1
|
Silva PV, Silva ARR, Clark NJ, Vassallo J, Baccaro M, Medvešček N, Grgić M, Ferreira A, Busquets-Fité M, Jurkschat K, Papadiamantis AG, Puntes V, Lynch I, Svendsen C, van den Brink NW, Handy RD, van Gestel CAM, Loureiro S. Toxicokinetics and bioaccumulation of silver sulfide nanoparticles in benthic invertebrates in an indoor stream mesocosm. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162160. [PMID: 36775152 DOI: 10.1016/j.scitotenv.2023.162160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Mesocosms allow the simulation of environmentally relevant conditions and can be used to establish more realistic scenarios of organism exposure to nanoparticles. An indoor mesocosm experiment simulating an aquatic stream ecosystem was conducted to assess the toxicokinetics and bioaccumulation of silver sulfide nanoparticles (Ag2S NPs) and AgNO3 in the freshwater invertebrates Girardia tigrina, Physa acuta and Chironomus riparius, and determine if previous single-species tests can predict bioaccumulation in the mesocosm. Water was daily spiked at 10 μg Ag L-1. Ag concentrations in water and sediment reached values of 13.4 μg Ag L-1 and 0.30 μg Ag g-1 in the Ag2S NP exposure, and 12.8 μg Ag L-1 and 0.20 μg Ag g-1 in the AgNO3. Silver was bioaccumulated by the species from both treatments, but with approximately 1.5, 3 and 11 times higher body Ag concentrations in AgNO3 compared to Ag2S NP exposures in snails, chironomids and planarians, respectively. In the Ag2S NP exposures, the observed uptake was probably of the particulate form. This demonstrates that this more environmentally relevant Ag nanoform may be bioavailable for uptake by benthic organisms. Interspecies interactions likely occurred, namely predation (planarians fed on chironomids and snails), which somehow influenced Ag uptake/bioaccumulation, possibly by altering organisms´ foraging behaviour. Higher Ag uptake rate constants were determined for AgNO3 (0.64, 80.4 and 1.12 Lwater g-1organism day-1) than for Ag2S NPs (0.05, 2.65 and 0.32 Lwater g-1organism day-1) for planarians, snails and chironomids, respectively. Biomagnification under environmentally realistic exposure seemed to be low, although it was likely to occur in the food chain P. acuta to G. tigrina exposed to AgNO3. Single-species tests generally could not reliably predict Ag bioaccumulation in the more complex mesocosm scenario. This study provides methodologies/data to better understand exposure, toxicokinetics and bioaccumulation of Ag in complex systems, reinforcing the need to use mesocosm studies to improve the risk assessment of environmental contaminants, specifically NPs, in aquatic environments.
Collapse
Affiliation(s)
- Patrícia V Silva
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Ana Rita R Silva
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Nathaniel J Clark
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | - Joanne Vassallo
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | - Marta Baccaro
- Department of Toxicology, Wageningen University, Wageningen, the Netherlands
| | - Neja Medvešček
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Magdalena Grgić
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, 31000 Osijek, Croatia
| | - Abel Ferreira
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | | | - Kerstin Jurkschat
- Department of Materials, Oxford University Begbroke Science Park, Begbroke, UK
| | - Anastasios G Papadiamantis
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT Birmingham, UK; NovaMechanics Ltd., 1065 Nicosia, Cyprus
| | - Victor Puntes
- Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC, The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain; Vall d'Hebron Institut de Recerca (VHIR), 08035 Barcelona, Spain
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT Birmingham, UK
| | - Claus Svendsen
- Centre of Ecology and Hydrology (CEH-NERC), Wallingford, UK
| | | | - Richard D Handy
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | - Cornelis A M van Gestel
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, the Netherlands
| | - Susana Loureiro
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
2
|
Silva PV, Santos CSA, Papadiamantis AG, Gonçalves SF, Prodana M, Verweij RA, Lynch I, van Gestel CAM, Loureiro S. Toxicokinetics of silver and silver sulfide nanoparticles in Chironomus riparius under different exposure routes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161087. [PMID: 36566851 DOI: 10.1016/j.scitotenv.2022.161087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Engineered nanoparticles released into surface water may accumulate in sediments, potentially threatening benthic organisms. This study determined the toxicokinetics in Chironomus riparius of Ag from pristine silver nanoparticles (Ag NPs), a simulating aged Ag NP form (Ag2S NPs), and AgNO3 as an ionic control. Chironomid larvae were exposed to these Ag forms through water, sediment, or food. The potential transfer of Ag from larvae to adult midges was also evaluated. Results revealed higher Ag uptake by C. riparius upon exposure to Ag2S NPs, while larvae exposed to pristine Ag NPs and AgNO3 generally presented similar uptake kinetics. Uptake patterns of the different Ag forms were generally similar in the tests with water or sediment exposures, suggesting that uptake from water was the most important route of Ag uptake in both experiments. For the sediment bioaccumulation test, uptake was likely a combination of water uptake and sediment particles ingestion. Ag uptake via food exposure was only significant for Ag2S NPs. Ag transfer to the terrestrial compartment was low. In our environmentally relevant exposure scenario, chironomid larvae accumulated relatively high Ag concentrations and elimination was extremely low in some cases. These results suggest that bioaccumulation of Ag in its nanoparticulate and/or ionic form may occur in the environment, raising concerns regarding chronic exposure and trophic transfer. This is the first study determining the toxicokinetics of NPs in Chironomus, providing important information for understanding chironomid exposure to NPs and their potential interactions in the environment.
Collapse
Affiliation(s)
- Patrícia V Silva
- CESAM-Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Cátia S A Santos
- CESAM-Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Anastasios G Papadiamantis
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK; NovaMechanics Ltd., 1065 Nicosia, Cyprus
| | - Sandra F Gonçalves
- CESAM-Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Marija Prodana
- CESAM-Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Rudo A Verweij
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK
| | - Cornelis A M van Gestel
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| | - Susana Loureiro
- CESAM-Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
3
|
A Multidisciplinary Approach for the Assessment of Origin, Fate and Ecotoxicity of Metal(loid)s from Legacy Coal Mine Tailings. TOXICS 2021; 9:toxics9070164. [PMID: 34357907 PMCID: PMC8309815 DOI: 10.3390/toxics9070164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/01/2021] [Accepted: 07/08/2021] [Indexed: 11/21/2022]
Abstract
Over the course of history, the development of human societies implied the exploitation of mineral resources which generated huge amounts of mining wastes leading to substantial environmental contamination by various metal(loid)s. This is especially the case of coal mine tailings which, subjected to weathering reactions, produce acid mine drainage (AMD), a recurring ecological issue related to current and past mining activities. In this study, we aimed to determine the origin, the fate and the ecotoxicity of metal(loid)s leached from a historical coal tailing heap to the Beuveroux river (Franche-Comté, France) using a combination of mineralogical, chemical and biological approaches. In the constitutive materials of the tailings, we identified galena, tetrahedrite and bournonite as metal-rich minerals and their weathering has led to massive contamination of the water and suspended particles of the river bordering the heap. The ecotoxicity of the AMD has been assessed using Chironomus riparius larvae encaged in the field during a one-month biomonitoring campaign. The larvae showed lethal and sub-lethal (growth and emergence inhibition and delay) impairments at the AMD tributary and near downstream stations. Metal bioaccumulation and subcellular fractionation in the larvae tissues revealed a strong bioavailability of, notably, As, Pb and Tl explaining the observed biological responses. Thus, more than 70 years after the end of mining operations, the coal tailings remain a chronic source of contamination and environmental risks in AMD effluent receiving waters.
Collapse
|
4
|
Khosrovyan A, Kahru A. Evaluation of the hazard of irregularly-shaped co-polyamide microplastics on the freshwater non-biting midge Chironomus riparius through its life cycle. CHEMOSPHERE 2020; 244:125487. [PMID: 31835048 DOI: 10.1016/j.chemosphere.2019.125487] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 05/22/2023]
Abstract
Plastics pollution is increasingly attracting societal and political attention. However, despite extensive research effort recently dedicated to the hazard of plastics in the environment, the data obtained are often redundant and essential knowledge gaps exist: available freshwater ecotoxicity data mostly concern Daphnia magna and are derived from acute exposure to spherical particles. In this paper, we address this gap by exploring the biological effects of irregularly-shaped co-polyamide (PA, 10-180 μm) on Chironomus riparius - a very versatile organism that during its life-stages inhabits both sediment and water column - relevant compartments for microplastics (MP) pollution. C. riparius represents an important part of the freshwater food chain and is also a standard OECD test organism. Different toxicity endpoints along the life cycle of C. riparius (28 days) were used as described in OECD 218: emergence, time to emergence, sex ratio of imagoes and the number of egg clutches per female. Chironomid larvae were exposed to 100 mg PA kg-1 (i.e., 10,100 particles kg-1) sediment throughout. Soluble Zn-salt (1 mg Zn L-1) was used as a positive control and as a co-pollutant in combination with PA. We demonstrated that the tested concentrations of PA and Zn alone as well in combination showed no adverse effects for C. riparius in chronic exposures. 100 mg PA kg-1 also did not affect the life cycle traits of the offspring of PA-exposed parent Chironomids. The data obtained will be useful for environmental risk assessment of PA when actual environmental concentrations of PA will be available.
Collapse
Affiliation(s)
- Alla Khosrovyan
- National Institute of Chemical Physics and Biophysics, Laboratory of Environmental Toxicology, Akadeemia tee 23, 12618, Tallinn, Estonia.
| | - Anne Kahru
- National Institute of Chemical Physics and Biophysics, Laboratory of Environmental Toxicology, Akadeemia tee 23, 12618, Tallinn, Estonia; Estonian Academy of Sciences, Kohtu 6, 10130, Tallinn, Estonia.
| |
Collapse
|
5
|
Aladaileh SH, Khafaga AF, Abd El-Hack ME, Al-Gabri NA, Abukhalil MH, Alfwuaires MA, Bin-Jumah M, Alkahtani S, Abdel-Daim MM, Aleya L, Abdelnour S. Spirulina platensis ameliorates the sub chronic toxicities of lead in rabbits via anti-oxidative, anti- inflammatory, and immune stimulatory properties. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 701:134879. [PMID: 31734488 DOI: 10.1016/j.scitotenv.2019.134879] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/05/2019] [Accepted: 10/06/2019] [Indexed: 06/10/2023]
Abstract
Lead acetate (Pb) is an oldest and widespread environmental toxicant that led to cumulative injury in humans and all living organisms through induction of oxidative stress. Spirulina platensis (SP) is a cyanobacteria with strong antioxidant, anti-inflammatory, and immune stimulatory effects. In this study, the ameliorative effect of SP was evaluated against the dietary sub chronic lead toxicities in rabbits. A total number of 75 male New Zealand rabbits were allocated randomly into 5 groups; the first group feed on basal diet alone and served as control group, the second group feed on basal diet + 100 mg Pb /kg diet, the third, fourth, and the fifth groups feed on basal diet + 100 mg Pb /kg diet + SP (0.5, 1, or 1.5 g/kg diet; respectively), the experiment was extended for 8 weeks. Results revealed a significant improvement in some of growth parameters like final body weight and daily weight gain, blood parameters in rabbits treated with SP at level 1.5 g/kg diet followed by those receiving SP 1 g/kg diet. However, a significant decrease in blood parameters, liver function, renal parameters, lipid profiles, oxidative parameters (malondialdehyde and protein carbonyl), heart indices (creatine phosphokinase, creatine kinase-muscle/brain, lactate dehydrogenase), total Pb residues in muscles, and area percent of nuclear factor kappa b immune expression were reported in groups supplemented with different levels of SP. Pathologic analysis of liver, kidneys, and heart revealed moderate to severe degenerative and necrotic changes in Pb- exposed rabbits, which is ameliorated with supplementation of SP in different levels. Conclusively, dietary supplementation of SP at different levels attenuated the cumulative effect of lead in rabbits in dose-dependent manner; this attenuation may be attributed to its anti-oxidative, anti-inflammatory, as well as its immune stimulant effect.
Collapse
Affiliation(s)
- Saleem H Aladaileh
- Department of Medical Analysis, Princess Aisha Bint Al-Hussein Faculty of Nursing and Health Sciences, Al-Hussein Bin Talal University, Jordan; Department of Biology, Faculty of Science, Al-Hussein Bin Talal University, Jordan
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, 22758 Edfina, Egypt
| | - Mohamed E Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Naif A Al-Gabri
- Veterinary Department, Faculty of Agriculture and Veterinary Medicine, Thamar University, Dhamar 2153, Yemen
| | - Mohammad H Abukhalil
- Department of Medical Analysis, Princess Aisha Bint Al-Hussein Faculty of Nursing and Health Sciences, Al-Hussein Bin Talal University, Jordan; Department of Biology, Faculty of Science, Al-Hussein Bin Talal University, Jordan
| | - Manal A Alfwuaires
- Department of Biology, Faculty of Science, King Faisal University, Al-Hassa, Saudi Arabia
| | - May Bin-Jumah
- Biology Department, Faculty of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, F-25030 Besançon Cedex, France.
| | - Sameh Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
6
|
Song Y, Kirkwood N, Maksimović Č, Zheng X, O'Connor D, Jin Y, Hou D. Nature based solutions for contaminated land remediation and brownfield redevelopment in cities: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 663:568-579. [PMID: 30726765 DOI: 10.1016/j.scitotenv.2019.01.347] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 01/25/2019] [Accepted: 01/26/2019] [Indexed: 05/26/2023]
Abstract
Urban industrialization has caused severe land contamination at hundreds of thousands of sites in cities all around the world, posing a serious health risk to millions of people. Many contaminated brownfield sites are being left abandoned due to the high cost of remediation. Traditional physical and chemical remediation technologies also require high energy and resource input, and can result in loss of land functionality and cause secondary pollution. Nature-based solutions (NBS) including phytoremediation and conversion of brownfield sites to public greenspaces, holds much promise in maximizing a sustainable urban renaissance. NBS is an umbrella concept that can be used to capture nature based, cost effective and eco-friendly treatment technologies, as well as redevelopment strategies that are socially inclusive, economically viable, and with good public acceptance. The NBS concept is novel and in urgent need of new research to better understand the pros and cons, and to enhance its practicality. This review article summarizes NBS's main features, key technology choices, case studies, limitations, and future trends for urban contaminated land remediation and brownfield redevelopment.
Collapse
Affiliation(s)
- Yinan Song
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Niall Kirkwood
- Graduate School of Design, Harvard University, 48 Quincy Street, Cambridge, MA 02138, USA
| | - Čedo Maksimović
- Department of Civil Engineering, Imperial College, London SW7 2AZ, UK
| | - Xiaodi Zheng
- School of Architecture, Tsinghua University, Beijing 100084, China
| | - David O'Connor
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yuanliang Jin
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
7
|
Aleya L, Grisey E, Bourioug M, Bourgeade P. Performance assessment of Etueffont (France) lagooning treatment system: Report from a 16-year survey. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 648:518-529. [PMID: 30121531 DOI: 10.1016/j.scitotenv.2018.08.177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/04/2018] [Accepted: 08/14/2018] [Indexed: 06/08/2023]
Abstract
This study examined the lagooning treatment system of the Etueffont landfill (France) over a period of 16 years. Outflow concentrations in total suspended solids, biological oxygen demand (BOD5) and trace metal elements largely met outflow standards and were on average of 5, 8 and 6 times lower than those observed at inflow, respectively. In 2000, however, high levels of BOD5 were observed in both the influent and effluent, exceeding the authorized outflow limits. At that time the lagooning ponds were subjected temporarily to organic pollution, coinciding with the arrival of the first leachates from a new cell. Though the chemical oxygen demand (COD) and total organic carbon in the influent exceeded authorized limits, overall values conformed to official standards with outflow exhibiting mean concentrations four times lower than those observed at inflow. The first period took place just after the arrival from the new cell of young leachates containing a very high level of COD (>10,000 mg L-1), causing an organic overload that led to a temporary dysfunctioning of the treatment installation lasting approximately two years. Additionally, the COD in the leachates fell below the strictest limits (125 mg L-1) at the end of monitoring (2005-2009). The initial nitrogen load brought in by the influent decreased progressively over time, evidence of continuous degradation. At the end of monitoring, regardless of the arriving inflow load, the discharge presented stable concentrations of approximately 30 mg L-1, appearing to indicate that the limits for nitrogen elimination. Total phosphorus elimination was optimal as the concentrations at outflow were minimal throughout most of monitoring, even though the phosphorus load at inflow was from two to thirty-five times greater. Thus, the findings show that landfill leachates in the methanogenic phase can be treated efficiently by lagooning without risk to the surrounding environment.
Collapse
Affiliation(s)
- Lotfi Aleya
- Laboratoire Chrono-Environnement, UMR CNRS 6249, University of Franche-Comté, F-25030 Besançon, France.
| | - Elise Grisey
- Laboratoire Chrono-Environnement, UMR CNRS 6249, University of Franche-Comté, F-25030 Besançon, France; Atelier d'Écologie Urbaine, 9 avenue Philippe Auguste, 75011 Paris, France
| | - Mohamed Bourioug
- Départment d'Agronomie et d'Amélioration des Plantes, Ecole Nationale d'Agriculture de Meknès, km. 10, Route Haj Kaddour, B.P. S/40, 50001 Meknès, Morocco
| | - Pascale Bourgeade
- Laboratoire Chrono-Environnement, UMR CNRS 6249, University of Franche-Comté, F-25030 Besançon, France
| |
Collapse
|