1
|
Yuan C, Davis AP, Kaya D, Kjellerup BV. Distribution and biodegradation potential of polycyclic aromatic hydrocarbons (PAHs) accumulated in media of a stormwater bioretention. CHEMOSPHERE 2023:139188. [PMID: 37302503 DOI: 10.1016/j.chemosphere.2023.139188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/13/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a group of organic compounds that can be captured and accumulate in the bioretention cell media, which may lead to secondary pollution and ecological risks. This research aimed to understand the spatial distribution of 16 priority PAHs in bioretention media, identify their sources, evaluate their ecological impact, and assess the potential for their aerobic biodegradation. The highest total PAH concentration (25.5 ± 1.7 μg/g) was observed 1.83 m from the inlet and 10-15 cm deep. The individual PAHs with the highest concentrations were benzo [g,h,i]perylene in February (1.8 ± 0.8 μg/g) and pyrene in June (1.8 ± 0.8 μg/g). Data indicated that primary sources of PAHs were fossil fuel combustion and petroleum. The ecological impact and toxicity of the media were assessed by probable effect concentrations (PECs) and benzo [a]pyrene total toxicity equivalent (BaP-TEQ). The results showed that the concentrations of pyrene and chrysene exceeded the PECs, and the average BaP-TEQ was 1.64 μg/g, primarily caused by benzo [a]pyrene. The functional gene (C12O) of PAH-ring cleaving dioxygenases (PAH-RCD) was present in the surface media, which indicated that aerobic biodegradation of PAHs was possible. Overall, this study revealed the PAHs accumulated most at medium distance and depth, where biodegradation may be limited. Thus, the accumulation of PAHs below the surface of the bioretention cell may need to be considered during long-term operation and maintenance.
Collapse
Affiliation(s)
- Chen Yuan
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Allen P Davis
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Devrim Kaya
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Birthe V Kjellerup
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
2
|
Österlund H, Blecken G, Lange K, Marsalek J, Gopinath K, Viklander M. Microplastics in urban catchments: Review of sources, pathways, and entry into stormwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159781. [PMID: 36309285 DOI: 10.1016/j.scitotenv.2022.159781] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/24/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Urban areas play a key role in the production of microplastics (MPs) and their entry into water bodies. This article reviews the literature on the sources, transport, and control of MPs in urban environments with the aim of clarifying the mechanisms underlying these processes. Major MP sources include atmospheric deposition, micro-litter, and tire and road wear particles (TRWPs). MPs deposited from the atmosphere are mostly fibers and may be particularly important in catchments without traffic. Littering and attrition of textiles and plastic products is another important MP source. However, the quantities of MPs originating from this source may be hard to estimate. TRWPs are a significant source of MPs in urban areas and are arguably the best quantified source. The mobilization of MPs in urban catchments is poorly understood but it appears that dry unconsolidated sediments and MP deposits are most readily mobilized. Sequestration of MPs occurs in green areas and is poorly understood. Consequently, some authors consider green/pervious parts of urban catchments to be MP sinks. Field studies have shown that appreciable MP removal occurs in stormwater quality control facilities. Street cleaning and snow removal also remove MPs (particularly TRWPs), but the efficacy of these measures is unknown. Among stormwater management facilities, biofiltration/retention units seem to remove MPs more effectively than facilities relying on stormwater settling. However, knowledge of MP removal in stormwater facilities remains incomplete. Finally, although 13 research papers reported MP concentrations in stormwater, the total number of field samples examined in these studies was only 189. Moreover, the results of these studies are not necessarily comparable because they are based on relatively small numbers of samples and differ widely in terms of their objectives, sites, analytical methods, size fractions, examined polymers, and even terminology. This area of research can thus be considered "data-poor" and offers great opportunities for further research in many areas.
Collapse
Affiliation(s)
- Heléne Österlund
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87 Luleå, Sweden
| | - Godecke Blecken
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87 Luleå, Sweden.
| | - Katharina Lange
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87 Luleå, Sweden
| | - Jiri Marsalek
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87 Luleå, Sweden
| | - Kalpana Gopinath
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87 Luleå, Sweden
| | - Maria Viklander
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87 Luleå, Sweden
| |
Collapse
|
3
|
Zhao P, Huang Z, Wang P, Wang A. Comparative study on high-efficiency Pb(II) removal from aqueous solutions using coal and rice husk based Humic acids. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Ali M, Song X, Ding D, Wang Q, Zhang Z, Tang Z. Bioremediation of PAHs and heavy metals co-contaminated soils: Challenges and enhancement strategies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 295:118686. [PMID: 34920044 DOI: 10.1016/j.envpol.2021.118686] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/20/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
Systemic studies on the bioremediation of co-contaminated PAHs and heavy metals are lacking, and this paper provides an in-depth review on the topic. The released sources and transport of co-contaminated PAHs and heavy metals, including their co-occurrence through formation of cation-π interactions and their adsorption in soil are examined. Moreover, it is investigated that co-contamination of PAHs and heavy metals can drive a synergistic positive influence on bioremediation through enhanced secretion of extracellular polymeric substances (EPSs), production of biosynthetic genes, organic acid and enzymatic proliferation. However, PAHs molecular structure, PAHs-heavy metals bioavailability and their interactive cytotoxic effects on microorganisms can exert a challenging influence on the bioremediation under co-contaminated conditions. The fluctuations in bioavailability for microorganisms are associated with soil properties, chemical coordinative interactions, and biological activities under the co-contaminated PAHs-heavy metals conditions. The interactive cytotoxicity caused by the emergence of co-contaminants includes microbial cell disruption, denaturation of DNA and protein structure, and deregulation of antioxidant biological molecules. Finally, this paper presents the emerging strategies to overcome the bioavailability problems and recommends the use of biostimulation and bioaugmentation along with the microbial immobilization for enhanced bioremediation of PAHs-heavy metals co-contaminated sites. Better knowledge of the bioremediation potential is imperative to improve the use of these approaches for the sustainable and cost-effective remediation of PAHs and heavy metals co-contamination in the near future.
Collapse
Affiliation(s)
- Mukhtiar Ali
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Song
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Da Ding
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, China
| | - Qing Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Zhuanxia Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiwen Tang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
5
|
Siddiqui E, Pandey J. Atmospheric Deposition: An Important Determinant of Nutrients and Heavy Metal Levels in Urban Surface Runoff Reaching to the Ganga River. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 82:191-205. [PMID: 33758990 DOI: 10.1007/s00244-021-00820-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 02/06/2021] [Indexed: 05/26/2023]
Abstract
Excessive loading of water bodies with surface runoff-driven nutrients and heavy metals has become a serious concern worldwide. We investigated the surface runoff quality for nutrients and heavy metals being flushed to the Ganga River, as influenced by atmospheric deposition (AD). We selected three city sites in India, Haridwar, Varanasi, and Howrah, which differ widely with respect to population density and anthropogenic activities. We found distinct spatio-temporal trends in AD input of nutrients and heavy metal with values being highest in Varanasi region followed by Howrah and Haridwar. The runoff nutrients and metals showed strong synchrony with their respective levels in AD input. The concentrations were higher in the first flush. We found strong correlations (R2 = 0.83-0.93; p < 0.001) between AD metals and nutrients with their respective concentration in runoff. For all the studied metals, except Cd, the major proportions were in particulate form. The Cd was present in almost equal proportions in particulate and dissolved fractions. Metals in runoff were found in order as: Zn > Pb > Cu > Ni > Cr > Cd. In general, the concentrations of metals were higher than those reported in other studies. The contamination factor and geo-accumulation index show that the Cd was a major pollutant in the runoff. The pollution load index (PLI) indicates that all three sites are highly polluted. Our study indicates that there is a need to reduce particulate loads. Furthermore, because of the high concentrations of pollutants in the first flush, strategies may be developed to enhance the efficiency of treatment of the first flush of runoff.
Collapse
Affiliation(s)
- Ekabal Siddiqui
- Ganga River Ecology Research Laboratory, Environmental Science Division, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Jitendra Pandey
- Ganga River Ecology Research Laboratory, Environmental Science Division, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
6
|
Detection and Removal of Priority Substances and Emerging Pollutants from Stormwater: Case Study of the Kołobrzeska Collector, Gdańsk, Poland. SUSTAINABILITY 2022. [DOI: 10.3390/su14031105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Progressive urban development affects environmental balance and disrupts the hydrologic cycle, in which rainfall plays a significant role. Since rainwater is considered a valuable resource of the environment, many technical solutions are implemented that enable effective rainwater management. On the other hand, stormwater runoff from urban areas contains numerous (also toxic) substances, and therefore should be properly treated. In this study, a multistage constructed wetland (MCW) pilot installation was used to remove selected groups of priority substances and emerging pollutants from rainwater discharged from the urbanized catchment of the Kołobrzeska stormwater collector in Gdańsk, Poland. The obtained results show that rainwater runoff was characterized by a variable concentrations of heavy metals (Zn, Cd, Cu, Ni, Pb, Hg), polycyclic aromatic hydrocarbons (benzo(a)pyrene, benzo(b)fluoranthene, phenanthrene, fluoranthene and pyrene) and microplastics. Depending on the hydraulic load of the bed, the reduction efficiency for heavy metals ranged from 26.19 to 100%, and for microplastics from 77.16 to 100%, whereas for polycyclic aromatic hydrocarbons it was consistently high, and equaled 100%.
Collapse
|
7
|
Wang H, Huang W, Zhang Y, Wang C, Jiang H. Unique metalloid uptake on microplastics: The interaction between boron and microplastics in aquatic environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149668. [PMID: 34426325 DOI: 10.1016/j.scitotenv.2021.149668] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/09/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Boron pollution in the aquatic environment has a hazardous effect on human health and the ecosystem as a metalloid pollutant, and few researchers have focused on the potential interaction between boron and microplastics. We investigated the adsorption of boron on four types of microplastics (polyvinyl chloride (PVC), aged PVC, polystyrene (PS), and aged PS). The adsorption behavior was explored by kinetics, isotherm models, and several aqueous factors, including pH, humic acid, ionic strength (Na+), metal ion types (Mg2+, Ca2+, Cu2+, and Al3+), and the seawater environment. The adsorption capacities on microplastics were followed: aged PVC (0.91 mg/g) > aged PS (0.197 mg/g) > virgin PVC (0.1 mg/g) > virgin PS (0.005 mg/g). The adsorption kinetics and isotherm models suggested monolayer adsorption and chemisorption. Humic acid and high pH significantly inhibited the adsorption due to the complexation and hydrolysis of boric acid (B(OH)3), respectively. The presence of metal ions may enhance or hinder adsorption, depending on the boron species, ion concentration, ion type, and microplastics categories. The unique interaction mainly depended on surface complexations of B(OH)3 with oxygen-containing groups on microplastics surface. Because aged microplastics have more oxygen-containing groups, they can combine more B(OH)3, and PVC can adsorb more boron due to the CCl bond and surface diffusion. In the aquatic environment, however, metal ions may occupy these binding sites, and the electrostatic force between borate ([B(OH)4]-) and microplastics will take precedence. In the simulated intestines of warm-blooded animals, we achieved the greatest boron desorption ratio on microplastics. This work explored the adsorption characteristics of boron by microplastics and revealed potential environmental risks of metalloid enrichment.
Collapse
Affiliation(s)
- Hui Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Wei Huang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yingshuang Zhang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Chongqing Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Hongru Jiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| |
Collapse
|
8
|
Zhou Y, Yang Y, Liu G, He G, Liu W. Adsorption mechanism of cadmium on microplastics and their desorption behavior in sediment and gut environments: The roles of water pH, lead ions, natural organic matter and phenanthrene. WATER RESEARCH 2020; 184:116209. [PMID: 32721765 DOI: 10.1016/j.watres.2020.116209] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/03/2020] [Accepted: 07/19/2020] [Indexed: 05/22/2023]
Abstract
Microplastics (MPs) in aquatic systems can act as a vector for various toxic contaminants, such as metal ions. Although some studies have investigated the adsorption characteristics of metal ions on MPs, the desorption behaviors of metal ions from MPs in different environments are largely unknown. Here, the adsorption of cadmium (Cd(II)) onto five different types of MPs were compared to examine the relationship between the surface characteristics and the adsorption properties of MPs. Our results showed that polyamide had the highest Cd(II) adsorption capability with a value of 1.70 ± 0.04 mg/g, followed by polyvinyl chloride (1.04 ± 0.03 mg/g), polystyrene (0.76 ± 0.02 mg/g), acrylonitrile butadiene styrene (0.65 ± 0.02 mg/g) and polyethylene terephthalate (0.25 ± 0.01 mg/g). The specific surface area and total pore volume were closely correlated with the adsorption capacity of the MPs, and the π-π interaction, electrostatic interaction and oxygen-containing functional groups played crucial roles in the adsorption of Cd(II) onto the MPs. The sorption capabilities of Cd(II) onto the MPs first increased and then decreased with increasing solution pH from 2.0 to 9.0. In addition, the adsorption capacities were suppressed with the presence of lead ions (20-80 mg/L), while the coexistence of phenanthrene had a minor impact. Interestingly, the presence of humic acid promoted the desorption of Cd(II) from the MPs both in the synthetic earthworm gut and in the sediment system. A higher desorption rate was observed in the simulated gut environment, suggesting that metal-contaminated MPs would pose higher ecological risks to macroinvertebrates. Overall, our findings provide a better understanding of the sorption mechanism of Cd(II) onto MPs and the desorption behavior under different environmental conditions in aquatic ecosystems.
Collapse
Affiliation(s)
- Yanfei Zhou
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuyi Yang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| | - Guihua Liu
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| | - Gang He
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenzhi Liu
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China.
| |
Collapse
|
9
|
Müller A, Österlund H, Marsalek J, Viklander M. The pollution conveyed by urban runoff: A review of sources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 709:136125. [PMID: 31905584 DOI: 10.1016/j.scitotenv.2019.136125] [Citation(s) in RCA: 212] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 06/10/2023]
Abstract
Urban stormwater and snowmelt pollution contributes significantly to the deterioration of surface waters quality in many locations. Consequently, the sources of such pollution have been studied for the past 50 years, with the vehicular transportation sector and the atmospheric deposition identified early as the major pollution sources. In search for mitigation of this pollution, source controls, besides other measures, were recognised as effective pollution mitigation tools, whose successful implementation requires a good knowledge of pollution sources. Even though great research efforts have been exerted to document specific sources of urban runoff pollution, or specific groups of pollutants present in urban runoff, a comprehensive overview of all known contributing sources is still missing. This review contributes to closing this gap by compiling findings of previous research and critically synthesizing the current knowledge of various stormwater pollution sources. As the emphasis is placed on the sources, the related issues of implications for urban surface water quality and possible source controls for individual sources are touched upon just briefly, where required. The review showed that the atmospheric deposition, vehicular transportation-related activities and metallic building envelopes continue to be among the major pollution sources, which have been studied in a far greater detail than other sources. Furthermore, it was noted that because of the rapid advances in clean manufacturing and pollution control technologies, a large part of the body of data on stormwater quality available in the literature should be considered as historical data, which may no longer describe well the current conditions. Progressing historical data obsolescence, combined with continuing releases of new materials and chemicals, and, in some cases of new substances of potential concern, into the environment, suggests that the identification of important stormwater runoff/snowmelt pollution sources, and the associated pollutants, has been and will remain to be a work in progress.
Collapse
Affiliation(s)
- Alexandra Müller
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87 Luleå, Sweden.
| | - Heléne Österlund
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87 Luleå, Sweden
| | - Jiri Marsalek
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87 Luleå, Sweden
| | - Maria Viklander
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87 Luleå, Sweden
| |
Collapse
|
10
|
Ozaki N, Yamauchi T, Kindaichi T, Ohashi A. Stormwater inflow loading of polycyclic aromatic hydrocarbons into urban domestic wastewater treatment plant for separate sewer system. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2019; 79:1426-1436. [PMID: 31123242 DOI: 10.2166/wst.2019.143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are common contaminants present in wastewater, and determination of their sources is important for their management in the environment. In this study, stormwater loading of PAHs during rainfall periods was evaluated for sewage inflow into a wastewater treatment plant (WWTP) for a separate sewer system. To accomplish this, sewage inflow volumes, suspended solid concentrations, and PAH concentrations were measured during eight rainfall events and on two no-rainfall days at the inlet of the plant. Based on a comparison between the rainfall and no-rainfall loading quantified by the measurements, excess PAH loadings with stormwater were evaluated for the rainfall events. The relationship between rainfall intensity and stormwater loading was then used to evaluate long-term stormwater loadings of water and PAHs. Their contributions to the sewage inflow were 0.7% and 1.0% for 1 year for water and the sum of 16 measured PAHs, respectively. Our measurements and estimates demonstrate that direct stormwater inflow is not a primary source of PAHs to the plant for this separate sewer system.
Collapse
Affiliation(s)
- Noriatsu Ozaki
- Graduate school of Engineering, Hiroshima University, Higashihiroshima, 1-4-1, Higashihirohima, 739-8527, Japan E-mail:
| | - Takahiro Yamauchi
- Graduate school of Engineering, Hiroshima University, Higashihiroshima, 1-4-1, Higashihirohima, 739-8527, Japan E-mail: ; Now Kyushu Electric Power Co., Inc., 2-1-82 Watanabe-dori, Chuo-ku, Fukuoka, 810-8720, Japan
| | - Tomonori Kindaichi
- Graduate school of Engineering, Hiroshima University, Higashihiroshima, 1-4-1, Higashihirohima, 739-8527, Japan E-mail:
| | - Akiyoshi Ohashi
- Graduate school of Engineering, Hiroshima University, Higashihiroshima, 1-4-1, Higashihirohima, 739-8527, Japan E-mail:
| |
Collapse
|
11
|
Pollution Removal Performance of Laboratory Simulations of Sydney’s Street Stormwater Biofilters. WATER 2017. [DOI: 10.3390/w9110907] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|