1
|
Du J, Zhan L, Zhang G, Zhou Q, Wu W. Antibiotic sorption onto MPs in terrestrial environment: a critical review of the transport, bioaccumulation, ecotoxicological effects and prospects. Drug Chem Toxicol 2024:1-15. [PMID: 39686663 DOI: 10.1080/01480545.2024.2433075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/02/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024]
Abstract
Microplastics (MPs) and antibiotics are prevalent contaminants in terrestrial environment. MPs possess the ability to absorb antibiotics, resulting in the formation of complex pollutants. While the accumulation and fate of MPs and antibiotics in marine ecosystems have been extensively studied, their combined pollution behavior in terrestrial environments remains relatively underexplored. This paper describes the sources, migration, and compound pollution of MPs and antibiotics in soil. It reviews the mechanisms of compound toxicity associated with antibiotics and MPs, combining different biological classifications. Moreover, we highlight the factors that influence the effects of MPs as vectors and the critical elements driving the spread of antibiotic resistance genes (ARGs). These information suggests the potential mitigation measures for MPs contamination from different perspectives to reduce the impact of ARGs-carrying MPs on human health, specifically through transmission via plants, microbes, or terrestrial vertebrates. Finally, we identify gaps in scientific knowledge regarding the interaction between MPs and antibiotics in soil environments, including the need for standardized research methods, multi-dimensional studies on complex ecological effects, and more comprehensive risk assessments of other pollutants on human health. In summary, this paper provides foundational information for assessing their combined toxicity, offers insights into the distribution of these emerging pollutants in soil, and contributes to a better understanding of the environmental impact of these contaminants.
Collapse
Affiliation(s)
- Jia Du
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Lichuan Zhan
- Shengzhou Agricultural Technology Extension Center, Shengzhou, China
| | - Gengmiao Zhang
- Agricultural Technology Extension Center of Zhuji City, Zhuji, China
| | - Qingwei Zhou
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Weihong Wu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, China
| |
Collapse
|
2
|
Nicolás de Francisco O, Ewbank AC, de la Torre A, Sacristán I, Afonso Jordana I, Planella A, Grau O, Garcia Ferré D, Olmo-Vidal JM, García-Fernández AJ, Navas I, Margalida A, Sacristán C. Environmental contamination by veterinary medicinal products and their implications in the conservation of the endangered Pyrenean Capercaillie (Tetrao urogallus aquitanicus). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117299. [PMID: 39549568 DOI: 10.1016/j.ecoenv.2024.117299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/24/2024] [Accepted: 11/04/2024] [Indexed: 11/18/2024]
Abstract
The endangered Pyrenean Capercaillie (Tetrao urogallus aquitanicus) inhabits perennial forests of the Pyrenees (Spain, France and Andorre). Feces of domestic animals (e.g., horses and cattle) are often found in this species' habitat as evidence of land use overlapping, especially during spring and summer. As a result, pharmaceutical residues found in feces of these domestic ungulates may be absorbed by plants and insects that are part of the diet of Pyrenean Capercaillies (e.g., blueberries [Vaccinium uliginosum, Vaccinium myrtillus], red wood ants [Formica rufa]). Based on the absence of data regarding the exposure of Pyrenean Capercaillie to residues of veterinary medicinal products (VMP), we selected 71 compounds as indicators of anthropogenically-related environmental contamination, analyzed in 90 samples collected in several subalpine forests, northwestern Spain. Residues of several VMP were detected in feces (capercaillie [ciprofloxacin, enrofloxacin, tetracycline and florfenicol], horse [ciprofloxacin, enrofloxacin, tetracycline and ivermectin], and cattle [ciprofloxacin and enrofloxacin]), and in entomofauna (ciprofloxacin and ivermectin). No VMP residues were detected in blueberry plants. Herein, we present novel data about the presence of VMP residues in the Pyrenean Capercaillie's environment, and identify potential VMP sources (i.e., livestock feces and entomofauna) and an exposure route (i.e., food chain) for Capercaillie chicks. Further studies are necessary to investigate the potential indirect or chronic effects of VMP residues in the species' breeding success and adult fitness, which must be taken into account by managers and policy makers to improve management and conservation actions.
Collapse
Affiliation(s)
- Olga Nicolás de Francisco
- Department of Forest Management and Natural Environment, School of Veterinary Medicine, University of Lleida, Lleida 25002, Spain.
| | - Ana Carolina Ewbank
- Centro de Investigación en Sanidad Animal (CISA-INIA), CSIC, Valdeolmos 28130, Spain.
| | - Ana de la Torre
- Centro de Investigación en Sanidad Animal (CISA-INIA), CSIC, Valdeolmos 28130, Spain.
| | - Irene Sacristán
- Centro de Investigación en Sanidad Animal (CISA-INIA), CSIC, Valdeolmos 28130, Spain.
| | - Ivan Afonso Jordana
- Natural Environment Department, Conselh Generau d'Aran, Vielha 25530, Spain.
| | - Anna Planella
- Parc Natural de les Capçaleres del Ter i del Freser, Ribes de Freser, Girona 17574, Spain.
| | - Oriol Grau
- Parc Natural de l'Alt Pirineu, Llavorsí, Lleida 25595, Spain.
| | - Diego Garcia Ferré
- Flora and Fauna Service, Department of Climatic Action, Food and Rural Agenda (Government of Catalonia), Barcelona 08038, Spain.
| | - Josep Maria Olmo-Vidal
- Flora and Fauna Service, Department of Climatic Action, Food and Rural Agenda (Government of Catalonia), Barcelona 08038, Spain.
| | - Antonio J García-Fernández
- Toxicology Area, Department of Health Sciences, School of Veterinary Medicine, University of Murcia, IMIB-Pascual Parrilla, Murcia, 30100, Spain.
| | - Isabel Navas
- Toxicology Area, Department of Health Sciences, School of Veterinary Medicine, University of Murcia, IMIB-Pascual Parrilla, Murcia, 30100, Spain.
| | | | - Carlos Sacristán
- Centro de Investigación en Sanidad Animal (CISA-INIA), CSIC, Valdeolmos 28130, Spain.
| |
Collapse
|
3
|
Tang XY, Yin WM, Yang G, Cui JF, Cheng JH, Yang F, Li XY, Wu CY, Zhu SG. Biochar reduces antibiotic transport by altering soil hydrology and enhancing antibiotic sorption. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134468. [PMID: 38703680 DOI: 10.1016/j.jhazmat.2024.134468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/23/2024] [Accepted: 04/27/2024] [Indexed: 05/06/2024]
Abstract
The performance of biochar (BC) in reducing the transport of antibiotics under field conditions has not been sufficiently explored. In repacked sloping boxes of a calcareous soil, the effects of different BC treatments on the discharge of three relatively weakly sorbing antibiotics (sulfadiazine, sulfamethazine, and florfenicol) via runoff and drainage were monitored for three natural rain events. Surface application of 1 % BC (1 %BC-SA) led to the most effective reduction in runoff discharge of the two sulfonamide antibiotics, which can be partly ascribed to the enhanced water infiltration. The construction of 5 % BC amended permeable reactive wall (5 %BC-PRW) at the lower end of soil box was more effective than the 1 %BC-SA treatment in reducing the leaching of the most weakly sorbing antibiotic (florfenicol), which can be mainly ascribed to the much higher plant available and drainable water contents in the 5 %BC-PRW soil than in the unamended soil. The results of this study highlight the importance of BC's ability to regulate flow pattern by modifying soil hydraulic properties, which can make a significant contribution to the achieved reduction in the transport of antibiotics offsite or to groundwater.
Collapse
Affiliation(s)
- Xiang-Yu Tang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China.
| | - Wen-Min Yin
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China; Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Guang Yang
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun-Fang Cui
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China
| | - Jian-Hua Cheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Fei Yang
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Xiao-Yu Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Chun-Yan Wu
- Institute of Environment Resource and Soil Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Sen-Gen Zhu
- Zhejiang Honggaitou Agricultural Science and Technology Co., Ltd, Quzhou 324109, China
| |
Collapse
|
4
|
Masinga P, Simbanegavi TT, Makuvara Z, Marumure J, Chaukura N, Gwenzi W. Emerging organic contaminants in the soil-plant-receptor continuum: transport, fate, health risks, and removal mechanisms. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:367. [PMID: 38488937 DOI: 10.1007/s10661-023-12282-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/29/2023] [Indexed: 03/17/2024]
Abstract
There is a lack of comprehensive reviews tracking emerging organic contaminants (EOCs) within the soil-plant continuum using the source-pathway-receptor-impact-mitigation (SPRIM) framework. Therefore, this review examines existing literature to gain insights into the occurrence, behaviour, fate, health hazards, and strategies for mitigating EOCs within the soil-plant system. EOCs identified in the soil-plant system encompass endocrine-disrupting chemicals, surfactants, pharmaceuticals, personal care products, plasticizers, gasoline additives, flame retardants, and per- and poly-fluoroalkyl substances (PFAS). Sources of EOCs in the soil-plant system include the land application of biosolids, wastewater, and solid wastes rich in EOCs. However, less-studied sources encompass plastics and atmospheric deposition. EOCs are transported from their sources to the soil-plant system and other receptors through human activities, wind-driven processes, and hydrological pathways. The behaviour, persistence, and fate of EOCs within the soil-plant system are discussed, including sorption, degradation, phase partitioning, (bio)transformation, biouptake, translocation, and bioaccumulation in plants. Factors governing the behaviour, persistence, and fate of EOCs in the soil-plant system include pH, redox potential, texture, temperature, and soil organic matter content. The review also discusses the environmental receptors of EOCs, including their exchange with other environmental compartments (aquatic and atmospheric), and interactions with soil organisms. The ecological health risks, human exposure via inhalation of particulate matter and consumption of contaminated food, and hazards associated with various EOCs in the soil-plant system are discussed. Various mitigation measures including removal technologies of EOCs in the soil are discussed. Finally, future research directions are presented.
Collapse
Affiliation(s)
- Privilege Masinga
- Department of Soil Science and Environment, Faculty of Agriculture, Environment, and Food Systems, University of Zimbabwe, Mount Pleasant, P. O. Box MP 167, Harare, Zimbabwe
| | - Tinoziva T Simbanegavi
- Department of Soil Science and Environment, Faculty of Agriculture, Environment, and Food Systems, University of Zimbabwe, Mount Pleasant, P. O. Box MP 167, Harare, Zimbabwe
| | - Zakio Makuvara
- Department of Physics, Geography and Environmental Science, School of Natural Sciences, Great Zimbabwe University, Masvingo, Zimbabwe
- Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Pretoria, South Africa
| | - Jerikias Marumure
- Department of Physics, Geography and Environmental Science, School of Natural Sciences, Great Zimbabwe University, Masvingo, Zimbabwe
- Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Pretoria, South Africa
| | - Nhamo Chaukura
- Department of Physical and Earth Sciences, Sol Plaatje University, Kimberley, 8301, South Africa
| | - Willis Gwenzi
- Biosystems and Engineering Research Group, 380 New Adylin, Marlborough, Harare, Zimbabwe.
- Biosystems and Environmental Engineering Research Group, 380 New Adylin, Marlborough, Harare, Zimbabwe.
| |
Collapse
|
5
|
Fučík J, Amrichová A, Brabcová K, Karpíšková R, Koláčková I, Pokludová L, Poláková Š, Mravcová L. Fate of fluoroquinolones in field soil environment after incorporation of poultry litter from a farm with enrofloxacin administration via drinking water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:20017-20032. [PMID: 38367114 PMCID: PMC10927849 DOI: 10.1007/s11356-024-32492-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
The practice of incorporating animal manure into soil is supported within the European Circular economy as a possible substitute for mineral fertilizers and will become crucial for the sustainability of agriculture. However, this practice may indirectly contribute to the dissemination of antibiotics, resistance bacteria, and resistance genes. In this study, medicated drinking water and poultry litter samples were obtained from a broiler-chick farm. The obtained poultry litter was incorporated into the soil at the experimental field site. The objectives of this research project were first to develop analytical methods able to quantify fluoroquinolones (FQs) in medicated drinking water, poultry litter, and soil samples by LC-MS; second to study the fate of these FQs in the soil environment after incorporation of poultry litter from flock medicated by enrofloxacin (ENR); and third to screen the occurrence of selected fluoroquinolone resistance encoding genes in poultry litter and soil samples (PCR analysis). FQs were quantified in the broiler farm's medicated drinking water (41.0 ± 0.3 mg∙L-1 of ENR) and poultry litter (up to 70 mg∙kg-1 of FQs). The persistence of FQs in the soil environment over 112 days was monitored and evaluated (ENR concentrations ranged from 36 μg∙kg-1 to 9 μg∙kg-1 after 100 days). The presence of resistance genes was confirmed in both poultry litter and soil samples, in agreement with the risk assessment for the selection of AMR in soil based on ENR concentrations. This work provides a new, comprehensive perspective on the entry and long-term fate of antimicrobials in the terrestrial environment and their consequences after the incorporation of poultry litter into agricultural fields.
Collapse
Affiliation(s)
- Jan Fučík
- Institute of Environmental Chemistry, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00, Brno, Czech Republic.
| | - Anna Amrichová
- Institute of Environmental Chemistry, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00, Brno, Czech Republic
| | - Kristýna Brabcová
- Institute of Environmental Chemistry, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00, Brno, Czech Republic
- Central Institute for Supervising and Testing in Agriculture (ÚKZÚZ), Hroznová 63/2, 603 00, Brno, Czech Republic
| | - Renata Karpíšková
- Department of Public Health, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Ivana Koláčková
- Department of Public Health, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Lucie Pokludová
- Institute for State Control of Veterinary Biologicals and Medicines (ISCVBM), Hudcova 56 A, Brno, Czech Republic
| | - Šárka Poláková
- Central Institute for Supervising and Testing in Agriculture (ÚKZÚZ), Hroznová 63/2, 603 00, Brno, Czech Republic
| | - Ludmila Mravcová
- Institute of Environmental Chemistry, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00, Brno, Czech Republic
| |
Collapse
|
6
|
Mohy-U-Din N, Farhan M, Wahid A, Ciric L, Sharif F. Human health risk estimation of antibiotics transferred from wastewater and soil to crops. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:20601-20614. [PMID: 36255570 DOI: 10.1007/s11356-022-23412-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Antibiotics enter into agricultural land, via manure application or wastewater irrigation. The practices of using untreated wastewater in the agricultural system help in the bioaccumulation of antibiotics in vegetables and other crops. Exposure to the bioaccumulated antibiotics poses serious health risks to ecosystem and human. In this study, the prevalence of two fluoroquinolones (levofloxacin and ciprofloxacin), their bioaccumulation in five crops (Daucus carota L., Pisum sativum L., Raphanus raphanistrum L., Lactuca sativa L., Spinacia oleracea L.), and associated human health risks were investigated. Lettuce showed highest bioaccumulation of levofloxacin (LEV) (12.66 μg kg-1) and carrot showed high bioaccumulation of ciprofloxacin (CIP) (13.01 μg kg-1). In roots, bioconcentration factor (BCFroot) was observed to be relatively high in radish (LEV 0.24-0.43, CIP 0.32-0.49) and observed to be lower in spinach (LEV 0.05-0.13, CIP 0.12-0.19). The translocation factor (TF) for LEV and CIP was generally >1 for all five crops under all treatment. The final transfer and distribution of LEV and CIP in the edible parts of the crops were as follows: leaves > shoots > roots for both antibiotics. Risk quotient of both LEV and CIP in current study is found to be in between 0.018 and 0.557 and shows a medium risk (0.1 to 1) to human health due the discharge of untreated wastewater into the fields. However, our study reports that both antibiotics do accumulate in the edible plant parts; therefore, it poses potential risks to human health.
Collapse
Affiliation(s)
- Nazish Mohy-U-Din
- Sustainable Development Study Center, Government College University, Lahore, Pakistan
- Healthy Infrastructure Research Group, Department of Civil, Environmental and Geomatic Engineering, University College London, Gower Street, London, UK
| | - Muhammad Farhan
- Sustainable Development Study Center, Government College University, Lahore, Pakistan.
| | - Abdul Wahid
- Department of Environmental Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Lena Ciric
- Healthy Infrastructure Research Group, Department of Civil, Environmental and Geomatic Engineering, University College London, Gower Street, London, UK
| | - Faiza Sharif
- Sustainable Development Study Center, Government College University, Lahore, Pakistan
| |
Collapse
|
7
|
Li J, Li W, Liu K, Guo Y, Ding C, Han J, Li P. Global review of macrolide antibiotics in the aquatic environment: Sources, occurrence, fate, ecotoxicity, and risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129628. [PMID: 35905608 DOI: 10.1016/j.jhazmat.2022.129628] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/01/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
The extensive use of macrolide antibiotics (MCLs) has led to their frequent detection in aquatic environments, affecting water quality and ecological health. In this study, the sources, global distribution, environmental fate, ecotoxicity and global risk assessment of MCLs were analyzed based on recently published literature. The results revealed that there are eight main sources of MCLs in the water environment. These pollution sources resulted in MCL detection at average or median concentrations of up to 3847 ng/L, and the most polluted water bodies were the receiving waters of wastewater treatment plants (WWTPs) and densely inhabited areas. Considering the environmental fate, adsorption, indirect photodegradation, and bioremoval may be the main attenuation mechanisms in natural water environments. N-demethylation, O-demethylation, sugar and side chain loss from MCL molecules were the main pathways of MCLs photodegradation. Demethylation, phosphorylation, N-oxidation, lactone ring hydrolysis, and sugar loss were the main biodegradation pathways. The median effective concentration values of MCLs for microalgae, crustaceans, fish, and invertebrates were 0.21, 39.30, 106.42, and 28.00 mg/L, respectively. MCLs induced the generation of reactive oxygen species, that caused oxidative stress to biomolecules, and affected gene expression related to photosynthesis, energy metabolism, DNA replication, and repair. Moreover, over 50% of the reported water bodies represented a medium to high risk to microalgae. Further studies on the development of tertiary treatment technologies for antibiotic removal in WWTPs, the combined ecotoxicity of antibiotic mixtures at environmental concentration levels, and the development of accurate ecological risk assessment models should be encouraged.
Collapse
Affiliation(s)
- Jiping Li
- Co-Innovation center for sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| | - Wei Li
- Co-Innovation center for sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China.
| | - Kai Liu
- Co-Innovation center for sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| | - Yanhui Guo
- Co-Innovation center for sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| | - Chun Ding
- Co-Innovation center for sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| | - Jiangang Han
- Co-Innovation center for sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| | - Pingping Li
- Co-Innovation center for sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| |
Collapse
|
8
|
Zhang X, Gong Z, Allinson G, Xiao M, Li X, Jia C, Ni Z. Environmental risks caused by livestock and poultry farms to the soils: Comparison of swine, chicken, and cattle farms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115320. [PMID: 35642811 DOI: 10.1016/j.jenvman.2022.115320] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
The lack of treatment systems for pollutants in family-livestock and poultry sites results in large amounts of untreated manure and urine being directly discharged to environment. The risks from veterinary antibiotic (VA) and heavy metal (HM) exposure in the rural environment require further research. In this investigation, 221 samples (feed, manure, surface soil, soil profiles, water, and plant) were collected from 41 livestock and poultry farms (swine, chichen, and cattle). Copper (Cu), zinc (Zn), oxytetracycline (OTC), and enrofloxacin (ENR) were frequently detected in the samples. Metals and VAs in sandy loam soils were more inclined to migrate to deep layers than those in loam soils. Copper and Zn in the polluted soils mainly existed in available forms, which facilitated their migration to deep soil layers. In this study, OTC was also observed to migrate more easily to deeper soil layers than ENR due to its relatively high pKa value. Eighteen antibiotic resistance genes (ARGs) and 5 metal resistance genes (MRGs) along with one mobile genetic element (MGE) occurred in the soils at 80 cm depth. Luteimonas, Clostridium_sensu_stricto_1, and Rhodanobacter were dominant genera detected in the soil samples from different sites, which might increase migration of ARGs or degradation of VAs. An ecological risk assessment suggested that VAs posed threats to the growth of Triticum aestivum L, Cucumis sativus L, and Brassiaca chinensis L. Remediation techniques including biochar/modified biochar, anaerobic digestion, and manure composting should be developed urgently for joint HM and VA pollution.
Collapse
Affiliation(s)
- Xiaorong Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Zongqiang Gong
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, PR China.
| | - Graeme Allinson
- School of Science, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Mei Xiao
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xiaojun Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, PR China
| | - Chunyun Jia
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, PR China
| | - Zijun Ni
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| |
Collapse
|
9
|
Zhang X, Gong Z, Allinson G, Li X, Jia C. Joint effects of bacterium and biochar in remediation of antibiotic-heavy metal contaminated soil and responses of resistance gene and microbial community. CHEMOSPHERE 2022; 299:134333. [PMID: 35304205 DOI: 10.1016/j.chemosphere.2022.134333] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/09/2022] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
Soils containing both veterinary antibiotics (VAs) and heavy metals necessitate effective remediation approaches, and microbial and molecular levels of the results should be further examined. Here, a novel material combining waste fungus chaff-based biochar (WFCB) and Herbaspirillum huttiense (HHS1) was established to immobilize copper (Cu) and zinc (Zn) and degrade oxytetracycline (OTC) and enrofloxacin (ENR). Results showed that the combined material exhibited high immobilization of Cu (85.5%) and Zn (64.4%) and great removals of OTC (41.9%) and ENR (40.7%). Resistance genes including tet(PB), tetH, tetR, tetS, tetT, tetM, aacA/aphD, aacC, aadA9, and czcA were reduced. Abundances of potential hosts of antibiotic resistance genes (ARGs) including phylum Proteobacteria and genera Brevundimonas and Rhodanobacter were altered. Total phosphorus and pH were the factors driving the VA degrading microorganisms and potential hosts of ARGs. The combination of WFCB and HHS1 can serve as an important bioresource for immobilizing heavy metals and removing VAs in the contaminated soil.
Collapse
Affiliation(s)
- Xiaorong Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Zongqiang Gong
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, PR China.
| | - Graeme Allinson
- School of Science, RMIT University, Melbourne, Victoria, 3000, Australia.
| | - Xiaojun Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, PR China.
| | - Chunyun Jia
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, PR China.
| |
Collapse
|
10
|
Cela-Dablanca R, Barreiro A, López LR, Santás-Miguel V, Arias-Estévez M, Núñez-Delgado A, Álvarez-Rodríguez E, Fernández-Sanjurjo MJ. Relevance of sorption in bio-reduction of amoxicillin taking place in forest and crop soils. ENVIRONMENTAL RESEARCH 2022; 208:112753. [PMID: 35074354 DOI: 10.1016/j.envres.2022.112753] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/07/2022] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
The fate of antibiotics reaching soils is a matter of concern, given its potential repercussions on public health and the environment. In this work, the potential bio-reduction of the antibiotic amoxicillin (AMX), affected by sorption and desorption, is studied for 17 soils with clearly different characteristics. To carry out these studies, batch-type tests were performed, adding increasing concentrations of AMX (0, 2.5, 5, 10, 20, 30, 40, and 50 μmol L-1) to the soils. For the highest concentration added (50 μmol L-1), the adsorption values for forest soils ranged from 90.97 to 102.54 μmol kg-1 (74.21-82.41% of the amounts of antibiotic added), while the range was 69.96-94.87 μmol kg-1 (68.31-92.56%) for maize soils, and 52.72-85.40 μmol kg-1 (50.96-82.55%) for vineyard soils. When comparing the results for all soils, the highest adsorption corresponded to those more acidic and with high organic matter and non-crystalline minerals contents. The best adjustment to adsorption models corresponded to Freundlich's. AMX desorption was generally <10%; specifically, the maximum was 6.5% in forest soils, and 16.9% in agricultural soils. These results can be considered relevant since they cover agricultural and forest soils with a wide range of pH and organic matter contents, for an antibiotic that, reaching the environment as a contaminant, can pose a potential danger to human and environmental health.
Collapse
Affiliation(s)
- Raquel Cela-Dablanca
- Department of Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Univ. Santiago de Compostela, 27002, Lugo, Spain
| | - Ana Barreiro
- Department of Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Univ. Santiago de Compostela, 27002, Lugo, Spain
| | - Lucia Rodríguez López
- Soil Science and Agricultural Chemistry, Fac. Sciences, Univ. Vigo, 32004, Ourense, Spain
| | - Vanesa Santás-Miguel
- Soil Science and Agricultural Chemistry, Fac. Sciences, Univ. Vigo, 32004, Ourense, Spain
| | - Manuel Arias-Estévez
- Soil Science and Agricultural Chemistry, Fac. Sciences, Univ. Vigo, 32004, Ourense, Spain
| | - Avelino Núñez-Delgado
- Department of Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Univ. Santiago de Compostela, 27002, Lugo, Spain.
| | - Esperanza Álvarez-Rodríguez
- Department of Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Univ. Santiago de Compostela, 27002, Lugo, Spain
| | - María J Fernández-Sanjurjo
- Department of Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Univ. Santiago de Compostela, 27002, Lugo, Spain
| |
Collapse
|
11
|
Yang R, Wang J, Zhu L, Wang J, Yang L, Mao S, Conkle JL, Chen Y, Kim YM. Effects of interaction between enrofloxacin and copper on soil enzyme activity and evaluation of comprehensive toxicity. CHEMOSPHERE 2021; 268:129208. [PMID: 33352514 DOI: 10.1016/j.chemosphere.2020.129208] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
Antibiotics are detected in association with heavy metals in the soil. However, interactions between antibiotics and heavy metals on soil enzyme activity have yet to been studied thoroughly. In this study, soil enzyme activity (urease, sucrase, phosphatase, and Rubisco) were measured after exposure to soils dosed with copper (Cu) and/or enrofloxacin (ENR) over 28 days. Enzyme responses to ENR only treatments varied, but Cu exhibited a strong negative response from all soil enzymes except Rubisco. An interaction between the effects of the two pollutants on soil enzymes was observed in the combined contamination treatments. Greater comprehensive toxicity to soil enzyme activity was observed in combined treatment groups compared to other groups. We anticipate our studies can provide a scientific theoretical basis for the combined pollution of antibiotics and heavy metals in soil.
Collapse
Affiliation(s)
- Rui Yang
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, PR China.
| | - Jinhua Wang
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, PR China.
| | - Lusheng Zhu
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, PR China.
| | - Jun Wang
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, PR China.
| | - Lili Yang
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, PR China.
| | - Shushuai Mao
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, PR China.
| | - Jeremy L Conkle
- Department of Physical & Environmental Sciences, Texas A&M University-Corpus Christi, Corpus Christi, TX, 78412, USA.
| | - Yangyang Chen
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, PR China.
| | - Young Mo Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul, 04763, Republic of Korea.
| |
Collapse
|
12
|
Le HTV, Maguire RO, Xia K. Spatial distribution and temporal change of antibiotics in soils amended with manure using two field application methods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 759:143431. [PMID: 33172639 DOI: 10.1016/j.scitotenv.2020.143431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
Compared to surface application, manure subsurface injection significantly reduces transport of manure-associated antibiotics via surface runoff. However, the environmental fate of antibiotics in manure injection slits is unknown. A field investigation was conducted to monitor distribution and dissipation of pirlimycin, tylosin, chlortetracycline, and sulfamerazine in soil following either surface application or subsurface injection of liquid dairy manure. A simulated rainfall was conducted on days 0, 3, and 7 after manure application. Soil samples were collected before, on the day of, and 5, 14, 60, and 180 days after the simulated rainfall. Around an hour after manure application, antibiotic concentrations in injection slits were 4-49 and 4-26 times higher than those outside the slits and in surface application plots, respectively. Antibiotics concentrated in the injection slits for an extended time with limited horizontal and vertical movement, exposing the microbial community inside the slits to an elevated level of antibiotics. Dissipation of antibiotics was the fastest during the first 14 d after manure application before slowing down. There were no significant differences in antibiotic dissipation patterns in soils amended with manure using two application methods. Although the half-lives ranged from 3-11 d for pirlimycin, 3-10 d for sulfamerazine, 5-12 d for tylosin, and 3-21 day for chlortetracycline; pirlimycin, sulfamerazine, and tylosin remained detectable in soil even 180 d after the single manure application, indicating that soils could be a long-term source for antibiotics to the surrounding environment. Overall, in addition to resulting in less surface runoff of antibiotics from the fields, manure subsurface injection can also retain antibiotics in the injection slits and limit their movement overtime. However, more studies are needed to better understand if elevated levels of antibiotics, nutrients, organic matter, and water would result in "hot zones" for antibiotic resistance development in the manure subsurface injected fields.
Collapse
Affiliation(s)
- Hanh T V Le
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Rory O Maguire
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Kang Xia
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
13
|
Markowicz A, Bondarczuk K, Cycoń M, Sułowicz S. Land application of sewage sludge: Response of soil microbial communities and potential spread of antibiotic resistance. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 271:116317. [PMID: 33383416 DOI: 10.1016/j.envpol.2020.116317] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 12/03/2020] [Accepted: 12/13/2020] [Indexed: 06/12/2023]
Abstract
The effect of land application of sewage sludge on soil microbial communities and the possible spread of antibiotic- and metal-resistant strains and resistance determinants were evaluated during a 720-day field experiment. Enzyme activities, the number of oligotrophic bacteria, the total number of bacteria (qPCR), functional diversity (BIOLOG) and genetic diversity (DGGE) were established. Antibiotic and metal resistance genes (ARGs, MRGs) were assessed, and the number of cultivable antibiotic- (ampicillin, tetracycline) and heavy metal- (Cd, Zn, Cu, Ni) resistant bacteria were monitored during the experiment. The application of 10 t ha-1 of sewage sludge to soil did not increase the organic matter content and caused only a temporary increase in the number of bacteria, as well as in the functional and structural biodiversity. In contrast to expectations, a general adverse effect on the tested microbial parameters was observed in the fertilized soil. The field experiment revealed a significant reduction in the activities of alkaline and acid phosphatases, urease and nitrification potential. Although sewage sludge was identified as the source of several ARGs and MRGs, these genes were not detected in the fertilized soil. The obtained results indicate that the effect of fertilization based on the recommended dose of sewage sludge was not achieved.
Collapse
Affiliation(s)
- Anna Markowicz
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Poland.
| | - Kinga Bondarczuk
- Centre for Bioinformatics and Data Analysis, Medical University of Białystok, Białystok, Poland.
| | - Mariusz Cycoń
- Department of Microbiology and Virology, Faculty of Pharmaceutical Sciences, Medical University of Silesia, Sosnowiec, Poland.
| | - Sławomir Sułowicz
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Poland.
| |
Collapse
|
14
|
Sun P, Zhao Y, Yang L, Ren Z, Zhao W. Environmentally Friendly Quinolones Design for a Two-Way Choice between Biotoxicity and Genotoxicity through Double-Activity 3D-QSAR Model Coupled with the Variation Weighting Method. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E9398. [PMID: 33333906 PMCID: PMC7765274 DOI: 10.3390/ijerph17249398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/01/2020] [Accepted: 12/14/2020] [Indexed: 11/30/2022]
Abstract
Quinolone (QN) antibiotics are widely used, which lead to their accumulation in soil and toxic effects on ryegrass in pasture. In this study, we employed ryegrass as the research object and selected the total scores of 29 QN molecules docked with two resistant enzyme structures, superoxide dismutase (SOD, PDB ID: 1B06) and proline (Pro, PPEP-2, PDB ID: 6FPC), as dependent variables. The structural parameters of QNs were used as independent variables to construct a QN double-activity 3D-QSAR model for determining the biotoxicity on ryegrass by employing the variation weighting method. This model was constructed to determine modification sites and groups for designing QNs molecules. According to the 3D contour map of the model, by considering enrofloxacin (ENR) and sparfloxacin (SPA) as examples, 23 QN derivatives with low biotoxicity were designed, respectively. The functional properties and environmental friendliness of the QN derivatives were predicted through a two-way selection between biotoxicity and genotoxicity before and after modification; four environmentally friendly derivatives with low biotoxicity and high genotoxicity were screened out. Mixed toxicity index and molecular dynamics methods were used to verify the combined toxicity mechanism of QNs on ryegrass before and after modification. By simulating the combined pollution of ENR and its derivatives in different soils (farmland, garden, and woodland), the types of combined toxicity were determined as partial additive and synergistic. Binding energies were calculated using molecular dynamics. The designed QN derivatives with low biotoxicity, high genotoxicity, and environmental friendliness can highly reduce the combined toxicity on ryegrass and can be used as theoretic reserves to replace QN antibiotics.
Collapse
Affiliation(s)
- Peixuan Sun
- College of New Energy and Environment, Jilin University, Changchun 130012, China; (P.S.); (L.Y.)
| | - Yuanyuan Zhao
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China;
| | - Luze Yang
- College of New Energy and Environment, Jilin University, Changchun 130012, China; (P.S.); (L.Y.)
| | - Zhixing Ren
- College of Forestry, Northeast Forestry University, Harbin 150040, China;
| | - Wenjin Zhao
- College of New Energy and Environment, Jilin University, Changchun 130012, China; (P.S.); (L.Y.)
| |
Collapse
|
15
|
Mehrtens A, Licha T, Broers HP, Burke V. Tracing veterinary antibiotics in the subsurface - A long-term field experiment with spiked manure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114930. [PMID: 32544789 DOI: 10.1016/j.envpol.2020.114930] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/25/2020] [Accepted: 05/31/2020] [Indexed: 06/11/2023]
Abstract
The purpose of this long-term experiment was on gaining more insights into the environmental behaviour of veterinary antibiotics in the subsurface after application with manure. Therefore, manure spiked with a bromide tracer and eight antibiotics (enrofloxacin, lincomycin, sulfadiazine, sulfamethazine, tetracycline, tiamulin, tilmicosin and tylosin) in concentrations of milligrams per litre were applied at an experimental field site. Their pathway was tracked by continuous extraction of soil pore water at different depths and systematic sampling of groundwater for a period of two years. Seven target compounds were detected in soil pore water of which four leached into groundwater. Concentrations of the detected target compounds were, with few exceptions, in the range of nanograms per litre. It was concluded that a large fraction of the investigated antibiotics sorbed or degraded already within the first meter of the soil. Further, it was inferred from the data that long and warm dry periods cause attenuation of the target compounds through increased degradation or sorption occurring in the soil. In addition, the comprehensive data-set allowed to estimate a retardation factor between 1.1 and 2.0 for sulfamethazine in a Plaggic Anthrosol soil, and to classify the individual compounds by environmental relevance based on transport behaviour and persistence. According to the distribution of resistant genes in the environment, sulfamethazine was found to be the most mobile and persistent substance.
Collapse
Affiliation(s)
- Anne Mehrtens
- Department Hydrogeology and Landscape Hydrology, Institute for Biology and Environmental Science of the Carl-von-Ossietzky University of Oldenburg, Uhlhornsweg 84, 26129, Oldenburg, Germany.
| | - Tobias Licha
- Department Applied Geology, Geoscience Center of the University of Göttingen, Goldschmidtstr. 3, D-37077, Göttingen, Germany; Hydrochemistry Group, Institute for Geology, Mineralogy and Geophysics, Ruhr-University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Hans Peter Broers
- TNO Geological Survey of the Netherlands, P.O. Box 80015, 3508, TA, Utrecht, the Netherlands
| | - Victoria Burke
- Department Hydrogeology and Landscape Hydrology, Institute for Biology and Environmental Science of the Carl-von-Ossietzky University of Oldenburg, Uhlhornsweg 84, 26129, Oldenburg, Germany
| |
Collapse
|
16
|
Gudda FO, Waigi MG, Odinga ES, Yang B, Carter L, Gao Y. Antibiotic-contaminated wastewater irrigated vegetables pose resistance selection risks to the gut microbiome. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114752. [PMID: 32417582 DOI: 10.1016/j.envpol.2020.114752] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
Wastewater reuse in food crop irrigation has led to agroecosystem pollution concerns and human health risks. However, there is limited attention on the relationship of sub-lethal antibiotic levels in vegetables and resistance selection. Most risk assessment studies show non-significant toxicity, but overlook the link between antibiotics in crops and propagation of gut microbiome resistance selection. The review highlights the risk of antibiotics in treated water used for irrigation, uptake, and accumulation in edible vegetable parts. Moreover, it elucidates the risks to the adaptive resistance selection of the gut microbiome from sub-lethal antibiotic levels, as a result of dietary contaminated vegetables. Experiments have reported that bacterial resistance selection is possible at concentrations that are several hundred-folds lower than lethal effect levels on susceptible cells. Consequently, mutants selected at low antibiotic levels, such as those from vegetables, are fitter and more resistant compared to those selected at high concentrations. Necessary standardization, such as the development of minimum acceptable antibiotic limits allowable in food crop irrigation water, with a focus on minimum selection concentration, and not only toxicity, has been proposed. Wastewater irrigation offers environmental benefits and can contribute to food security, but it has non-addressed risks. Research gaps, future perspectives, and frameworks of mitigating the potential risks are discussed.
Collapse
Affiliation(s)
- Fredrick Owino Gudda
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China; Faculty of Environment and Resource Development, Department of Environmental Sciences, Egerton University, Box 536, Egerton, 20115, Kenya
| | - Michael Gatheru Waigi
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Emmanuel Stephen Odinga
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Bing Yang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Laura Carter
- School of Geography, University of Leeds, Leeds, LS2 9JT, UK
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
17
|
Omidghane M, Bartoli M, Asomaning J, Xia L, Chae M, Bressler DC. Pyrolysis of fatty acids derived from hydrolysis of brown grease with biosolids. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:26395-26405. [PMID: 32363458 PMCID: PMC7332484 DOI: 10.1007/s11356-020-09041-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
The escalating generation of biosolids and increasing regulations regarding their safe handling and disposal have created a great environmental challenge. Recently, biosolids have been incorporated into the hydrolysis step of a two-step thermal lipid conversion process to act as water replacement in the production of renewable chemicals and fuels. Here, the hexane extract recovered from hydrolysis of biosolids, lipids from brown grease hydrolyzed using either water (control) or biosolids as a water replacement, was pyrolyzed at 410-450 °C for 2 h. The product distribution and composition were not significantly different when biosolids were used to hydrolyze brown grease instead of water. The liquid product consisted mainly of alkanes, alkenes, aromatics, and cyclic compounds similar to those in petroleum-derived liquid fuels. However, the use of biosolids as a water substitute resulted in a significant increase in sulphur content of the pyrolysate, which will necessitate processes to reduce the sulphur content before or after pyrolysis. Nevertheless, the pathways proposed in this paper are considered as potentially economically viable approaches to not only resolve the issues associated with disposal of biosolids but also to produce renewable hydrocarbons for fuel and chemical applications. Graphical abstract.
Collapse
Affiliation(s)
- Mehdi Omidghane
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, T6G 2P5, Canada
| | - Mattia Bartoli
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, T6G 2P5, Canada
| | - Justice Asomaning
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, T6G 2P5, Canada
| | - Lin Xia
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, T6G 2P5, Canada
| | - Michael Chae
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, T6G 2P5, Canada
| | - David C Bressler
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, T6G 2P5, Canada.
| |
Collapse
|
18
|
Xing Y, Chen X, Wagner RE, Zhuang J, Chen X. Coupled effect of colloids and surface chemical heterogeneity on the transport of antibiotics in porous media. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 713:136644. [PMID: 31955105 DOI: 10.1016/j.scitotenv.2020.136644] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/29/2019] [Accepted: 01/09/2020] [Indexed: 06/10/2023]
Abstract
Release of antibiotics into the environment has caused ecological and human health concerns in recent years. However, little is known about their transport behaviors in chemically heterogeneous porous media. In this study, we investigated the coupled effects of surface chemistry and soil colloids on the transport of ciprofloxacin and tetracycline through sand under steady state saturated flow conditions. Both antibiotics had a much higher capacity of adsorption on soil colloids (17,500 mg/kg for ciprofloxacin and 8600 mg/kg for tetracycline) than on sand (5.11 mg/kg for ciprofloxacin and 2.80 mg/kg for tetracycline). However, ciprofloxacin adsorption increased to 8.91 mg/kg after the sand was coated with iron oxide and to 8.73 mg/kg after the sand was coated with humic acid. Tetracycline, adsorption increased to 7.99 mg/kg after sand was coated with iron oxide coated sand and to 8.35 mg/kg after the sand was coated with humic acid coated The high adsorption capacity of ciprofloxacin led to a recovery rate of <4% in the effluents of the columns containing 0%, 20% and 50% of iron oxide/humic acid coated sand. The surface coating decreased the recovery rates of tetracycline from 35.4% (in uncoated sand) to 12.0% (in column containing 50% iron oxide coated sand) and 0.010% (in column containing 50% humic acid coated sand), respectively. Once adsorbed to soil colloids, the recovery rate of ciprofloxacin increased by 26.7% in uncoated sand column, 21.1% in iron oxide coated sand column, and 32.7% in humic acid coated sand column. Similarly, the presence of the colloids increased the recovery rate of tetracycline from 13.8% to 33.2% after the sand was coated with humic acid. Colloids did not significantly influence the transport and recovery of tetracycline in the uncoated sand and iron oxide coated sand due likely to its lower adsorption affinity.
Collapse
Affiliation(s)
- Yingna Xing
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Xin Chen
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Regan E Wagner
- Department of Biosystems Engineering and Soil Science, Institute for a Secure and Sustainable Environment, The University of Tennessee, Knoxville, TN 37996, USA
| | - Jie Zhuang
- Department of Biosystems Engineering and Soil Science, Institute for a Secure and Sustainable Environment, The University of Tennessee, Knoxville, TN 37996, USA
| | - Xijuan Chen
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| |
Collapse
|
19
|
Hu S, Hu H, Li W, Hong X, Cai D, Lin J, Li M, Zhao Y. Investigating the biodegradation of sulfadiazine in soil using Enterobacter cloacae T2 immobilized on bagasse. RSC Adv 2020. [DOI: 10.1039/c9ra07302g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The application of the antibiotic sulfadiazine (SD) in veterinary medicine has created serious environmental issues due to its high mobility and non-degradability. A novel immobilized cell system has been developed and showed significant SD biodegradation potential in soil.
Collapse
Affiliation(s)
- Shengbing Hu
- College of Materials and Energy
- South China Agricultural University
- Guangzhou
- PR China
| | - Huimin Hu
- College of Materials and Energy
- South China Agricultural University
- Guangzhou
- PR China
| | - Wenlong Li
- College of Materials and Energy
- South China Agricultural University
- Guangzhou
- PR China
| | - Xiaxiao Hong
- College of Materials and Energy
- South China Agricultural University
- Guangzhou
- PR China
| | - Daihong Cai
- College of Materials and Energy
- South China Agricultural University
- Guangzhou
- PR China
| | - Jiawei Lin
- College of Materials and Energy
- South China Agricultural University
- Guangzhou
- PR China
| | - Minghua Li
- College of Materials and Energy
- South China Agricultural University
- Guangzhou
- PR China
| | - Yuechun Zhao
- College of Materials and Energy
- South China Agricultural University
- Guangzhou
- PR China
| |
Collapse
|
20
|
Snow DD, Cassada DA, Biswas S, Malakar A, D'Alessio M, Carter LJ, Johnson RD, Sallach JB. Detection, occurrence, and fate of emerging contaminants in agricultural environments (2019). WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:1103-1113. [PMID: 31420905 DOI: 10.1002/wer.1204] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/24/2019] [Accepted: 08/12/2019] [Indexed: 06/10/2023]
Abstract
A review of 82 papers published in 2018 is presented. The topics ranged from detailed descriptions of analytical methods, to fate and occurrence studies, to ecological effects and sampling techniques for a wide variety of emerging contaminants likely to occur in agricultural environments. New methods and studies on veterinary pharmaceuticals, microplastics, and engineered nanomaterials in agricultural environments continue to expand our knowledge base on the occurrence and potential impacts of these compounds. This review is divided into the following sections: Introduction, Analytical Methods, Fate and Occurrence, Pharmaceutical Metabolites, Anthelmintics, Microplastics, and Engineered Nanomaterials. PRACTITIONER POINTS: New research describes innovative new techniques for emerging contaminant detection in agricultural settings. Newer classes of contaminants include human and veterinary pharmaceuticals. Research in microplastics and nanomaterials shows that these also occur in agricultural environments and will likely be topics of future work.
Collapse
Affiliation(s)
- Daniel D Snow
- Nebraska Water Center, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - David A Cassada
- Nebraska Water Center, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Saptashati Biswas
- Nebraska Water Center, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Arindam Malakar
- Nebraska Water Center, Part of the Robert B. Dougherty Water for Food Institute, University of Nebraska, Lincoln, Nebraska
| | - Matteo D'Alessio
- Nebraska Water Center, Part of the Robert B. Dougherty Water for Food Institute, University of Nebraska, Lincoln, Nebraska
| | | | | | | |
Collapse
|
21
|
Effects of norfloxacin exposure on neurodevelopment of zebrafish (Danio rerio) embryos. Neurotoxicology 2019; 72:85-94. [DOI: 10.1016/j.neuro.2019.02.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 01/21/2019] [Accepted: 02/08/2019] [Indexed: 12/11/2022]
|
22
|
Sun K, Sun Y, Gao B, Xu H, Wu J. Effect of cation type in mixed Ca-Na systems on transport of sulfonamide antibiotics in saturated limestone porous media. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:11170-11178. [PMID: 30793247 DOI: 10.1007/s11356-019-04561-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/13/2019] [Indexed: 06/09/2023]
Abstract
Retention and transport of sulfonamides (SAs) in subsurface can strongly affect groundwater quality. In this work, a range of laboratory batch sorption and column transport experiments were conducted to determine the effect of cation type in mixed Ca-Na systems on the retention and transport of two typical SAs, sulfadimethoxine (SDM) and sulfacetamide (SCA), in saturated limestone porous media. Column experimental data showed divalent cation Ca2+ played a more important role than monovalent cation Na+ in decreasing the transport of only SDM in co-cation systems in the saturated limestone media. Further, in the single-cation (i.e., including either Ca2+ or Na+) system, increasing ionic strength (IS) of either NaCl or CaCl2 had little effect on SCA transport; however, increasing of IS of CaCl2 promoted the retention of SDM in the saturated limestone porous media. This is mainly due to the cation bridging effect of Ca2+ on SDM and limestone. Overall, SDM showed much higher retention in the limestone columns than SCA, which can be attributed to the two SAs' different physicochemical properties. Moreover, limestone showed stronger ability to retain the two SAs than quartz sand. Findings in this study suggest that cation type and the concentration of certain electrolyte (e.g., CaCl2) as well as medium type play an important role in controlling the environmental fate and transport of antibiotics.
Collapse
Affiliation(s)
- Kaixuan Sun
- Key Laboratory of Surficial Geochemisty, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210023, China
| | - Yuanyuan Sun
- Key Laboratory of Surficial Geochemisty, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210023, China.
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Hongxia Xu
- Key Laboratory of Surficial Geochemisty, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210023, China
| | - Jichun Wu
- Key Laboratory of Surficial Geochemisty, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
23
|
Pan L, Feng X, Cao M, Zhang S, Huang Y, Xu T, Jing J, Zhang H. Determination and distribution of pesticides and antibiotics in agricultural soils from northern China. RSC Adv 2019; 9:15686-15693. [PMID: 35521405 PMCID: PMC9064340 DOI: 10.1039/c9ra00783k] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/29/2019] [Indexed: 11/21/2022] Open
Abstract
Different types of soil samples from a typical farmland in northern China were collected and evaluated for the presence of the pesticides and antibiotics. 47 pesticides were extracted with a quick, easy, cheap, effective, rugged, and safe (QuEChERS) preparation method and cleanup with 50 mg C18, while 10 antibiotics were extracted with methanol/EDTA–McIlvaine buffer solution (v/v = 1/1), then both of them were analyzed with high performance liquid chromatography-tandem mass spectrometer (HPLC-MS/MS). Total concentrations of the 47 pesticides in the soil samples ranged from not detectable (ND) to 3.8 mg kg−1. The soil exhibited relatively high ecological risk for atrazine, chlorpyrifos, tebuconazole, difenoconazole, pymetrozine, and thiamethoxam, as over 1.0% of the sample concentrations exceeded 0.1 mg kg−1. The residual levels of the 10 antibiotics were relatively low (ND-951.0 μg kg−1). Tetracyclines exhibited a high detection rate (20.9%), with 2.8% of the soil samples exhibiting tetracyclines concentrations exceeding 100 μg kg−1, implying high ecological risk. The 4 sulfonamides and 2 macrolides analyzed showed detection rates below 0.8%. Spatial changes in the distribution of pesticides and antibiotics appear to be related to land use patterns, particularly orchards and vegetable plots. The over-standard rate of pesticides and antibiotics in orchards was greater than that of vegetable plots, and grain fields had the lowest over-standard rate. These data were helpful to figure out the pollution of these pesticides and antibiotics, and provided valuable information for soil quality assessment and risk assessment. Different types of soil samples from a typical farmland in northern China were collected and evaluated for the presence of the pesticides and antibiotics.![]()
Collapse
Affiliation(s)
- Lixiang Pan
- College of Science
- China Agricultural University
- Beijing
- P. R. China
| | - Xiaoxiao Feng
- College of Science
- China Agricultural University
- Beijing
- P. R. China
| | - Meng Cao
- College of Resources and Environmental Sciences
- China Agricultural University
- Beijing
- P. R. China
| | - Shiwen Zhang
- College of Earth and Environmental Sciences
- Anhui University of Science and Technology
- Huainan
- P. R. China
| | - Yuanfang Huang
- College of Resources and Environmental Sciences
- China Agricultural University
- Beijing
- P. R. China
| | - Tianheng Xu
- College of Science
- China Agricultural University
- Beijing
- P. R. China
| | - Jing Jing
- College of Science
- China Agricultural University
- Beijing
- P. R. China
| | - Hongyan Zhang
- College of Science
- China Agricultural University
- Beijing
- P. R. China
| |
Collapse
|
24
|
Magee HY, Maurer MM, Cobos A, Pycke BFG, Venkatesan AK, Magee D, Scotch M, Halden RU. U.S. nationwide reconnaissance of ten infrequently monitored antibiotics in municipal biosolids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 643:460-467. [PMID: 29945081 DOI: 10.1016/j.scitotenv.2018.06.206] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/15/2018] [Accepted: 06/17/2018] [Indexed: 06/08/2023]
Abstract
Ten infrequently monitored antibiotics in biosolids were examined in archived American sewage sludges (n = 79) collected as part of the 2006/2007 U.S. Environmental Protection Agency (EPA) Targeted National Sewage Sludge Survey. This study inspected the occurrence of amoxicillin, ampicillin, erythromycin, furazolidone [proxy metabolite: 3-(2-nitrobenzylidenamino)-2-oxazolidinone (NP-AOZ)], nalidixic acid, oxolinic acid, oxytetracycline, spiramycin, sulfadimidine, and sulfadimethoxine in sewage sludges after nearly a decade in frozen storage. Six antibiotics were detected at the following average concentrations (ng/g dry weight): amoxicillin (1.0), nalidixic acid (19.1), oxolinic acid (2.7), erythromycin (0.6), oxytetracycline (4.5), and ampicillin (14.8). The remaining four were not detected in any samples (<method detection limit, ng/g dry weight): sulfadimethoxine (<0.5), sulfadimidine (<1.0), spiramycin (<2.0), and NP-AOZ (<20.0). This study provides the first data on spiramycin, NP-AOZ, and nalidixic acid in U.S. sewage sludges. This study also provides new data on the losses of 5 antibiotics during long term frozen storage (-20 °C) in comparison to the 2006/2007 U.S. EPA Targeted National Sewage Sludge Survey.
Collapse
Affiliation(s)
- Hansa Y Magee
- Arizona State University, Biodesign Center for Environmental Health Engineering, Tempe, AZ, USA; Arizona State University, Department of Biomedical Informatics, College of Health Solutions, Tempe, AZ, USA
| | - Megan M Maurer
- Arizona State University, Biodesign Center for Environmental Health Engineering, Tempe, AZ, USA
| | - April Cobos
- Arizona State University, Biodesign Center for Environmental Health Engineering, Tempe, AZ, USA
| | - Benny F G Pycke
- Arizona State University, Biodesign Center for Environmental Health Engineering, Tempe, AZ, USA
| | - Arjun K Venkatesan
- Arizona State University, School of Sustainable Engineering and the Built Environment, Tempe, AZ, USA; Stony Brook University, Center for Clean Water Technology, Department of Civil Engineering, Stony Brook, NY, USA
| | - Daniel Magee
- Arizona State University, Biodesign Center for Environmental Health Engineering, Tempe, AZ, USA; Arizona State University, Department of Biomedical Informatics, College of Health Solutions, Tempe, AZ, USA
| | - Matthew Scotch
- Arizona State University, Biodesign Center for Environmental Health Engineering, Tempe, AZ, USA; Arizona State University, Department of Biomedical Informatics, College of Health Solutions, Tempe, AZ, USA
| | - Rolf U Halden
- Arizona State University, Biodesign Center for Environmental Health Engineering, Tempe, AZ, USA; Arizona State University, School of Sustainable Engineering and the Built Environment, Tempe, AZ, USA.
| |
Collapse
|
25
|
Albero B, Tadeo JL, Escario M, Miguel E, Pérez RA. Persistence and availability of veterinary antibiotics in soil and soil-manure systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 643:1562-1570. [PMID: 30189572 DOI: 10.1016/j.scitotenv.2018.06.314] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 06/08/2023]
Abstract
The availability and persistence of various antibiotics in soil and soil amended with composted poultry manure were investigated through laboratory incubation assays. Six veterinary antibiotics (one fluoroquinolone, two tetracyclines, two sulfonamides and one lincosamide) and one active metabolite (ciprofloxacin) were studied. The incubation assays were conducted at a controlled temperature of 25 °C with different water regimes, such as constant moisture content (80% of water holding capacity) and drying-rewetting cycles. The studied antibiotics were determined in soil and soil aqueous phase samples by LC-MS/MS using internal standards. The results indicated that the highest levels found in the soil aqueous phase were for sulfamethoxazole, followed by sulfamethazine and lincomycin, being very low the levels of chlortetracycline, doxycycline, ciprofloxacin and enrofloxacin (≤1.8%). A positive correlation was observed between the antibiotic concentrations and the content of the dissolved organic carbon in soil aqueous phase with the incubation time. An increase in the apparent sorption coefficients of these antibiotics, except chlortetracycline and lincomycin, was observed when the soil was amended with composted manure. Except for fluoroquinolones, with remaining residues around 70% after 90 days of incubation, a fast dissipation of antibiotics was observed during the assay, with half-lives ranging from 8 to 27 days. These values increased between 6% and 53% in manure amended soil; nevertheless, half-lives remained short (9 days and 27 days for lincomycin and sulfamethazine, respectively). Similar results were obtained with soil under drying-rewetting cycles showing somewhat lower values in soil aqueous phase and slightly shorter half-lives in some cases. The results obtained pointed out that the route of entry of antibiotics into the soil, through recycled water or manure, may have an important effect on their behavior, particularly regarding their availability in soil.
Collapse
Affiliation(s)
- Beatriz Albero
- Departamento de Medio Ambiente, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. de la Coruña, Km. 7, 28040 Madrid, Spain
| | - José Luis Tadeo
- Departamento de Medio Ambiente, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. de la Coruña, Km. 7, 28040 Madrid, Spain
| | - Miguel Escario
- Departamento de Medio Ambiente, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. de la Coruña, Km. 7, 28040 Madrid, Spain
| | - Esther Miguel
- Departamento de Medio Ambiente, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. de la Coruña, Km. 7, 28040 Madrid, Spain
| | - Rosa Ana Pérez
- Departamento de Medio Ambiente, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. de la Coruña, Km. 7, 28040 Madrid, Spain.
| |
Collapse
|
26
|
Wang F, Xu M, Stedtfeld RD, Sheng H, Fan J, Liu M, Chai B, Soares de Carvalho T, Li H, Li Z, Hashsham SA, Tiedje JM. Long-Term Effect of Different Fertilization and Cropping Systems on the Soil Antibiotic Resistome. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:13037-13046. [PMID: 30375866 DOI: 10.1021/acs.est.8b04330] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Different fertilization and cropping systems may influence short- and long-term residues of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) in soil. Soils from dryland (peanut) and paddy (rice) fields, which originated from the same nonagricultural land (forested), were treated with either chemical fertilizer, composted manure, or no fertilizer for 26 years before sampling, which occurred one year after the last applications. ARGs and MGEs were investigated using highly parallel qPCR and high-throughput sequencing. Six of the 11 antibiotics measured by LC-MS/MS were detected in the manure applied soil, but not in the nonmanured soils, indicating their source was from previous manure applications. Compared to the unfertilized control, manure application did not show a large accumulation of ARGs in either cropping system but there were some minor effects of soil management on indigenous ARGs. Paddy soil showed higher accumulation of these ARGs, which corresponded to higher microbial biomass than the dryland soil. Chemical fertilizer increased relative abundance of these ARGs in dryland soil but decreased their relative abundance in paddy soil. These results show how long-term common soil management practices affect the abundance and type of ARGs and MGEs in two very different soil environments, one aerobic and the other primarily anaerobic.
Collapse
Affiliation(s)
- Fang Wang
- Key Laboratory of Soil Environment and Pollution Remediation , Institute of Soil Science, Chinese Academy of Sciences , Nanjing 210008 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Min Xu
- Key Laboratory of Soil Environment and Pollution Remediation , Institute of Soil Science, Chinese Academy of Sciences , Nanjing 210008 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | | | - Hongjie Sheng
- Key Laboratory of Soil Environment and Pollution Remediation , Institute of Soil Science, Chinese Academy of Sciences , Nanjing 210008 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Jianbo Fan
- Key Laboratory of Soil Environment and Pollution Remediation , Institute of Soil Science, Chinese Academy of Sciences , Nanjing 210008 , China
| | - Ming Liu
- Key Laboratory of Soil Environment and Pollution Remediation , Institute of Soil Science, Chinese Academy of Sciences , Nanjing 210008 , China
| | | | | | | | - Zhongpei Li
- Key Laboratory of Soil Environment and Pollution Remediation , Institute of Soil Science, Chinese Academy of Sciences , Nanjing 210008 , China
| | | | - James M Tiedje
- Key Laboratory of Soil Environment and Pollution Remediation , Institute of Soil Science, Chinese Academy of Sciences , Nanjing 210008 , China
| |
Collapse
|
27
|
Sun H, Zhu L, Zhou D. POLSOIL: research on soil pollution in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:1-3. [PMID: 29270901 DOI: 10.1007/s11356-017-1055-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 12/13/2017] [Indexed: 06/07/2023]
Affiliation(s)
- Hongwen Sun
- College of Environmental Science and Engineering, Nankai University, Nankai, China.
| | | | - Dongmei Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|