J Xenobiot 2022; 12:329-343. [PMID: 36412767 PMCID: PMC9680232 DOI: 10.3390/jox12040023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/01/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022] Open
Abstract
To control insects, weeds, and infections in crops, old-fashioned pesticide formulations (with massive quantities of heavy metals and a variety of chemicals) are used. By biological amplification via the food chain, many of these established pesticide formulations have accumulated in living systems and caused environmental pollution. To form a nanoparticulate matrix with a diameter ranging from 322.2 ± 0.9 to 403.7 ± 0.7 nm, mancozeb was embedded in chitosan-gum acacia (CSGA) biopolymers and loadings were confirmed via TEM and FTIR. Differential scanning calorimetry analyses were carried out as part of the investigation. Inhibition of Alternaria alternata by nanoparticles (NPs) with 1.0 mg/mL mancozeb (CSGA-1.0) was 85.2 ± 0.7 % at 0.5 ppm, whereas for Stemphylium lycopersici it was 62.1 ± 0.7% in the mycelium inhibition method. NPs demonstrated antimicrobial action in pot house environments. After ten hours, the mancozeb was liberated from the nanoformulations due to polymer matrix diffusion and relaxation, compared to 2 h for commercial mancozeb. Even while drug-loaded conjugated nanoparticles have equivalent antifungal activities, they have a lower release rate and, hence, reduced toxicology compared to commercial mancozeb. Therefore, this method can be employed to implement sustainable farming techniques in the future.
Collapse
Affiliation(s)
- Ravinder Kumar
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa 125055, India
- Correspondence: (R.K.); (J.S.D.); Tel.: +91-9416072588 (R.K.); +91-9416725009 (J.S.D.)
| | - Vikash Nain
- Department of Food Science and Technology, Chaudhary Devi Lal University, Sirsa 125055, India
| | - Joginder Singh Duhan
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa 125055, India
- Correspondence: (R.K.); (J.S.D.); Tel.: +91-9416072588 (R.K.); +91-9416725009 (J.S.D.)
| |
Collapse
|
14
|
Volova TG, Kiselev EG, Baranovskiy SV, Zhila NO, Prudnikova SV, Shishatskaya EI, Kuzmin AP, Nemtsev IV, Vasiliev AD, Thomas S. Degradable Poly(3-hydroxybutyrate)-The Basis of Slow-Release Fungicide Formulations for Suppressing Potato Pathogens. Polymers (Basel) 2022; 14:3669. [PMID: 36080743 PMCID: PMC9460056 DOI: 10.3390/polym14173669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/26/2022] [Accepted: 08/31/2022] [Indexed: 12/02/2022] Open
Abstract
Three-component slow-release fungicide formulations with different modes of action of the active ingredients for suppressing potato pathogens were constructed for the first time. The difenoconazole, mefenoxam, prothioconazole, and azoxystrobin fungicides were embedded in the degradable polymer P(3HB)/birch wood flour blend and examined using SEM, IR spectroscopy, X-ray analysis, DTA, and DSC. Results showed that no chemical bonds were established between the components and that they were physical mixtures that had a lower degree of crystallinity compared to the initial P(3HB), which suggested different crystallization kinetics in the mixtures. The degradation behavior of the experimental formulations was investigated in laboratory micro-ecosystems with pre-characterized field soil. The slow-release fungicide formulations were prolonged-action forms with a half-life of at least 50-60 d, enabling gradual and sustained delivery of the active ingredients to plants. All slow-release fungicide formulations had a strong inhibitory effect on the most common and harmful potato pathogens (Phytophthorainfestans, Alternarialongipes, Rhizoctoniasolani, and Fusariumsolani).
Collapse
Affiliation(s)
- Tatiana G. Volova
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, 660036 Krasnoyarsk, Russia
| | - Evgeniy G. Kiselev
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, 660036 Krasnoyarsk, Russia
| | - Sergey V. Baranovskiy
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia
| | - Natalia O. Zhila
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, 660036 Krasnoyarsk, Russia
| | - Svetlana V. Prudnikova
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia
| | - Ekaterina I. Shishatskaya
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, 660036 Krasnoyarsk, Russia
- Department of Medical Biology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia
| | - Andrey P. Kuzmin
- Basic Department of Chemistry and Technology of Natural Energy Sources and Carbon Materials, School of Petroleum and Gas Engineering, Siberian Federal University, 82 Svobodny Pr., 660041 Krasnoyarsk, Russia
| | - Ivan V. Nemtsev
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia
- L.V. Kirensky Institute of Physics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/38 Akademgorodok, 660036 Krasnoyarsk, Russia
- Federal Research Center, “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences”, 50 Akademgorodok, 660036 Krasnoyarsk, Russia
| | - Aleksander D. Vasiliev
- L.V. Kirensky Institute of Physics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/38 Akademgorodok, 660036 Krasnoyarsk, Russia
- Basic Department of Solid State Physics and Nanotechnology, School of Engineering Physics and Radio Electronics, Siberian Federal University, 26 Kirensky St., 660074 Krasnoyarsk, Russia
| | - Sabu Thomas
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia
- International and Interuniversity Centre for Nano Science and Nano Technology, Mahatma Gandhi University, Kottayam 686560, India
| |
Collapse
|
15
|
Dutta S, Pal S, Panwar P, Sharma RK, Bhutia PL. Biopolymeric Nanocarriers for Nutrient Delivery and Crop Biofortification. ACS OMEGA 2022; 7:25909-25920. [PMID: 35936412 PMCID: PMC9352165 DOI: 10.1021/acsomega.2c02494] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/07/2022] [Indexed: 05/17/2023]
Abstract
Driven by the possibility of precise transformational change in nutrient-enrichment technology to meet global food demand, advanced nutrient delivery strategies have emerged to pave the path toward success for nutrient enrichment in edible parts of crops through bioderived nanocarriers with increased productivity. Slow and controlled release of nutrient carrier materials influences the nutrient delivery rate in soil and in the edible parts of crops with a sluggish nutrient delivery to enhance their availability in roots by minimizing nutrient loss. With a limited understanding of the nutrient delivery mechanism in soil and the edible parts of crops, it is envisaged to introduce nutrient-enrichment technology for nutrient delivery that minimizes environmental impact due to its biodegradable nature. This article attempts to analyze the possible role of the cellulose matrix for nutrient release and the role of cellulose nanocomposites and nanofibers. We have proposed a few cellulose derived biofortificant materials as nutrient carriers, such as (1) nanofibers, (2) polymer-nanocellulose-clay composites, (3) silk-fibroin derived nanocarriers, and (4) carboxymethyl cellulose. An effort is undertaken to describe the research need by linking a biopolymer derived nanocarrier for crop growth regulation and experimental nitrogen release analysis. We have finally provided a perspective on cellulose nanofibers (CNFs) for microcage based nutrient loading ability. This article aims to explain why biopolymer derived nutrient carriers are the alternative candidate for alleviating nutrient deficiency challenges which are involved in focusing the nutrient delivery profile of biopolymers and promising biofortification of crops.
Collapse
Affiliation(s)
- Saikat Dutta
- Electrochemical
Energy & Sensor Research Laboratory, Amity Institute of Click
Chemistry Research & Studies, Amity
University, Noida 201303, India
| | - Sharmistha Pal
- Research
Center, ICAR-Indian Institute of Soil &
Water Conservation, Sector 27 A Madhya Marg, Chandigarh 160019, India
| | - Pankaj Panwar
- Research
Center, ICAR-Indian Institute of Soil &
Water Conservation, Sector 27 A Madhya Marg, Chandigarh 160019, India
| | - Rakesh K. Sharma
- Sustainable
Materials and Catalysis Research Laboratory (SMCRL), Department of
Chemistry, Indian Institute of Technology
Jodhpur, Jodhpur 342037, Rajasthan, India
| | - Pempa Lamu Bhutia
- Division
of Agroforestry, Indian Council of Agriculture
Research (ICAR), Research Complex for NEH Region, Nagaland Centre, Umiam, Nagaland 797106, India
| |
Collapse
|
16
|
Korbecka-Glinka G, Piekarska K, Wiśniewska-Wrona M. The Use of Carbohydrate Biopolymers in Plant Protection against Pathogenic Fungi. Polymers (Basel) 2022; 14:2854. [PMID: 35890629 PMCID: PMC9322042 DOI: 10.3390/polym14142854] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/30/2022] [Accepted: 07/07/2022] [Indexed: 02/01/2023] Open
Abstract
Fungal pathogens cause significant yield losses of many important crops worldwide. They are commonly controlled with fungicides which may have negative impact on human health and the environment. A more sustainable plant protection can be based on carbohydrate biopolymers because they are biodegradable and may act as antifungal compounds, effective elicitors or carriers of active ingredients. We reviewed recent applications of three common polysaccharides (chitosan, alginate and cellulose) to crop protection against pathogenic fungi. We distinguished treatments dedicated for seed sowing material, field applications and coating of harvested fruits and vegetables. All reviewed biopolymers were used in the three types of treatments, therefore they proved to be versatile resources for development of plant protection products. Antifungal activity of the obtained polymer formulations and coatings is often enhanced by addition of biocontrol microorganisms, preservatives, plant extracts and essential oils. Carbohydrate polymers can also be used for controlled-release of pesticides. Rapid development of nanotechnology resulted in creating new promising methods of crop protection using nanoparticles, nano-/micro-carriers and electrospun nanofibers. To summarize this review we outline advantages and disadvantages of using carbohydrate biopolymers in plant protection.
Collapse
Affiliation(s)
- Grażyna Korbecka-Glinka
- Department of Plant Breeding and Biotechnology, Institute of Soil Science and Plant Cultivation-State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland
| | - Klaudia Piekarska
- Biomedical Engineering Center, Łukasiewicz Research Network-Łódź Institute of Technology, Skłodowskiej-Curie 19/27, 90-570 Łódź, Poland; (K.P.); (M.W.-W.)
| | - Maria Wiśniewska-Wrona
- Biomedical Engineering Center, Łukasiewicz Research Network-Łódź Institute of Technology, Skłodowskiej-Curie 19/27, 90-570 Łódź, Poland; (K.P.); (M.W.-W.)
| |
Collapse
|
17
|
Hassanen EI, Ebedy YA, Ibrahim MA, Farroh KY, Elshazly MO. Insights overview on the possible protective effect of chitosan nanoparticles encapsulation against neurotoxicity induced by carbendazim in rats. Neurotoxicology 2022; 91:31-43. [PMID: 35513110 DOI: 10.1016/j.neuro.2022.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 10/18/2022]
Abstract
Carbendazim (CBZ) contamination of food and water is a principal factor in many negative impacts on public health. Nanoencapsulation of agrochemicals by nontoxic polymers as chitosan nanoparticles (CS-NPs) is one of the most applications of nanotechnology in agriculture. Despite its many advantages, such as it provides controlled release property, more stability and solubility of the active ingredient, it is not authorized to be used in the market because there are no adequate studies on the nano pesticides induced toxicity on experimental animals. So, we aim to study the possible impacts of CBZ-loading CS-NPs on the whole brain of rats and to explain its mechanism of action. 20 male Wistar rats were partitioned into 4 groups as follows: Group (1), normal saline; group (2), 5 mg/kg CS-NPs; group (3), 300 mg/kg CBZ; group (4) 300 mg/kg CS/CBZ-NCs. After 28 days, some neurobehavioral parameters were assessed to all rats then euthanization was done to collect the brain. Our results revealed that CBZ prompted neurotoxicity manifested by severe neurobehavioral changes and a significant increase of MDA with a decrease of GSH and CAT in brain tissue. In addition, there were severe neuropathological alterations confirmed by immunohistochemistry which showed strong bax, GFAP, and TNF-ὰ protein expression in some brain areas. CBZ also induced apoptosis manifested by up-regulation of JNK and P53 with down-regulation of Bcl-2 in brain tissue. Otherwise, encapsulation of CBZ with CS-NPs could reduce CBZ-induced neurotoxicity and improve all studied toxicological parameters. We recommend using CBZ-loading CS-NPs as an alternative approach for fungicide application in agricultural and veterinary practices but further studies are needed to ensure its safety on other organs.
Collapse
Affiliation(s)
- Eman I Hassanen
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Egypt.
| | - Yasmin A Ebedy
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Egypt
| | - Marwa A Ibrahim
- Biochemistry and Molecular Biology Department, Faculty of Veterinary Medicine, Cairo University, Egypt
| | - Khaled Y Farroh
- Nanotechnology and Advanced Materials Central Lab, Agricultural Research Center, Egypt
| | - M O Elshazly
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Egypt
| |
Collapse
|
18
|
Toxicity Assessment and Control of Early Blight and Stem Rot of Solanum tuberosum L. by Mancozeb-Loaded Chitosan–Gum Acacia Nanocomposites. J Xenobiot 2022; 12:74-90. [PMID: 35466214 PMCID: PMC9036208 DOI: 10.3390/jox12020008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/28/2022] [Accepted: 04/12/2022] [Indexed: 12/23/2022] Open
Abstract
Biopolymers such as chitosan and gum acacia are used for nanotechnological applications due to their biosafety and ecofriendly nature. The commercial fungicide mancozeb (M) was loaded into chitosan–gum acacia (CSGA) polymers to form nanocomposite (NC) CSGA-M (mancozeb-loaded) measuring 363.6 nm via the ionic gelation and polyelectrolyte complexation method. The physico-chemical study of nano CSGA-M was accomplished using dynamic light scattering (DLS), scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). Nano CSGA-M-1.0 (containing 1.0 mg/mL mancozeb) at 1.5 ppm demonstrated a maximum inhibition (83.8 ± 0.7%) against Alternaria solani, while Sclerotinia sclerotiorum exhibited a 100% inhibition at 1.0 and 1.5 ppm through the mycelium inhibition method. Commercial mancozeb showed an inhibition of 84.6 ± 0% and 100%, respectively, for both fungi. In pot house conditions, NCs were found to exhibit good antimicrobial activity. Disease control efficiency (DCE, in %) in pathogen-treated plants for CSGA-M-1.0 was 64.6 ± 5.0 and 60.2 ± 1.4% against early blight and stem rot diseases, respectively. NCs showed lower cytotoxicity than commercial mancozeb at the given concentration. In conclusion, both in vitro and in vivo antifungal efficacy for nano CSGA-M was found to be quite comparable but less toxic than mancozeb to Vero cell lines; thus, in the future, this formulation may be used for sustainable agriculture.
Collapse
|
19
|
Kacsó T, Hanna EA, Salinas F, Astete CE, Bodoki E, Oprean R, Price PP, Doyle VP, Bonser CAR, Davis JA, Sabliov CM. Zein and lignin-based nanoparticles as soybean seed treatment: translocation and impact on seed and plant health. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-021-02307-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
AbstractZein nanoparticles (ZNPs) were synthesized with a cationic surfactant, didodecyldimethylammonium bromide (122.9 ± 0.8 nm, + 59.7 ± 4.4 mV) and a non-ionic surfactant, Tween 80 (118.7 ± 1.7 nm, + 26.4 ± 1.1 mV). Lignin-graft-poly(lactic-co-glycolic) acid nanoparticles (LNPs) were made without surfactants (52.9 ± 0.2 nm, − 54.9 ± 0.5 mV). Both samples were applied as antifungal seed treatments on soybeans, and their impact on germination and plant health was assessed. Treated seeds showed high germination rates (> 90% for all treatment groups), similar to the control group (100%). Root and stem lengths and the dry biomass of treated seeds were not statistically distinguishable from the control. Foliage from seed-treated plants was fed to larvae of Chrysodeixis includens with no differences in mortality between treatments. No translocation of fluorescently tagged particles was observed with fluorescence microscopy following seed treatment and germination. Nano-delivered azoxystrobin provided ~ 100% protection when LNPs were used. Results suggest ZNPs and LNPs are safe and effective delivery systems of active compounds for seed treatments.
Collapse
|
20
|
Kumar P, Mahato DK, Gupta A, Pandhi S, Mishra S, Barua S, Tyagi V, Kumar A, Kumar M, Kamle M. Use of essential oils and phytochemicals against the mycotoxins producing fungi for shelf‐life enhancement and food preservation. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15563] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pradeep Kumar
- Applied Microbiology Lab Department of Forestry North Eastern Regional Institute of Science and Technology Nirjuli 791109 India
| | - Dipendra Kumar Mahato
- CASS Food Research Centre School of Exercise and Nutrition Sciences Deakin University Burwood VIC 3125 Australia
| | - Akansha Gupta
- Department of Dairy Science and Food Technology Institute of Agricultural Sciences Banaras Hindu University Varanasi 221005 India
| | - Shikha Pandhi
- Department of Dairy Science and Food Technology Institute of Agricultural Sciences Banaras Hindu University Varanasi 221005 India
| | - Sadhna Mishra
- Department of Dairy Science and Food Technology Institute of Agricultural Sciences Banaras Hindu University Varanasi 221005 India
- Faculty of Agricultural Sciences GLA University Mathura 281406 India
| | - Sreejani Barua
- Department of Agricultural and Food Engineering Indian Institute of Technology Kharagpur‐721302 India
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Vidhi Tyagi
- University School of Biotechnology Guru Gobind Singh Indraprastha University Sector 16C Dwarka New Delhi 110078 India
| | - Arvind Kumar
- Department of Dairy Science and Food Technology Institute of Agricultural Sciences Banaras Hindu University Varanasi 221005 India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division ICAR—Central Institute for Research on Cotton Technology Mumbai 400019 India
| | - Madhu Kamle
- Applied Microbiology Lab Department of Forestry North Eastern Regional Institute of Science and Technology Nirjuli 791109 India
| |
Collapse
|
21
|
Wang J, Hao K, Yu F, Shen L, Wang F, Yang J, Su C. Field application of nanoliposomes delivered quercetin by inhibiting specific hsp70 gene expression against plant virus disease. J Nanobiotechnology 2022; 20:16. [PMID: 34983536 PMCID: PMC8725512 DOI: 10.1186/s12951-021-01223-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/22/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The annual economic loss caused by plant viruses exceeds 10 billion dollars due to the lack of ideal control measures. Quercetin is a flavonol compound that exerts a control effect on plant virus diseases, but its poor solubility and stability limit the control efficiency. Fortunately, the development of nanopesticides has led to new ideas. RESULTS In this study, 117 nm quercetin nanoliposomes with excellent stability were prepared from biomaterials, and few surfactants and stabilizers were added to optimize the formula. Nbhsp70er-1 and Nbhsp70c-A were found to be the target genes of quercetin, through abiotic and biotic stress, and the nanoliposomes improved the inhibitory effect at the gene and protein levels by 33.6 and 42%, respectively. Finally, the results of field experiment showed that the control efficiency was 38% higher than that of the conventional quercetin formulation and higher than those of other antiviral agents. CONCLUSION This research innovatively reports the combination of biological antiviral agents and nanotechnology to control plant virus diseases, and it significantly improved the control efficiency and reduced the use of traditional chemical pesticides.
Collapse
Affiliation(s)
- Jie Wang
- Key Laboratory of Tobacco Pest Monitoring Controlling & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Kaiqiang Hao
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Fangfei Yu
- Key Laboratory of Tobacco Pest Monitoring Controlling & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Lili Shen
- Key Laboratory of Tobacco Pest Monitoring Controlling & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Fenglong Wang
- Key Laboratory of Tobacco Pest Monitoring Controlling & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Jinguang Yang
- Key Laboratory of Tobacco Pest Monitoring Controlling & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| | - Chenyu Su
- Key Laboratory of Tobacco Pest Monitoring Controlling & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| |
Collapse
|
22
|
Kumar R, Najda A, Duhan JS, Kumar B, Chawla P, Klepacka J, Malawski S, Kumar Sadh P, Poonia AK. Assessment of Antifungal Efficacy and Release Behavior of Fungicide-Loaded Chitosan-Carrageenan Nanoparticles against Phytopathogenic Fungi. Polymers (Basel) 2021; 14:41. [PMID: 35012063 PMCID: PMC8747246 DOI: 10.3390/polym14010041] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 11/30/2022] Open
Abstract
Biopolymeric Chitosan-Carrageenan nanocomposites 66.6-231.82 nm in size containing the chemical fungicide mancozeb (nano CSCRG-M) were synthesized following a green chemistry approach. The physicochemical study of nanoparticles (NPs) was accomplished using a particle size analyzer, SEM and FTIR. TEM exhibited clover leaf-shaped nanoparticles (248.23 nm) with mancozeb on the inside and entrapped outside. Differential scanning calorimetry and TGA thermogravimetry exhibited the thermal behaviour of the nanoform. Nano CSCRG-1.5 at 1.5 ppm exhibited 83.1% inhibition against Alternaria solani in an in vitro study and performed as well as mancozeb (84.6%). Complete inhibition was exhibited in Sclerotinia sclerotiorum at 1.0 and 1.5 ppm with the nanoformulation. The in vivo disease control efficacy of mancozeb-loaded nanoparticles against A. solani in pathogenized plants was found to be relatively higher (79.4 ± 1.7) than that of commercial fungicide (76 ± 1.1%) in pot conditions. Nanomancozeb showed superior efficacy for plant growth parameters, such as germination percentage, root-shoot ratio and dry biomass. The nanoformulation showed higher cell viability compared to mancozeb in Vero cell cultures at 0.25 and 0.50 mg/mL in the resazurin assay. CSCRG-0.5 showed slow-release behavior up to 10 h. Thus, these green nano-based approaches may help combat soil and water pollution caused by harmful chemical pesticides.
Collapse
Affiliation(s)
- Ravinder Kumar
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa 125055, Haryana, India; (R.K.); (P.K.S.)
| | - Agnieszka Najda
- Department of Vegetable and Herbal Crops, University of Life Science in Lublin, 50A Doświadczalna Street, 20-280 Lublin, Poland
| | - Joginder Singh Duhan
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa 125055, Haryana, India; (R.K.); (P.K.S.)
| | - Balvinder Kumar
- ICAR-National Research Centre on Equines, Sirsa Road, Hisar 125001, Haryana, India;
| | - Prince Chawla
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Joanna Klepacka
- Department of Commodity Science and Food Analysis, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, 2 Oczapowskiego Street, 10-719 Olsztyn, Poland;
| | - Seweryn Malawski
- Department of Landscape Architecture, University of Life Science in Lublin, 28 Głęboka Street, 20-400 Lublin, Poland;
| | - Pardeep Kumar Sadh
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa 125055, Haryana, India; (R.K.); (P.K.S.)
| | - Anil Kumar Poonia
- Department of Molecular Biology, Biotechnology & Bioinformatics, CCS HAU, Hisar 125004, Haryana, India;
| |
Collapse
|
23
|
Lima PHCD, Antunes DR, Forini MMDL, Pontes MDS, Mattos BD, Grillo R. Recent Advances on Lignocellulosic-Based Nanopesticides for Agricultural Applications. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2021.809329] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Controlled release systems of agrochemicals have been developed in recent years. However, the design of intelligent nanocarriers that can be manufactured with renewable and low-cost materials is still a challenge for agricultural applications. Lignocellulosic building blocks (cellulose, lignin, and hemicellulose) are ideal candidates to manufacture ecofriendly nanocarriers given their low-cost, abundancy and sustainability. Complexity and heterogeneity of biopolymers have posed challenges in the development of nanocarriers; however, the current engineering toolbox for biopolymer modification has increased remarkably, which enables better control over their properties and tuned interactions with cargoes and plant tissues. In this mini-review, we explore recent advances on lignocellulosic-based nanocarriers for the controlled release of agrochemicals. We also offer a critical discussion regarding the future challenges of potential bio-based nanocarrier for sustainable agricultural development.
Collapse
|
24
|
Rehman A, Feng J, Qunyi T, Korma SA, Assadpour E, Usman M, Han W, Jafari SM. Pesticide-loaded colloidal nanodelivery systems; preparation, characterization, and applications. Adv Colloid Interface Sci 2021; 298:102552. [PMID: 34717205 DOI: 10.1016/j.cis.2021.102552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 10/08/2021] [Accepted: 10/16/2021] [Indexed: 11/29/2022]
Abstract
The fast developments in pesticide-loaded nanodelivery systems over the last decade have inspired many companies and research organizations to highlight potential applications by employing encapsulation approaches in order to protect the agricultural crops. This approach is being used to retard the indiscriminate application of conventional pesticides, as well as, to make ensure the environmental safety. This article shed light on the potential of colloidal delivery systems, particularly controlled releasing profiles of several pesticides with enhanced stability and improved solubility. Colloidal nanodelivery systems, being efficient nanoformulations, have the ability to boost up the pest-control competence for prolonged intervals thru averting the early degradation of active ingredients under severe ecofriendly circumstances. This work is thus aimed to provide critical information on the meaningful role of nanocarriers for loading of pesticides. The smart art of pesticide-loaded nanocarriers can be more fruitful owing to the use of lower amount of active ingredients with improved efficiency along with minimizing the pesticide loss. Also, the future research gaps regarding nano-pesticide formulations, such as role of nanomaterials as active ingredients are discussed briefly. In addition, this article can deliver valuable information to the readers while establishing novel pesticide-loaded nanocarriers for a wide range of applications in the agriculture sectors.
Collapse
Affiliation(s)
- Abdur Rehman
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Jianguo Feng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China.
| | - Tong Qunyi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China.
| | - Sameh A Korma
- Department of Food Science, Faculty of Agriculture, Zagazig University, 114 El-Zeraa Road, Zagazig 44511, Sharkia, Egypt; School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510641, Guangdong, China
| | - Elham Assadpour
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, Ourense E-32004, Spain
| | - Muhammad Usman
- Beijing Advance Innovation center for Food Nutrition and Human Health, School of Food and Chemical Technology, Beijing Technology and Business University, Beijing 100048, China
| | - Wen Han
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510641, Guangdong, China
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran.
| |
Collapse
|
25
|
Li N, Sun C, Jiang J, Wang A, Wang C, Shen Y, Huang B, An C, Cui B, Zhao X, Wang C, Gao F, Zhan S, Guo L, Zeng Z, Zhang L, Cui H, Wang Y. Advances in Controlled-Release Pesticide Formulations with Improved Efficacy and Targetability. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12579-12597. [PMID: 34672558 DOI: 10.1021/acs.jafc.0c05431] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Pesticides are commonly used in modern agriculture and are important for global food security. However, postapplication losses due to degradation, photolysis, evaporation, leaching, surface runoff, and other processes may substantially reduce their efficacy. Controlled-release formulations can achieve the permeation-regulated transfer of an active ingredient from a reservoir to a target surface. Thus, they can maintain an active ingredient at a predetermined concentration for a specified period. This can reduce degradation and dissipation and other losses and has the potential to improve efficacy. Recent developments in controlled-release technology have adapted the concepts of intelligence and precision from the pharmaceutical industry. In this review, we present recent advances in the development of controlled-release formulations and discuss details of the preparation methods, material improvements, and application technologies.
Collapse
Affiliation(s)
- Ningjun Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Changjiao Sun
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiajun Jiang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Anqi Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chong Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yue Shen
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Bingna Huang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Changcheng An
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Bo Cui
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiang Zhao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chunxin Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fei Gao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shenshan Zhan
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Liang Guo
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhanghua Zeng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Liang Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haixin Cui
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yan Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
26
|
Adebayo EA, Azeez MA, Alao MB, Oke AM, Aina DA. Fungi as veritable tool in current advances in nanobiotechnology. Heliyon 2021; 7:e08480. [PMID: 34901509 PMCID: PMC8640478 DOI: 10.1016/j.heliyon.2021.e08480] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/06/2021] [Accepted: 11/22/2021] [Indexed: 12/26/2022] Open
Abstract
Fungi have great prospects for synthesis, applications and developing new products in nanotechnology. In recent times, fungi use in nanotechnology is gaining more attention because of the ecological friendly state of their metabolite-mediated nanoparticles, their safety, amenability and applications in diverse fields. The diversity of the metabolites such as enzymes, polysaccharide, polypeptide, protein and other macro-molecules has made fungi a veritable tool for nanoparticles synthesis. Mechanism of fungal nano-biosynthesis from the molecular perspective has been extensively studied through various investigations on its green synthesized metal nanoparticles. Fungal nanobiotechnology has been applied in agricultural, medical and industrial sectors for goods and services improvement and delivery to mankind. Agriculturally, it has found applications in plant disease management and production of environmentally friendly, non-toxic insecticides, fungicides to enhance agricultural production in general. Medically, diagnosis and treatment of diseases, especially of microbial origin have been improved with fungal nanoparticles through more efficient drug delivery systems with great benefits to pharmaceutical industries. This review therefore explored fungal nanobiotechnology; mechanism of synthesis, characterization and potential applications in various fields of human endeavours for goods and services delivery.
Collapse
Affiliation(s)
- Elijah A. Adebayo
- Department of Pure and Applied Biology, Ladoke Akintola University, P.M.B 4000, Ogbomoso, Nigeria
- LAUTECH Nanotechnology Research Group, Nigeria
| | - Musibau A. Azeez
- Department of Pure and Applied Biology, Ladoke Akintola University, P.M.B 4000, Ogbomoso, Nigeria
- LAUTECH Nanotechnology Research Group, Nigeria
| | - Micheal B. Alao
- Department of Pure and Applied Biology, Ladoke Akintola University, P.M.B 4000, Ogbomoso, Nigeria
| | - Abel M. Oke
- Department of Pure and Applied Biology, Ladoke Akintola University, P.M.B 4000, Ogbomoso, Nigeria
| | - Daniel A. Aina
- Department of Microbiology, Babcock University, Ilishan-Remo, Ogun State, Nigeria
| |
Collapse
|
27
|
Kutawa AB, Ahmad K, Ali A, Hussein MZ, Abdul Wahab MA, Adamu A, Ismaila AA, Gunasena MT, Rahman MZ, Hossain MI. Trends in Nanotechnology and Its Potentialities to Control Plant Pathogenic Fungi: A Review. BIOLOGY 2021; 10:881. [PMID: 34571758 PMCID: PMC8465907 DOI: 10.3390/biology10090881] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 12/16/2022]
Abstract
Approximately 15-18% of crops losses occur as a result of animal pests, while weeds and microbial diseases cause 34 and 16% losses, respectively. Fungal pathogens cause about 70-80% losses in yield. The present strategies for plant disease control depend transcendently on agrochemicals that cause negative effects on the environment and humans. Nanotechnology can help by reducing the negative impact of the fungicides, such as enhancing the solubility of low water-soluble fungicides, increasing the shelf-life, and reducing toxicity, in a sustainable and eco-friendly manner. Despite many advantages of the utilization of nanoparticles, very few nanoparticle-based products have so far been produced in commercial quantities for agricultural purposes. The shortage of commercial uses may be associated with many factors, for example, a lack of pest crop host systems usage and the insufficient number of field trials. In some areas, nanotechnology has been advanced, and the best way to be in touch with the advances in nanotechnology in agriculture is to understand the major aspect of the research and to address the scientific gaps in order to facilitate the development which can provide a rationale of different nanoproducts in commercial quantity. In this review, we, therefore, described the properties and synthesis of nanoparticles, their utilization for plant pathogenic fungal disease control (either in the form of (a) nanoparticles alone, that act as a protectant or (b) in the form of a nanocarrier for different fungicides), nano-formulations of agro-nanofungicides, Zataria multiflora, and ginger essential oils to control plant pathogenic fungi, as well as the biosafety and limitations of the nanoparticles applications.
Collapse
Affiliation(s)
- Abdulaziz Bashir Kutawa
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia; (M.A.A.W.); (A.A.); (A.A.I.); (M.T.G.); (M.Z.R.); (M.I.H.)
- Department of Biological Sciences, Faculty of Life Science, Federal University Dutsin-Ma, Dutsin-ma P.M.B 5001, Nigeria
| | - Khairulmazmi Ahmad
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia; (M.A.A.W.); (A.A.); (A.A.I.); (M.T.G.); (M.Z.R.); (M.I.H.)
- Sustainable Agronomy and Crop Protection, Institute of Plantation Studies (IKP), Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Asgar Ali
- Centre of Excellence for Postharvest Biotechnology (CEPB), School of Biosciences, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Malaysia
| | - Mohd Zobir Hussein
- Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Mohd Aswad Abdul Wahab
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia; (M.A.A.W.); (A.A.); (A.A.I.); (M.T.G.); (M.Z.R.); (M.I.H.)
| | - Abdullahi Adamu
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia; (M.A.A.W.); (A.A.); (A.A.I.); (M.T.G.); (M.Z.R.); (M.I.H.)
- Department of Biological Sciences, Faculty of Science, Sokoto State University, Birnin Kebbi Road, Sokoto P.M.B 2134, Nigeria
| | - Abubakar A. Ismaila
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia; (M.A.A.W.); (A.A.); (A.A.I.); (M.T.G.); (M.Z.R.); (M.I.H.)
- Department of Integrated Science, School of Secondary Education (Science), Federal College of Education (Technical), Bichi P.M.B 3473, Nigeria
| | - Mahesh Tiran Gunasena
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia; (M.A.A.W.); (A.A.); (A.A.I.); (M.T.G.); (M.Z.R.); (M.I.H.)
- Grain Legume and Oil Crop Research and Development Centre, Angunakolapelessa 82220, Sri Lanka
| | - Muhammad Ziaur Rahman
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia; (M.A.A.W.); (A.A.); (A.A.I.); (M.T.G.); (M.Z.R.); (M.I.H.)
- Plant Pathology Division, Regional Agricultural Research Station (RARS), Bangladesh Agricultural Research Institute (BARI), Barishal 8211, Bangladesh
| | - Md Imam Hossain
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia; (M.A.A.W.); (A.A.); (A.A.I.); (M.T.G.); (M.Z.R.); (M.I.H.)
| |
Collapse
|
28
|
Meena M, Zehra A, Swapnil P, Harish, Marwal A, Yadav G, Sonigra P. Endophytic Nanotechnology: An Approach to Study Scope and Potential Applications. Front Chem 2021; 9:613343. [PMID: 34113600 PMCID: PMC8185355 DOI: 10.3389/fchem.2021.613343] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/18/2021] [Indexed: 12/11/2022] Open
Abstract
Nanotechnology has become a very advanced and popular form of technology with huge potentials. Nanotechnology has been very well explored in the fields of electronics, automobiles, construction, medicine, and cosmetics, but the exploration of nanotecnology's use in agriculture is still limited. Due to climate change, each year around 40% of crops face abiotic and biotic stress; with the global demand for food increasing, nanotechnology is seen as the best method to mitigate challenges in disease management in crops by reducing the use of chemical inputs such as herbicides, pesticides, and fungicides. The use of these toxic chemicals is potentially harmful to humans and the environment. Therefore, using NPs as fungicides/ bactericides or as nanofertilizers, due to their small size and high surface area with high reactivity, reduces the problems in plant disease management. There are several methods that have been used to synthesize NPs, such as physical and chemical methods. Specially, we need ecofriendly and nontoxic methods for the synthesis of NPs. Some biological organisms like plants, algae, yeast, bacteria, actinomycetes, and fungi have emerged as superlative candidates for the biological synthesis of NPs (also considered as green synthesis). Among these biological methods, endophytic microorganisms have been widely used to synthesize NPs with low metallic ions, which opens a new possibility on the edge of biological nanotechnology. In this review, we will have discussed the different methods of synthesis of NPs, such as top-down, bottom-up, and green synthesis (specially including endophytic microorganisms) methods, their mechanisms, different forms of NPs, such as magnesium oxide nanoparticles (MgO-NPs), copper nanoparticles (Cu-NPs), chitosan nanoparticles (CS-NPs), β-d-glucan nanoparticles (GNPs), and engineered nanoparticles (quantum dots, metalloids, nonmetals, carbon nanomaterials, dendrimers, and liposomes), and their molecular approaches in various aspects. At the molecular level, nanoparticles, such as mesoporous silica nanoparticles (MSN) and RNA-interference molecules, can also be used as molecular tools to carry genetic material during genetic engineering of plants. In plant disease management, NPs can be used as biosensors to diagnose the disease.
Collapse
Affiliation(s)
- Mukesh Meena
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, India
| | - Andleeb Zehra
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Prashant Swapnil
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
- Department of Botany, Acharya Narendra Dev College, University of Delhi, New Delhi, India
| | - Harish
- Plant Biotechnology Laboratory, Department of Botany, Mohanlal Sukhadia University, Udaipur, India
| | - Avinash Marwal
- Department of Biotechnology, Vigyan Bhawan, Mohanlal Sukhadia University, Udaipur, India
| | - Garima Yadav
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, India
| | - Priyankaraj Sonigra
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, India
| |
Collapse
|
29
|
Bellemjid N, Assifaoui A, Moussaif A, El Abbadi N, Mesfioui A, Iddar A. Silica-coated calcium pectinate formulations for controlling carbendazim release: water and soil release studies. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2021; 56:613-622. [PMID: 33999754 DOI: 10.1080/03601234.2021.1927603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This study aims to encapsulate the fungicide carbendazim using a biodegradable polymer (pectin). First, we have obtained calcium pectinate beads (CPG-Carb) by ionotropic gelation using calcium ions as a crosslinking agent. These beads were then coated with silica starting from tetraethoxysilane (TEOS), by a sol-gel process to form hybrid beads (CPG-Carb-SG). The morphology, composition and structure of both beads were characterized and the controlled release assays of the fungicide were studied in both water and soil columns. The encapsulation efficiency for CPG-Carb was slightly higher (75%) compared to CPG-Carb-SG (67%) due to carbendazim loss during the impregnation and condensation steps. The release rate in water and soil columns was about 4 times lower for CPG-Carb-SG than CPG-Carb demonstrating the efficiency of the silica coating to delay the release of carbendazim. Moreover, the release of CPG-Carb-SG is due to the erosion of the silica layer during the first two weeks. After this period, the silica layer was degraded, and the release is then controlled by the swelling of the organic part of the bead as observed for CPG-Carb. Finally, the biodegradability of the pectin, and the release profile make such systems promising candidates for sustained and economical pesticide delivery systems.
Collapse
Affiliation(s)
- Najwa Bellemjid
- Biotechnology and Engineering of Biomolecules Unit, National Center for Nuclear Energy, Science and Technology (CNESTEN-Morocco), Rabat, Morocco
- Faculty of Sciences, Genetics, Endocrinology and Biotechnology Laboratory, University Ibn Tofail, Kenitra, Morocco
| | | | - Ahmed Moussaif
- Biotechnology and Engineering of Biomolecules Unit, National Center for Nuclear Energy, Science and Technology (CNESTEN-Morocco), Rabat, Morocco
| | - Najia El Abbadi
- Biotechnology and Engineering of Biomolecules Unit, National Center for Nuclear Energy, Science and Technology (CNESTEN-Morocco), Rabat, Morocco
| | - Abdelhalim Mesfioui
- Faculty of Sciences, Genetics, Endocrinology and Biotechnology Laboratory, University Ibn Tofail, Kenitra, Morocco
| | - Abdelghani Iddar
- Biotechnology and Engineering of Biomolecules Unit, National Center for Nuclear Energy, Science and Technology (CNESTEN-Morocco), Rabat, Morocco
| |
Collapse
|
30
|
The Opportunity of Valorizing Agricultural Waste, Through Its Conversion into Biostimulants, Biofertilizers, and Biopolymers. SUSTAINABILITY 2021. [DOI: 10.3390/su13052710] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The problems arising from the limited availability of natural resources and the impact of certain anthropogenic activities on the environment must be addressed as soon as possible. To meet this challenge, it is necessary, among other things, to reconsider and redesign agricultural systems to find more sustainable and environmentally friendly solutions, paying specific attention to waste from agriculture. Indeed, the transition to a more sustainable and circular economy should also involve the effective valorization of agricultural waste, which should be seen as an excellent opportunity to obtain valuable materials. For the reasons mentioned above, this review reports and discusses updated studies dealing with the valorization of agricultural waste, through its conversion into materials to be applied to crops and soil. In particular, this review highlights the opportunity to obtain plant biostimulants, biofertilizers, and biopolymers from agricultural waste. This approach can decrease the impact of waste on the environment, allow the replacement and reduction in the use of synthetic compounds in agriculture, and facilitate the transition to a sustainable circular economy.
Collapse
|
31
|
Rai M, Bonde S, Golinska P, Trzcińska-Wencel J, Gade A, Abd-Elsalam KA, Shende S, Gaikwad S, Ingle AP. Fusarium as a Novel Fungus for the Synthesis of Nanoparticles: Mechanism and Applications. J Fungi (Basel) 2021; 7:139. [PMID: 33672011 PMCID: PMC7919287 DOI: 10.3390/jof7020139] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/06/2021] [Accepted: 02/10/2021] [Indexed: 01/05/2023] Open
Abstract
Nanotechnology is a new and developing branch that has revolutionized the world by its applications in various fields including medicine and agriculture. In nanotechnology, nanoparticles play an important role in diagnostics, drug delivery, and therapy. The synthesis of nanoparticles by fungi is a novel, cost-effective and eco-friendly approach. Among fungi, Fusarium spp. play an important role in the synthesis of nanoparticles and can be considered as a nanofactory for the fabrication of nanoparticles. The synthesis of silver nanoparticles (AgNPs) from Fusarium, its mechanism and applications are discussed in this review. The synthesis of nanoparticles from Fusarium is the biogenic and green approach. Fusaria are found to be a versatile biological system with the ability to synthesize nanoparticles extracellularly. Different species of Fusaria have the potential to synthesise nanoparticles. Among these, F. oxysporum has demonstrated a high potential for the synthesis of AgNPs. It is hypothesised that NADH-dependent nitrate reductase enzyme secreted by F. oxysporum is responsible for the reduction of aqueous silver ions into AgNPs. The toxicity of nanoparticles depends upon the shape, size, surface charge, and the concentration used. The nanoparticles synthesised by different species of Fusaria can be used in medicine and agriculture.
Collapse
Affiliation(s)
- Mahendra Rai
- Department of Biotechnology, Nanobiotechnology Laboratory, Sant Gadge Baba Amravati University, Amravati 444602, India; (S.B.); (A.G.); (S.S.)
- Department of Microbiology, Nicolaus Copernicus University, Lwowska, 87-100 Torun, Poland; (P.G.); (J.T.-W.)
| | - Shital Bonde
- Department of Biotechnology, Nanobiotechnology Laboratory, Sant Gadge Baba Amravati University, Amravati 444602, India; (S.B.); (A.G.); (S.S.)
| | - Patrycja Golinska
- Department of Microbiology, Nicolaus Copernicus University, Lwowska, 87-100 Torun, Poland; (P.G.); (J.T.-W.)
| | - Joanna Trzcińska-Wencel
- Department of Microbiology, Nicolaus Copernicus University, Lwowska, 87-100 Torun, Poland; (P.G.); (J.T.-W.)
| | - Aniket Gade
- Department of Biotechnology, Nanobiotechnology Laboratory, Sant Gadge Baba Amravati University, Amravati 444602, India; (S.B.); (A.G.); (S.S.)
| | - Kamel A. Abd-Elsalam
- Agricultural Research Center, Plant Pathology Research Institute, Giza 12619, Egypt;
| | - Sudhir Shende
- Department of Biotechnology, Nanobiotechnology Laboratory, Sant Gadge Baba Amravati University, Amravati 444602, India; (S.B.); (A.G.); (S.S.)
- Academy of Biology and Biotechnology, Southern Federal University, 344006 Rostov-on-Don, Russia
| | - Swapnil Gaikwad
- Microbial Diversity Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth (Deemed to be University), Tathawade, Pune 411033, India;
| | - Avinash P. Ingle
- Biotechnology Centre, Department of Agricultural Botany, Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola, Maharashtra 444104, India;
| |
Collapse
|
32
|
Nehra M, Dilbaghi N, Marrazza G, Kaushik A, Sonne C, Kim KH, Kumar S. Emerging nanobiotechnology in agriculture for the management of pesticide residues. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123369. [PMID: 32763682 DOI: 10.1016/j.jhazmat.2020.123369] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 06/12/2020] [Accepted: 06/30/2020] [Indexed: 05/18/2023]
Abstract
Utilization of pesticides is often necessary for meeting commercial requirements for crop quality and yield. However, incessant global pesticide use poses potential risks to human and ecosystem health. This situation increases the urgency of developing nano-biotechnology-assisted pesticide formulations that have high efficacy and low risk of side effects. The risks associated with both conventional and nanopesticides are summarized in this review. Moreover, the management of residual pesticides is still a global challenge. The contamination of soil and water resources with pesticides has adverse impact over agricultural productivity and food security; ultimately posing threats to living organisms. Pesticide residues in the eco-system may be treated via several biological and physicochemical processes, such as microbe-based degradation and advanced oxidation processes. With these issues in mind, we present a review that explores both existing and emerging techniques for management of pesticide residues and environmental risks. These techniques can offer a sustainable solution to revitalize the tarnished water/soil resources. Further, state-of-the-art research approaches to investigate biotechnological alternatives to conventional pesticides are discussed along with future prospects and mitigation techniques are recommended.
Collapse
Affiliation(s)
- Monika Nehra
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Neeraj Dilbaghi
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Giovanna Marrazza
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Florence, Italy
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Natural Sciences, Division of Sciences, Arts & Mathematics, Florida Polytechnic University, Lakeland, FL, 33805-8531, United States
| | - Christian Sonne
- Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000, Roskilde, Denmark
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, Republic of Korea
| | - Sandeep Kumar
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India.
| |
Collapse
|
33
|
Ghaderpoori M, Jafari A, Nazari E, Rashidipour M, Nazari A, Chehelcheraghi F, Kamarehie B, Rezaee R. Preparation and characterization of loaded paraquat- polymeric chitosan/xantan/tripolyphosphate nanocapsules and evaluation for controlled release. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2020; 18:1057-1066. [PMID: 33312624 PMCID: PMC7721950 DOI: 10.1007/s40201-020-00527-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 09/03/2020] [Indexed: 06/12/2023]
Abstract
PURPOSE Paraquat is an effective, non-selective, and fast-acting contact herbicide that is widely used. Its high solubility in water and adsorption in soil can easily poison the non-target organs. In this study, paraquat nano-hydrogels was synthesized using chitosan. METHODS Sodium tripolyphosphate and xanthan via iononic gellification method. After preparation the loaded paraquat formulations, to verify the morphology and analysis the functional groups on the formulation, SEM and FTIR analysis were used, respectively. In this work, stability of the formulation was measured in terms of size distribution, surface charge, and pH values. To determine the release kinetics, a dialysis bag was used. In addition, herbicidal activity of the prepared formulation was tested on corn bushes and wild mustard. RESULTS From the analysis, FT-IR spectra confirmed the hydrogel formation, and SEM images showed a dense structure in the synthesized hydrogel. According to the results of size distribution, surface charge, dispersion index and pH, it was proved that the prepared hydrogel was stable. The optimal values of chitosan, SPP, xanthan, and PQ were 0.3, 0.1, 0.15, and 20 mg, respectively. Based on the peppas equation, about 89.82% of the paraquat was released from the formulation with a paraquat loading of 89.1 ± 4.6%. CONCLUSIONS The effect of loaded paraquat formulations on mustard and corn plants showed that the herbicidal properties of the encapsulated paraquat were preserved. This study reveal that the loaded paraquat L-PQ is a stable formulation with less toxicity effects.
Collapse
Affiliation(s)
- Mansour Ghaderpoori
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
- Department of Environmental Health Engineering, School of Health and Nutrition, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Ali Jafari
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
- Department of Environmental Health Engineering, School of Health and Nutrition, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Efat Nazari
- Department of Environmental Health Engineering, School of Health and Nutrition, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Marzieh Rashidipour
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Afshin Nazari
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
- Department of Physiology and Pharmacology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Farzaneh Chehelcheraghi
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
- Department of Anatomical Sciences, School of Medicine Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Bahram Kamarehie
- Department of Environmental Health Engineering, School of Health and Nutrition, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Reza Rezaee
- Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
34
|
Tleuova AB, Wielogorska E, Talluri VSSLP, Štěpánek F, Elliott CT, Grigoriev DO. Recent advances and remaining barriers to producing novel formulations of fungicides for safe and sustainable agriculture. J Control Release 2020; 326:468-481. [PMID: 32721524 DOI: 10.1016/j.jconrel.2020.07.035] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Fungi have evolved for 1 billion years and due to their adaptability and resilience can be found in multiple habitats around the globe. Among numerous species of fungi, some are pathogenic, and humans have battled since the dawn of organized agriculture to reduce production losses. With the arrival of fungicides many gains have been made in this struggle. However, though fungicides have greatly contributed to substantial increase in agricultural productivity, their over usage has led to both health and environmental repercussions. They remain cornerstone of the agriculture industry, however, development of safer formulations to champion sustainable and eco-friendly agriculture is of great importance, especially in face of a growing global population, climate change and increasing fungal resistance to existing compounds. SCOPE AND APPROACH The aim of this review is to present the state of the art in fungicides formulations developed for agrochemistry, also describing recent improvements in their safety, with special focus on fungicides used most against the ten most important fungal pathogens. KEY FINDINGS AND CONCLUSIONS The major focus in the field remains to be the improvement of the overall performance of the fungicide formulations. The research trends are also moving towards developing more eco-friendly formulations. However, there are still very few studies assessing nanoformulations toxicity and environmental impact. For example, there is still a limited body of research on the holistic assessment of nanoformulation shells' fate in soil and in the environment after release, as well as redistribution within plants after absorption, with no studies on human or environmental exposure.
Collapse
Affiliation(s)
- Aiym B Tleuova
- Department of Chemical Engineering, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic.
| | - Ewa Wielogorska
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - V S S L Prasad Talluri
- Department of Chemical Engineering, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic; Department of Biotechnology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - František Štěpánek
- Department of Chemical Engineering, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Christopher T Elliott
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5AG, UK
| | - Dmitry O Grigoriev
- Fraunhofer Institute for Applied Polymer Research IAP, 14476 Potsdam, Golm, Germany
| |
Collapse
|
35
|
Camiletti BX, Camacho NM, Paredes AJ, Allemandi DA, Palma SD, Grosso NR. Self-dispersible nanocrystals of azoxystrobin and cyproconazole with increased efficacy against soilborne fungal pathogens isolated from peanut crops. POWDER TECHNOL 2020. [DOI: 10.1016/j.powtec.2020.06.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Baldassarre F, Tatulli G, Vergaro V, Mariano S, Scala V, Nobile C, Pucci N, Dini L, Loreti S, Ciccarella G. Sonication-Assisted Production of Fosetyl-Al Nanocrystals: Investigation of Human Toxicity and In Vitro Antibacterial Efficacy against Xylella Fastidiosa. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1174. [PMID: 32560195 PMCID: PMC7353234 DOI: 10.3390/nano10061174] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/12/2020] [Accepted: 06/12/2020] [Indexed: 12/27/2022]
Abstract
Recently, there is a growing demand in sustainable phytopathogens control research. Nanotechnology provides several tools such as new pesticides formulations, antibacterial nanomaterials and smart delivery systems. Metal nano-oxides and different biopolymers have been exploited in order to develop nanopesticides which can offer a targeted solution minimizing side effects on environment and human health. This work proposed a nanotechnological approach to obtain a new formulation of systemic fungicide fosetyl-Al employing ultrasonication assisted production of water dispersible nanocrystals. Moreover, chitosan was applicated as a coating agent aiming a synergistic antimicrobial effect between biopolymer and fungicide. Fosetyl-Al nanocrystals have been characterized by morphological and physical-chemical analysis. Nanotoxicological investigation was carried out on human keratinocytes cells through cells viability test and ultrastructural analysis. In vitro planktonic growth, biofilm production and agar dilution assays have been conducted on two Xylella fastidiosa subspecies. Fosetyl-Al nanocrystals resulted very stable over time and less toxic respect to conventional formulation. Finally, chitosan-based fosetyl-Al nanocrystals showed an interesting antibacterial activity against Xylella fastidiosa subsp. pauca and Xylella fastidiosa subsp. fastidiosa.
Collapse
Affiliation(s)
- Francesca Baldassarre
- Biological and Environmental Sciences Department, UdR INSTM of Lecce University of Salento, Via Monteroni, 73100 Lecce, Italy;
- Institute of Nanotechnology, CNR NANOTEC, Consiglio Nazionale delle Ricerche, Via Monteroni, 73100 Lecce, Italy; (C.N.); (L.D.)
| | - Giuseppe Tatulli
- Council for Agricultural Research and Economics, Research Centre for Plant Protection and Certification of Rome, 00156 Rome, Italy; (G.T.); (V.S.); (N.P.); (S.L.)
| | - Viviana Vergaro
- Biological and Environmental Sciences Department, UdR INSTM of Lecce University of Salento, Via Monteroni, 73100 Lecce, Italy;
- Institute of Nanotechnology, CNR NANOTEC, Consiglio Nazionale delle Ricerche, Via Monteroni, 73100 Lecce, Italy; (C.N.); (L.D.)
| | - Stefania Mariano
- Biological and Environmental Sciences Department, University of Salento, Via Monteroni, 73100 Lecce, Italy;
| | - Valeria Scala
- Council for Agricultural Research and Economics, Research Centre for Plant Protection and Certification of Rome, 00156 Rome, Italy; (G.T.); (V.S.); (N.P.); (S.L.)
| | - Concetta Nobile
- Institute of Nanotechnology, CNR NANOTEC, Consiglio Nazionale delle Ricerche, Via Monteroni, 73100 Lecce, Italy; (C.N.); (L.D.)
| | - Nicoletta Pucci
- Council for Agricultural Research and Economics, Research Centre for Plant Protection and Certification of Rome, 00156 Rome, Italy; (G.T.); (V.S.); (N.P.); (S.L.)
| | - Luciana Dini
- Institute of Nanotechnology, CNR NANOTEC, Consiglio Nazionale delle Ricerche, Via Monteroni, 73100 Lecce, Italy; (C.N.); (L.D.)
- Department of Biology and Biotechnology “Charles Darwin”, University of Rome “La Sapienza”, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Stefania Loreti
- Council for Agricultural Research and Economics, Research Centre for Plant Protection and Certification of Rome, 00156 Rome, Italy; (G.T.); (V.S.); (N.P.); (S.L.)
| | - Giuseppe Ciccarella
- Biological and Environmental Sciences Department, UdR INSTM of Lecce University of Salento, Via Monteroni, 73100 Lecce, Italy;
- Institute of Nanotechnology, CNR NANOTEC, Consiglio Nazionale delle Ricerche, Via Monteroni, 73100 Lecce, Italy; (C.N.); (L.D.)
| |
Collapse
|
37
|
Sampathkumar K, Tan KX, Loo SCJ. Developing Nano-Delivery Systems for Agriculture and Food Applications with Nature-Derived Polymers. iScience 2020; 23:101055. [PMID: 32339991 PMCID: PMC7186528 DOI: 10.1016/j.isci.2020.101055] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/10/2020] [Accepted: 04/07/2020] [Indexed: 12/11/2022] Open
Abstract
The applications of nanotechnology are wide ranging, and developing functional nanomaterials for agri-food applications from nature-derived polymers is widely conceived as a sustainable approach that is safer for human and animal consumption. In light of this, this review focuses on the advances in the development of nano-delivery systems using nature-derived polymers for agri-food applications. The review opens with a section detailing the different types of nature-derived polymers currently being used in various applications in the agri-food industry with a special mention on microbial extracellular polymeric materials. The major applications of nano-delivery systems in the food sector, such as food fortification and food preservation, as well as in the agricultural sector for controlled release of agrochemicals using nature-derived polymers are discussed. The review ends with a perspective on the safety and public perception of nano-enabled foods with a concluding remark on future directions of incorporating nano-delivery systems for agri-food purposes.
Collapse
Affiliation(s)
- Kaarunya Sampathkumar
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Kei Xian Tan
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Say Chye Joachim Loo
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore; Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA.
| |
Collapse
|
38
|
Agrimonti C, Lauro M, Visioli G. Smart agriculture for food quality: facing climate change in the 21st century. Crit Rev Food Sci Nutr 2020; 61:971-981. [PMID: 32270688 DOI: 10.1080/10408398.2020.1749555] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Climate change, with increasing temperatures and atmospheric carbon dioxide levels, constitutes a severe threat to the environment and all living organisms. In particular, numerous studies suggest severe consequences for the health of crop plants, affecting both the productivity and quality of raw material destined to the food industry. Of particular concern is the reduction of proteins and essential micronutrients as iron and zinc in crops. Fighting this alarming trends is the challenge of Climate-Smart Agriculture with the double goal of reducing environmental impacts (use of pesticides, nitrogen and phosphorus leaching, soil erosion, water depletion and contamination) and improving raw material and consequently food quality. Organic farming, biofertilizers and to a lesser extent nano-carriers, improve the antioxidant properties of fruits, but the data about proteins and micronutrients are rather contradictory. On the other hand, advanced devices and Precision Agriculture allow the cultivations to be more profitable, efficient, contributing more and more to reduce pest diseases and to increase the quality of agricultural products and food safety. Thus, nowadays adoption of technologies applied to sustainable farming systems is a challenging and dynamic issue for facing negative trends due to environmental impacts and climate changes.
Collapse
Affiliation(s)
- Caterina Agrimonti
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Marta Lauro
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Giovanna Visioli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| |
Collapse
|
39
|
Singh A, Dhiman N, Kar AK, Singh D, Purohit MP, Ghosh D, Patnaik S. Advances in controlled release pesticide formulations: Prospects to safer integrated pest management and sustainable agriculture. JOURNAL OF HAZARDOUS MATERIALS 2020; 385:121525. [PMID: 31740313 DOI: 10.1016/j.jhazmat.2019.121525] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/21/2019] [Accepted: 10/21/2019] [Indexed: 05/26/2023]
Abstract
As the world is striving hard towards sustainable agricultural practices for a better tomorrow, one of the primary focuses is on effective pest management for enhanced crop productivity. Despite newer and potent chemicals as pesticides, there are still substantial crop losses, and if by any means this loss can be tackled; it will alleviate unwanted excessive use of chemical pesticides. Scientific surveys have already established that pesticides are not being utilized by the crops completely rather a significant amount remains unused due to various limiting factors such as leaching and bioconversion, etc., resulting in an adverse effect on human health and ecosystems. Concerted efforts from scientific diaspora toward newer and innovative strategies are already showing promise, and one such viable approach is controlled release systems (CRS) of pesticides. Moreover, to bring these smart formulations within the domain of current pesticide regulatory framework is still under debate. It is thus, paramount to discuss the pros and cons of this new technology vis-à-vis the conventional agrarian methods. This review deliberates on the developmental updates in this innovative field from the past decades and also appraises the challenges encumbered. Additionally, critical information and the foreseeable research gaps in this emerging area are highlighted.
Collapse
Affiliation(s)
- Amrita Singh
- Water Analysis Laboratory, Nanomaterials Toxicology Group, CSIR-Indian Institute of Toxicology Research, (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Toxicology Research Campus, Lucknow 226001, Uttar Pradesh, India
| | - Nitesh Dhiman
- Water Analysis Laboratory, Nanomaterials Toxicology Group, CSIR-Indian Institute of Toxicology Research, (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Toxicology Research Campus, Lucknow 226001, Uttar Pradesh, India
| | - Aditya Kumar Kar
- Water Analysis Laboratory, Nanomaterials Toxicology Group, CSIR-Indian Institute of Toxicology Research, (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Toxicology Research Campus, Lucknow 226001, Uttar Pradesh, India
| | - Divya Singh
- Water Analysis Laboratory, Nanomaterials Toxicology Group, CSIR-Indian Institute of Toxicology Research, (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Mahaveer Prasad Purohit
- Water Analysis Laboratory, Nanomaterials Toxicology Group, CSIR-Indian Institute of Toxicology Research, (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Toxicology Research Campus, Lucknow 226001, Uttar Pradesh, India
| | - Debabrata Ghosh
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Toxicology Research Campus, Lucknow 226001, Uttar Pradesh, India; Immunotoxicolgy Laboratory, Food Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow 226001, Uttar Pradesh, India
| | - Satyakam Patnaik
- Water Analysis Laboratory, Nanomaterials Toxicology Group, CSIR-Indian Institute of Toxicology Research, (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Toxicology Research Campus, Lucknow 226001, Uttar Pradesh, India.
| |
Collapse
|
40
|
Fu L, Wang Z, Dhankher OP, Xing B. Nanotechnology as a new sustainable approach for controlling crop diseases and increasing agricultural production. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:507-519. [PMID: 31270541 DOI: 10.1093/jxb/erz314] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/27/2019] [Indexed: 05/29/2023]
Abstract
Climate change will negatively affect crop production by exacerbating the incidence of disease and decreasing the efficacy of conventional approaches to disease control. Nanotechnology is a promising new strategy for plant disease management that has many advantages over conventional products and approaches, such as better efficacy, reduced input requirements, and lower eco-toxicity. Studies on crop plants using various nanomaterials (NMs) as protective agents have produced promising results. This review focuses on the use of NMs in disease management through three different mechanisms: (i) as antimicrobial agents; (ii) as biostimulants that induce plant innate immunity; and (iii) as carriers for active ingredients such as pesticides, micronutrients, and elicitors. The potential benefits of nanotechnology are considered, together with the role that NMs might play in future disease management and crop adaptation measures.
Collapse
Affiliation(s)
- Lin Fu
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, China
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, USA
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
41
|
Kumar S, Nehra M, Dilbaghi N, Marrazza G, Hassan AA, Kim KH. Nano-based smart pesticide formulations: Emerging opportunities for agriculture. J Control Release 2019; 294:131-153. [PMID: 30552953 DOI: 10.1016/j.jconrel.2018.12.012] [Citation(s) in RCA: 245] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/08/2018] [Accepted: 12/10/2018] [Indexed: 12/11/2022]
Abstract
The incorporation of nanotechnology as a means for nanopesticides is in the early stage of development. The main idea behind this incorporation is to lower the indiscriminate use of conventional pesticides to be in line with safe environmental applications. Nanoencapsulated pesticides can provide controlled release kinetics, while efficiently enhancing permeability, stability, and solubility. Nanoencapsulation can enhance the pest-control efficiency over extended durations by preventing the premature degradation of active ingredients (AIs) under harsh environmental conditions. This review is thus organized to critically assess the significant role of nanotechnology for encapsulation of AIs for pesticides. The smart delivery of pesticides is essential to reduce the dosage of AIs with enhanced efficacy and to overcome pesticide loss (e.g., due to leaching and evaporation). The future trends of pesticide nanoformulations including nanomaterials as AIs and nanoemulsions of biopesticides are also explored. This review should thus offer a valuable guide for establishing regulatory frameworks related to field applications of these nano-based pesticides in the near future.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India; Department of Civil Engineering, College of Engineering, University of Nebraska Lincoln, P.O. Box 886105, Lincoln, NE 68588-6105, United States.
| | - Monika Nehra
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India; Department of Electronics and Communication Engineering, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India
| | - Neeraj Dilbaghi
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India
| | - Giovanna Marrazza
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy; Istituto Nazionale Biostrutture e Biosistemi (INBB), Unit of Florence, Viale delle Medaglie d'Oro 305, 00136, Roma, Italy
| | - Ashraf Aly Hassan
- Department of Civil Engineering, College of Engineering, University of Nebraska Lincoln, P.O. Box 886105, Lincoln, NE 68588-6105, United States
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea.
| |
Collapse
|
42
|
He X, Deng H, Hwang HM. The current application of nanotechnology in food and agriculture. J Food Drug Anal 2019; 27:1-21. [PMID: 30648562 PMCID: PMC9298627 DOI: 10.1016/j.jfda.2018.12.002] [Citation(s) in RCA: 296] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 12/03/2018] [Indexed: 12/25/2022] Open
Abstract
The rapid development of nanotechnology has been facilitating the transformations of traditional food and agriculture sectors, particularly the invention of smart and active packaging, nanosensors, nanopesticides and nanofertilizers. Numerous novel nanomaterials have been developed for improving food quality and safety, crop growth, and monitoring environmental conditions. In this review the most recent trends in nanotechnology are discussed and the most challenging tasks and promising opportunities in the food and agriculture sectors from selected recent studies are addressed. The toxicological fundamentals and risk assessment of nanomaterials in these new food and agriculture products are also discussed. We highlighted the potential application of bio-synthesized and bio-inspired nanomaterial for sustainable development. However, fundamental questions with regard to high performance, low toxic nanomaterials need to be addressed to fuel active development and application of nanotechnology. Regulation and legislation are also paramount to regulating the manufacturing, processing, application, as well as disposal of nanomaterials. Efforts are still needed to strengthen public awareness and acceptance of the novel nano-enabled food and agriculture products. We conclude that nanotechnology offers a plethora of opportunities, by providing a novel and sustainable alternative in the food and agriculture sectors.
Collapse
Affiliation(s)
- Xiaojia He
- The University of Georgia, Athens, GA, 30602,
USA
| | - Hua Deng
- Morgan State University, Baltimore, MD, 21251,
USA
| | - Huey-min Hwang
- Jackson State University, Jackson, MS, 39217,
USA
- Dalian Marinetime University, Dalian, Liaoning,
China
| |
Collapse
|
43
|
Abstract
Each year, 20%–40% of crops are lost due to plant pests and pathogens. Existing plant disease management relies predominantly on toxic pesticides that are potentially harmful to humans and the environment. Nanotechnology can offer advantages to pesticides, like reducing toxicity, improving the shelf-life, and increasing the solubility of poorly water-soluble pesticides, all of which could have positive environmental impacts. This review explores the two directions in which nanoparticles can be utilized for plant disease management: either as nanoparticles alone, acting as protectants; or as nanocarriers for insecticides, fungicides, herbicides, and RNA-interference molecules. Despite the several potential advantages associated with the use of nanoparticles, not many nanoparticle-based products have been commercialized for agricultural application. The scarcity of commercial applications could be explained by several factors, such as an insufficient number of field trials and underutilization of pest–crop host systems. In other industries, nanotechnology has progressed rapidly, and the only way to keep up with this advancement for agricultural applications is by understanding the fundamental questions of the research and addressing the scientific gaps to provide a rational and facilitate the development of commercial nanoproducts.
Collapse
|
44
|
Kah M, Kookana RS, Gogos A, Bucheli TD. A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. NATURE NANOTECHNOLOGY 2018; 13:677-684. [PMID: 29736032 DOI: 10.1038/s41565-018-0131-1] [Citation(s) in RCA: 387] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 03/29/2018] [Indexed: 05/20/2023]
Abstract
Among a wide range of possible applications of nanotechnology in agriculture, there has been a particular interest in developing novel nanoagrochemicals. While some concerns have been expressed regarding altered risk profile of the new products, many foresee a great potential to support the necessary increase in global food production in a sustainable way. A critical evaluation of nanoagrochemicals against conventional analogues is essential to assess the associated benefits and risks. In this assessment, recent literature was critically analysed to determine the extent to which nanoagrochemicals differ from conventional products. Our analysis was based on 78 published papers and shows that median gain in efficacy relative to conventional products is about 20-30%. Environmental fate of agrochemicals can be altered by nanoformulations, but changes may not necessarily translate in a reduction of the environmental impact. Many studies lacked nano-specific quality assurance and adequate controls. Currently, there is no comprehensive study in the literature that evaluates efficacy and environmental impact of nanoagrochemicals under field conditions. This is a crucial knowledge gap and more work will thus be necessary for a sound evaluation of the benefits and new risks that nanoagrochemicals represent relative to existing products.
Collapse
Affiliation(s)
- Melanie Kah
- Department of Environmental Geosciences and Environmental Science Research Network, University of Vienna, Vienna, Austria.
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Land and Water, Adelaide, South Australia, Australia.
| | - Rai Singh Kookana
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Land and Water, Adelaide, South Australia, Australia
| | - Alexander Gogos
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | | |
Collapse
|
45
|
Kumar S, Sarita, Nehra M, Dilbaghi N, Tankeshwar K, Kim KH. Recent advances and remaining challenges for polymeric nanocomposites in healthcare applications. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2018.03.001] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
46
|
Jampílek J, Kráľová K. Benefits and Potential Risks of Nanotechnology Applications in Crop Protection. NANOTECHNOLOGY IN THE LIFE SCIENCES 2018. [DOI: 10.1007/978-3-319-91161-8_8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
47
|
Ramadass M, Thiagarajan P. Effective pesticide nano formulations and their bacterial degradation. ACTA ACUST UNITED AC 2017. [DOI: 10.1088/1757-899x/263/2/022050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
48
|
A novel one-step microemulsion method for preparation of quercetin encapsulated poly(methyl methacrylate) nanoparticles. IRANIAN POLYMER JOURNAL 2017. [DOI: 10.1007/s13726-017-0550-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
49
|
Wang D, Jia M, Wang L, Song S, Feng J, Zhang X. Chitosan and β-Cyclodextrin-epichlorohydrin Polymer Composite Film as a Plant Healthcare Material for Carbendazim-Controlled Release to Protect Rape against Sclerotinia sclerotiorum (Lib.) de Bary. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E343. [PMID: 28772703 PMCID: PMC5506932 DOI: 10.3390/ma10040343] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/10/2017] [Accepted: 03/22/2017] [Indexed: 11/16/2022]
Abstract
The influence of β-cyclodextrin-epichlorohydrin (β-CD-EP) polymers on the improvement of the solubility and antifungal activity of carbendazim has been investigated. Meanwhile, the potential of the chitosan and β-CD-EP composite film used as a plant healthcare material for carbendazim-controlled release to protect rape against Sclerotinia sclerotiorum (Lib.) de Bary has been evaluated. β-CD-EP-1 and 2 (β-CD content, 750 mg/g and 440 mg/g, respectively) were found to significantly improve the solubility of the guest molecule carbendazim (17.9 and 18.5 times, respectively) and the 1:1 stoichiometry of the host-guest was confirmed by the Job's plot. A slight synergism was observed for the β-CD-EP/carbendazim complex against S. sclerotiorum (Lib.) de Bary, indicating an enhancement to the bioavailability of carbendazim. The in vitro release studies revealed that β-CD-EP polymers could efficiently modulate carbendazim release behaviors, such as the release retard and rate. The in vivo efficacy experiments demonstrated that the β-CD-EP/carbendazim and chitosan composite film could significantly prolong the effective duration of carbendazim at a concentration of 100 μg/mL compared with spraying carbendazim at 500 μg/mL. Thereby, a highly useful and strategic concept in plant disease control by a plant healthcare material-the chitosan and polymeric β-CD-EP composite film-is provided, which could also serve as a concept for related plant diseases.
Collapse
Affiliation(s)
- Delong Wang
- Research and Development Center of Biorational Pesticide, Shaanxi Research Center of Biopesticide Engineering & Technology, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Northwest A & F University, Yangling 712100, Shaanxi, China.
| | - Mingchen Jia
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Lanying Wang
- College of Environment and Plant Protection, Hainan University, Haikou 570228, Hainan, China.
| | - Shuang Song
- Research and Development Center of Biorational Pesticide, Shaanxi Research Center of Biopesticide Engineering & Technology, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Northwest A & F University, Yangling 712100, Shaanxi, China.
| | - Juntao Feng
- Research and Development Center of Biorational Pesticide, Shaanxi Research Center of Biopesticide Engineering & Technology, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Northwest A & F University, Yangling 712100, Shaanxi, China.
| | - Xing Zhang
- Research and Development Center of Biorational Pesticide, Shaanxi Research Center of Biopesticide Engineering & Technology, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Northwest A & F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|