1
|
Mawad AMM, Aldaby ESE, Madany MMY, Dawood MFA. The application of PAHs-Degrading Pseudomonas aeruginosa to mitigate the phytotoxic impact of pyrene on barley (Hordeum vulgare L.) and broad bean (Vicia faba L.) plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:108959. [PMID: 39111222 DOI: 10.1016/j.plaphy.2024.108959] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/27/2024] [Accepted: 07/21/2024] [Indexed: 09/15/2024]
Abstract
Mitigating the negative impacts of polycyclic aromatic hydrocarbons (PAHs) is an urgent need due to their toxicity and persistence in the environment. This study investigated the use of Pseudomonas aeruginosa ASU-B6 to detoxify pyrene (PY). The bacterium P. aeruginosa ASU-B6 is capable of degrading PY by 92% as a sole carbon source after 15 days of incubation with phthalate being the major metabolic product. In this regard, the impact of pyrene (PY), P. aeruginosa ASU-B6 (ASU-B6), the bacterial strain combined with pyrene (ASU-B6/PY) and the metabolites produced after pyrene degradation (PY-metabolites) on the germination and physiological attributes of Hordeum vulgare and Vicia faba seedlings were studied. A single application of PY or ASU-B6 showed a toxic effect on the germination of both tested seeds. Interestingly, broad bean seedlings exhibited less sensitivity to PY stress in terms of growth and metabolism compared to barley. Notably, ASU-B6 inhibited fresh and dry weight of shoots and roots of barley and, to a lesser extent, reduced the germination of broad beans compared to the control. However, the combined PY-metabolites and ASU-B6/PY showed a mutual ameliorative effect on seedlings growth, alleviating the phytotoxic impact of each component. Pyrene reduced the virulence of ASU-B6 by inhibiting the production of pyocyanin pigment, while bacteria ameliorated pyrene toxicity through its degradation. Heatmap and principal component analyses highlighted that increasing the contents of hydrogen peroxide, superoxide anion, hydroxyl radical, and lipid peroxidation positively correlated to the toxicity of PY or ASU-B6. However, improving the antioxidant system which buffers the oxidative stress induced by different combinations of PY and ASU-B6 enhanced the growth of germinated seedlings corresponding to PY or ASU-B6. This study reflected the role of ASU-B6 in ameliorating PY-phytotoxicity. In addition, the application of ASU-B6 strain is recommended as a prospective candidate for remediation of PAHs-contaminated environment with a positive impact on the plant growth and metabolic products.
Collapse
Affiliation(s)
- Asmaa M M Mawad
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt; Department of Biology, College of Science, Taibah University, Madinah, 41411, Saudi Arabia.
| | - Eman S E Aldaby
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
| | - Mahmoud M Y Madany
- Department of Biology, College of Science, Taibah University, Madinah, 41411, Saudi Arabia; Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| | - Mona F A Dawood
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
| |
Collapse
|
2
|
Petroleum Hydrocarbon Catabolic Pathways as Targets for Metabolic Engineering Strategies for Enhanced Bioremediation of Crude-Oil-Contaminated Environments. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9020196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Anthropogenic activities and industrial effluents are the major sources of petroleum hydrocarbon contamination in different environments. Microbe-based remediation techniques are known to be effective, inexpensive, and environmentally safe. In this review, the metabolic-target-specific pathway engineering processes used for improving the bioremediation of hydrocarbon-contaminated environments have been described. The microbiomes are characterised using environmental genomics approaches that can provide a means to determine the unique structural, functional, and metabolic pathways used by the microbial community for the degradation of contaminants. The bacterial metabolism of aromatic hydrocarbons has been explained via peripheral pathways by the catabolic actions of enzymes, such as dehydrogenases, hydrolases, oxygenases, and isomerases. We proposed that by using microbiome engineering techniques, specific pathways in an environment can be detected and manipulated as targets. Using the combination of metabolic engineering with synthetic biology, systemic biology, and evolutionary engineering approaches, highly efficient microbial strains may be utilised to facilitate the target-dependent bioprocessing and degradation of petroleum hydrocarbons. Moreover, the use of CRISPR-cas and genetic engineering methods for editing metabolic genes and modifying degradation pathways leads to the selection of recombinants that have improved degradation abilities. The idea of growing metabolically engineered microbial communities, which play a crucial role in breaking down a range of pollutants, has also been explained. However, the limitations of the in-situ implementation of genetically modified organisms pose a challenge that needs to be addressed in future research.
Collapse
|
3
|
Imam A, Kumar Suman S, Kanaujia PK, Ray A. Biological machinery for polycyclic aromatic hydrocarbons degradation: A review. BIORESOURCE TECHNOLOGY 2022; 343:126121. [PMID: 34653630 DOI: 10.1016/j.biortech.2021.126121] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are hazardous environmental pollutants with widespread and well-recognized health concerns. Amidst more than a hundred known PAHs, 16 are categorized as priority pollutants. Use of widely diverse biological machinery comprising bacteria, fungi, and algae harnessed from contaminated sites has emerged as an ecologically safe and sustainable approach for PAH degradation. The potential of these biological systems has been thoroughly examined to maximize the degradation of specific PAHs by understanding their detailed biochemical pathways, enzymatic system, and gene organization. Recent advancements in microbial genetic engineering and metabolomics using modern analytical tools have facilitated the bioremediation of such xenobiotics. This review explores the role of microbes, their biochemical pathways, genetic regulation of metabolic pathways, and the effect of biosurfactants against the backdrop of PAH substrate structures.
Collapse
Affiliation(s)
- Arfin Imam
- Analytical Sciences Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun 248005, Uttarakhand, India; Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun 248005, Uttarakhand, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, India
| | - Sunil Kumar Suman
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun 248005, Uttarakhand, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, India
| | - Pankaj K Kanaujia
- Analytical Sciences Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun 248005, Uttarakhand, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, India
| | - Anjan Ray
- Analytical Sciences Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun 248005, Uttarakhand, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, India.
| |
Collapse
|
4
|
Zhao Z, Xia L, Qin Z, Cao J, Omer Mohammed AA, Toland H. The environmental fate of phenanthrene in paddy field system and microbial responses in rhizosphere interface: Effect of water-saving patterns. CHEMOSPHERE 2021; 269:128774. [PMID: 33143890 DOI: 10.1016/j.chemosphere.2020.128774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
The effects of water-saving patterns (Semi-dry water-saving, B; Shallow-wet control irrigation, Q; Traditional flooding irrigation, C; and Moistening irrigation, S) on the environmental fate of phenanthrene (Phe) and microbial responses in rhizosphere were investigated in paddy field system. Results showed the rice grain in Q treatment was more high production and safety with less Phe residue (up to 18%-49%) than other treatments, and the residual Phe in soil declined in the order: C (14.17%) > S (13.36%) > B (5.86%)>Q (2.70%), which proves the existence of optimal water conditions for PAHs degradation and rhizosphere effect during rice cultivation. Laccase (LAC) and dioxygenase (C23O) played important roles in Phe degradation, which were significantly positively correlated with Phe dissipation rate in soil (p < 0.01). Moreover, their activities in Q treatment, rhizosphere and subsoil were higher than those in C treatment, non-rhizoshere and upper layer soil. The introduction of Phe and rice into paddy field system decreased the microorganism diversity, and promoted the activities of enzymes and some PAHs degrading bacteria, such as Delftia, Serratia, Enterobacter, Pseudomonas, norank_f_Rhodospirillaceae, norank_f_Nitrosomonadaceae and so on. According to the cluster analysis, redundancy analysis and correlation analysis between bacterial community composition and environmental factors, water-saving patterns markedly impacted the relative abundance and bacterial community structure by the regulating and controlling on environmental conditions of paddy field. The dioxygenase activity, laccase activity, oxidation-reduction potential and conductivity were the main affecting factors on Phe dissipation during growth stage of rice.
Collapse
Affiliation(s)
- Zhenhua Zhao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China; Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA.
| | - Liling Xia
- School of Computer & Software, Nanjing Institute of Industry Technology, Nanjing, 210016, PR China.
| | - Zhirui Qin
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Jingjing Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Abduelrahman Adam Omer Mohammed
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China; Water Harvesting Center, Nyala University, Nyala, Sudan
| | - Harry Toland
- Department of Geography and Earth Sciences, Aberystwyth University, Penglais, Aberystwyth, Ceredigion, SY23 3DB, UK
| |
Collapse
|
5
|
Espinosa Zaragoza S, Sánchez Cruz R, Sanzón Gómez D, Escobar Sandoval MC, Yañez Ocampo G, Morales Constantino MA, Wong Villarreal A. IDENTIFICATION OF ENDOPHYTIC BACTERIA OF SEEDS FROM Cedrela odorata L. (Meliaceae) WITH BIOTECHNOLOGICAL CHARACTERISTICS. ACTA BIOLÓGICA COLOMBIANA 2021. [DOI: 10.15446/abc.v26n2.85325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In the present study, 62 endophytic bacterial strains of cedar seeds (Cedrela odorataL.), collected in the municipalities of Huehuetán, Motozintla, and Pijijiapan in the state of Chiapas, Mexico were isolated. The goal was to identify characteristics of biotechnological interest such as biocontrol, promotion of plant growth, and growth in aromatic compounds. The strains were identified by the partial sequence of the 16S ribosomal gene as belonging to the Bacillusgenus. The biocontrol capacity of phytopathogenic fungi, production of indoleacetic acid (IAA), solubilization of phosphate, and growth in xenobiotic compounds (phenanthrene, benzene, anthracene, or phenol) were detected in 26 strains of the 62 isolates. 21 % of the strains inhibited the mycelial growth of Alternaria solaniand Fusariumsp., and 13 % of the Phytophthora capsicioomycete. IAA production was detected in 24 isolates, phosphate solubilizing activity was identified in 18 isolates, while the ability to grow in the presence of phenanthrene and benzene was found in 26 isolates; 24 isolates grew in the presence of anthracene and only two isolates grew in phenol as the only carbon sources. This is the first report of the isolation and identification of endophytic bacteria from cedar seeds, where biotechnological characteristics were detected for biological control, promotion of plant growth, and growth in the presence of xenobiotic compounds.
Collapse
|
6
|
Ge S, Gu J, Ai W, Dong X. Biotreatment of pyrene and Cr(VI) combined water pollution by mixed bacteria. Sci Rep 2021; 11:114. [PMID: 33420172 PMCID: PMC7794335 DOI: 10.1038/s41598-020-80053-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 12/15/2020] [Indexed: 01/05/2023] Open
Abstract
Pyrene and chromium (Cr(VI)) are persistent pollutants and cause serious environmental problems because they are toxic to organisms and difficult to remediate. The toxicity of pyrene and Cr(VI) to three crops (cotton, soybean and maize) was confirmed by the significant decrease in root and shoot biomass during growth in pyrene/Cr(VI) contaminated hydroponic solution. Two bacterial strains capable of simultaneous pyrene biodegradation and Cr(VI) reduction were isolated and identified as Serratia sp. and Arthrobacter sp. A mixture of the isolated strains at a ratio of 1:1 was more efficient for biotreatment of pyrene and Cr(VI) than either strain alone; the mixture effectively carried out bioremediation of contaminated water in a hydroponic system mainly through pyrene biodegradation and Cr(VI) reduction. Application of these isolates shows potential for practical microbial remediation of pyrene and Cr(VI) combined water pollution.
Collapse
Affiliation(s)
- Shimei Ge
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, Zhejiang, China
| | - Junxia Gu
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, Zhejiang, China
| | - Wenjing Ai
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, Zhejiang, China
| | - Xinjiao Dong
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
7
|
Li Z, Wang W, Zhu L. A three-phase-successive partition-limited model to predict plant accumulation of organic contaminants from soils treated with surfactants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 261:114071. [PMID: 32062458 DOI: 10.1016/j.envpol.2020.114071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 01/17/2020] [Accepted: 01/23/2020] [Indexed: 06/10/2023]
Abstract
The application of surfactants is an effective way to inhibit the migration of organic contaminants (OCs) from soil to plants, and thus would be a great candidate method for producing safe agricultural products in organic-contaminated farmland. In this study, it was found that cetyltrimethyl ammonium bromide (CTMAB) reduced the OCs in cabbage by 22.0-64.1%, and those in lettuce by 18.8-36.5%. We developed a mathematical model to predict the accumulation of OCs in plants in the presence of surfactants. The successive partitioning of OCs among three phases, namely, soil, soil water and plant roots, was considered. The equilibrium of OC between the soil and soil water was scaled using the sorption coefficient of OCs on soils normalized by the soil organic carbon (Koc) and carbon-normalized OCs sorption coefficient with the sorbed surfactants (Kss). To precisely calculate the Koc and Kss, the bioavailable and bound OCs were measured using a sequential extraction method. Linear positive correlations between the logarithm of Koc (or Kss) and the logarithm of the octanol-water partition coefficient (log Kow) of OCs were established for laterite soils, paddy soils and black soils. In the presence of CTMAB, the equilibrium of OCs between the soil water and plant roots was scaled using the carbon-normalized OC sorption coefficient with the sorbed surfactants (Ksf), whose logarithmic value was linearly correlated with the log Kow of the OCs. A three-phase-successive partition-limited model was developed based on these relationships, demonstrating an average prediction accuracy of 76.6 ± 36.8%. Our results indicated that the decrease in bioavailable OCs in soils and the increase in sorption of OCs on roots should be taken into consideration when predicting plant uptake. This research provides a validated mathematical model for predicting the concentration of OCs in plants in the presence of surfactants.
Collapse
Affiliation(s)
- Zhiheng Li
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China
| | - Wei Wang
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
8
|
Waigi MG, Wang J, Yang B, Gudda FO, Ling W, Liu J, Gao Y. Endophytic Bacteria in in planta Organopollutant Detoxification in Crops. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 252:1-50. [PMID: 31451946 DOI: 10.1007/398_2019_33] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Microbe-assisted organopollutant removal, or in planta crop decontamination, is based on an interactive system between organopollutant-degrading endophytic bacteria (DEBOP) and crops in alleviating organic toxins in plants. This script focuses on the fast-growing body of literature that has recently bloomed in organopollutant control in agricultural plants. The various facets of DEBOP under study include their colonization, distribution, plant growth-promoting mechanisms, and modes of action in the detoxification process in plants. Also, an assessment of the biotechnological advances, advantages, and bottlenecks in accelerating the implementation of this decontamination strategy will be undertaken. The highlighted key research directions from this review will shape the future of agro-environmental sustainability and preservation of human health.
Collapse
Affiliation(s)
- Michael Gatheru Waigi
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jian Wang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Bing Yang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Fredrick Owino Gudda
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Wanting Ling
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Juan Liu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
9
|
Zeng J, Zhu Q, Li Y, Dai Y, Wu Y, Sun Y, Miu L, Chen H, Lin X. Isolation of diverse pyrene-degrading bacteria via introducing readily utilized phenanthrene. CHEMOSPHERE 2019; 222:534-540. [PMID: 30721812 DOI: 10.1016/j.chemosphere.2019.01.189] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 01/17/2019] [Accepted: 01/31/2019] [Indexed: 06/09/2023]
Abstract
Bacteria able to degrade pyrene play a critical role in the biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons (PAHs). However, the traditional isolation procedure only obtains strains related to the genus Mycobacterium. The aim of the present study was to develop a modified method to isolate taxonomically distinct pyrene-degrading strains. The results indicated that replacing pyrene with phenanthrene in the isolation step improved the isolation efficiency. Using the modified method, six PAH degraders belonging to the genera Bosea, Arthrobacter, Paenibacillus, Bacillus, and Rhodococcus were obtained. They were capable of effectively utilizing pyrene (∼100%) as their sole carbon source, and could co-metabolize the degradation of benzo [a]pyrene (26.9-71.5%). In contrast, a small amount of pyrene (5.6%) and benzo [a]pyrene (8.6%) were degraded by a phenanthrene-degrading Sphingobium sp. NS7 under the same conditions. The difference in PAHs degradation between agar plate culture and liquid culture may lead to the low isolation efficiency in the traditional procedure. Hereditary stability analysis showed that PAH degradation capability of the Bosea, Paenibacillus, and Rhodococcus strains were easily lost without PAH pressure, which may partly explain why those strains were difficult to obtain using the traditional method.
Collapse
Affiliation(s)
- Jun Zeng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Beijing East Road, 71, Nanjing, 210008, PR China
| | - Qinghe Zhu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Beijing East Road, 71, Nanjing, 210008, PR China
| | - Yanjie Li
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Beijing East Road, 71, Nanjing, 210008, PR China
| | - Yeliang Dai
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Beijing East Road, 71, Nanjing, 210008, PR China
| | - Yucheng Wu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Beijing East Road, 71, Nanjing, 210008, PR China
| | - Yuhan Sun
- High School Affiliated To Nanjing Normal University, Chahaer Road, 37, Nanjing, 210003, PR China
| | - Luyi Miu
- High School Affiliated To Nanjing Normal University, Chahaer Road, 37, Nanjing, 210003, PR China
| | - Hong Chen
- Soil and Environment Analysis Center, Institute of Soil Science, Chinese Academy of Science, PR China
| | - Xiangui Lin
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Beijing East Road, 71, Nanjing, 210008, PR China.
| |
Collapse
|
10
|
Anyasi RO, Atagana HI, Sutherland R. Identification and characterization of PAH-degrading endophytes isolated from plants growing around a sludge dam. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 21:672-682. [PMID: 30942084 DOI: 10.1080/15226514.2018.1556585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This study involved the isolation of bacteria endophytes with PAH-degrading ability from plants growing around a sludge dam. A total of 19 distinct isolates that were morphologically identified were isolated from 4 species of plant with a follow-up confirmatory identification using the molecular technique. Polymerase chain reaction (PCR) of the 16S rRNA gene with specific primers (16S-27F PCR and 16S-1491R PCR) was carried out. The sequence of the PCR products was carried out, compared with similar nucleotides available in GenBank. Results of the phylogenetic analysis of the isolates indicated their belonging to 4 different clades including Proteobacteria, Actinobacteria, Cyanobacteria, and Firmicutes. These were related to the genera Bacillus, Pseudomonas, Terribacillus, Virgibacillus, Stenotrophomonas, Paenibacillus, Brevibacterium, Geobacillus, Acinetobacter. From the result, Pseudomonas demonstrated a high incidence in the plants sampled. The in-vitro degradation study and the presence of dioxygenase genes indicated that these lists of endophytes are able to use the list of PAHs tested as their source of food and energy leading to their breakdown. This means that the bacterial endophytes contributed to the remediation of petroleum hydrocarbons in planta, a situation that may have been phytotoxic to plant alone. Therefore, these bacteria endophytes could be potential organisms for enhanced phytoremediation of PAHs.
Collapse
Affiliation(s)
- Raymond O Anyasi
- a Department of Environmental Sciences, Institute for Science and Technology Education , University of South Africa , Pretoria , South Africa
| | - Harrison I Atagana
- a Department of Environmental Sciences, Institute for Science and Technology Education , University of South Africa , Pretoria , South Africa
| | - Rene Sutherland
- b Plant Protection Unit , Agricultural Research Council , Pretoria , South Africa
| |
Collapse
|
11
|
Muangchinda C, Chamcheun C, Sawatsing R, Pinyakong O. Diesel oil removal by Serratia sp. W4-01 immobilized in chitosan-activated carbon beads. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:26927-26938. [PMID: 30008160 DOI: 10.1007/s11356-018-2742-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 07/09/2018] [Indexed: 04/16/2023]
Abstract
Serratia sp. W4-01 was immobilized in chitosan-activated carbon beads and used for diesel oil removal. The type and concentration of chitosan, activated carbon content, and bead diameter were investigated as factors affecting diesel oil removal. The results showed that 2% (w/v) squid pen chitosan beads modified with 1% activated carbon (w/v) and with a 3-mm diameter had a good spherical shape and strength as well as diesel oil removal capability. The immobilized W4-01 cells removed more than 40% of diesel oil after 7 days when the initial diesel oil concentration was 100 to 400 mg L-1, whereas 29-36% of diesel oil was removed after 14 days when the initial concentration was 800 to 1000 mg L-1. Additionally, the immobilized cells maintained the ability to remove diesel oil over a pH range of 5-11. The addition of a biosurfactant increased the diesel oil removal from 62 to 75%. The reusability tests revealed that the ability of immobilized cells to remove diesel oil was enhanced after reuse, and 50-90% of diesel oil was removed during 2 to 12 reuse cycles. The stability and survival of W4-01 cells was confirmed by scanning electron microscopy and confocal laser scanning microscopy. The results of this study showed the potential use of W4-01 cells immobilized in chitosan-activated carbon beads for future applications in remediating diesel contamination.
Collapse
Affiliation(s)
- Chanokporn Muangchinda
- Microbial Technology for Marine Pollution Treatment Research Unit, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chalinee Chamcheun
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Rajitpitch Sawatsing
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Onruthai Pinyakong
- Microbial Technology for Marine Pollution Treatment Research Unit, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Research Program on Remediation Technologies for Petroleum Contamination, Center of Excellence on Hazardous Substance Management (HSM), Bangkok, 10330, Thailand.
| |
Collapse
|