1
|
Ali RA, Awadalla EA, Hamed AS, Mostafa DEF. Cardiotoxicity of Cadmium and Its Effects on Heart Efficiency During Early and Late Chick Embryogenesis. Cardiovasc Toxicol 2024; 24:982-1003. [PMID: 39048804 PMCID: PMC11335801 DOI: 10.1007/s12012-024-09894-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024]
Abstract
Cadmium (Cd) is a dangerous heavy metal that is non-degradable in the environment. Many organs can accumulate Cd and adversely affect organ function and health. Cd is considered as a teratogenic and embryotoxic agent. This study aims to evaluate the teratogenicity of Cd at concentrations lesser than the permissible and its effects on the heart during chick embryogenesis. Fertilized eggs of the chick Gallus domesticus were divided into; control, saline injected and four experimental groups injected with single doses of 5, 25, 50 or 75 µM of CdCl2. Histological observations of the heart before hatching and the cardiomyocytes after hatching were recorded. Morphometric measurements of heart chambers were achieved at 3, 4 and 6 days of incubation. Electrocardiograph and respiratory rate were recorded at tenth day. Different cardiac problems had been brought on by Cd. In comparison to controls, the heart looked much larger, and in certain cases, growth retardation was seen. Degeneration in heart walls and malformations of dorsal aorta were noticed. Morphometrically, the width and wall thickness of heart chambers showed significant changes. Heart beats and respiratory rate significantly decreased compared to control. The cardiotoxic effect of Cd on heart compartments structure and function was dose dependent. One of Cd toxicity is its ability to induce cellular oxidative stress. The heart in particular is sensitive to oxidative stress. Cardiac oxidative stress might intensify heart failure and promote disease progression. Calcium is one of the components that is needed for normal heart work. Cd might interfere with calcium metabolism by removing it from the body.
Collapse
Affiliation(s)
- Reda A Ali
- Zoology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | - Eatemad A Awadalla
- Zoology Department, Faculty of Science, Aswan University, Aswan, 81528, Egypt
| | - Amal S Hamed
- Zoology Department, Faculty of Science, Aswan University, Aswan, 81528, Egypt
| | | |
Collapse
|
2
|
Ye J, Qiu W, Pang X, Su Y, Zhang X, Huang J, Xie H, Liao J, Tang Z, Chen Z, Li F, Xiong Z, Su R. Polystyrene nanoplastics and cadmium co-exposure aggravated cardiomyocyte damage in mice by regulating PANoptosis pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123713. [PMID: 38462200 DOI: 10.1016/j.envpol.2024.123713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/30/2023] [Accepted: 03/03/2024] [Indexed: 03/12/2024]
Abstract
Micro/nanoplastics (M/NPs) are the novel contaminants ubiquitous in the environment. Cadmium (Cd), a kind of heavy metal pollutant widely distributed, could potentially co-exist with PS-NPs in the environment. However, their combined effects on cardiomyocyte and its molecular mechanism in mammals remained ambiguous. Here, we examined whether PANoptosis, an emerging and complicated kind of programmed cell death, was involved in PS-NPs and Cd co-exposure-elicited cardiac injury. In this study, 60 male mice were orally subjected to environmentally relevant concentrations of PS-NPs (1 mg/kg) and/or CdCl2 (1.5 mg/kg) for 35 days. As we speculated, PS-NPs and Cd co-exposure affected the expression of pyroptosis(Caspase-1, Cleaved-Caspase-1, GSDMD, N-GSDMD, AIM2, Pyrin, NLRP3, IL-18, IL-1β)-, apoptosis(Caspase-3, Cleaved-Caspase-3, Caspase-8, Cleaved-Caspase-8, Caspase-7, BAX)- and necroptosis (t-RIPK3, p-RIPK3, t-RIPK1, p-RIPK1, t-MLKL, p-MLKL, ZBP1)-related genes and protein, resulting in growth restriction and damaged myocardial microstructure in mice. Notably, the combined effects on Cd and PS-NPs even predominantly aggravated the toxic damage. Intriguingly, we fortuitously discovered PS-NPs and/or Cd exposure facilitated linear ubiquitination of certain proteins in mice myocardium. In summation, this study shed light toward the effects of Cd and PS-NPs on cardiotoxicity, advanced the understanding of myocardial PANoptosis and provided a scientific foundation for further exploration of the combined toxicological effects of PS-NPs and heavy metals.
Collapse
Affiliation(s)
- Jiali Ye
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Wenyue Qiu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiaoyue Pang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yiman Su
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xinting Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jianjia Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Haoming Xie
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zefeng Chen
- Department of Cardiovascular Medicine, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou City, Guangdong Province, China
| | - Fei Li
- Department of Cardiovascular Medicine, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou City, Guangdong Province, China
| | - Zhaojun Xiong
- Department of Cardiovascular Medicine, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou City, Guangdong Province, China
| | - Rongsheng Su
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
3
|
Apiamu A, Avwioroko OJ, Evuen UF, Kadiri HE, Kpomah ED, Anigboro AA, Ugbebor G, Asagba SO. Exposure to Nickel-Cadmium Contamination of Drinking Water Culminates in Liver Cirrhosis, Renal Azotemia, and Metabolic Stress in Rats. Biol Trace Elem Res 2024; 202:1628-1643. [PMID: 37468716 DOI: 10.1007/s12011-023-03777-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
Drinking water polluted by heavy metals has the potential to expose delicate biological systems to a range of health issues. This study embraced the health risks that may arise from subchronic exposure of thirty-four male Wistar rats to nickel (Ni)-cadmium (Cd)-contaminated water. It was done by using the Box-Behnken design (BBD) with three treatment factors (Ni and Cd doses at 50-150 mg/L and exposure at 14-21-28 days) at a single alpha level, resulting in seventeen experimental combinations. Responses such as serum creatinine (CREA) level, blood urea nitrogen (BUN) level, BUN/CREA ratio (BCR), aspartate and alanine aminotransferases (AST and ALT) activities, and the De Ritis ratio (DRR), as well as malondialdehyde (MDA) level, catalase (CAT), and superoxide dismutase (SOD) activities, were evaluated. The results revealed that these pollutants jointly caused hepatocellular damage by raising AST and ALT activities and renal dysfunction by increasing CREA and BUN levels in Wistar rats' sera (p < 0.05). These outcomes were further supported by BCR and DRR values beyond 1. In rats' hepatocytes and renal tissues, synergistic interactions of these metals resulted in higher MDA levels and significant impairments of CAT and SOD activities (p < 0.05). In order to accurately forecast the effects on the responses, the study generated seven acceptable regression models (p < 0.05) with r-squared values of > 80% at no discernible lack of fit (p > 0.05). The findings hereby demonstrated that Wistar rats exposed to these pollutants at varied doses had increased risks of developing liver cirrhosis and azotemia marked by metabolic stress.
Collapse
Affiliation(s)
- Augustine Apiamu
- Department of Biochemistry, Faculty of Science, Delta State University, Abraka, Delta State, Nigeria.
| | - Oghenetega J Avwioroko
- Department of Biochemistry, Faculty of Basic Medical Sciences, Redeemer's University, Ede, Osun State, Nigeria
| | - Uduenevwo F Evuen
- Department of Biochemistry, College of Natural and Applied Sciences, Western Delta University, Oghara, Delta State, Nigeria
| | - Helen E Kadiri
- Department of Biochemistry, Faculty of Science, Delta State University, Abraka, Delta State, Nigeria
| | - Enyohwo D Kpomah
- Department of Biochemistry, Federal University, Otuoke, Bayelsa State, Nigeria
| | - Akpovwehwee A Anigboro
- Department of Biochemistry, Faculty of Science, Delta State University, Abraka, Delta State, Nigeria
| | - Gilbert Ugbebor
- Department of Chemical Science, Faculty of Science, University of Delta, Agbor, Delta State, Nigeria
| | - Samuel O Asagba
- Department of Biochemistry, Faculty of Science, Delta State University, Abraka, Delta State, Nigeria
| |
Collapse
|
4
|
Wan G, Huang J, Wang R, Liu H, Wei L, Liang X, Li F, Wang Z, Gu X, Ruan J. Enrofloxacin hydrochloride toxicological effects on crucian carp reflected by serological changes and neurotoxicity. Comp Biochem Physiol C Toxicol Pharmacol 2023; 273:109737. [PMID: 37661043 DOI: 10.1016/j.cbpc.2023.109737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/26/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023]
Abstract
Due to its water solubility and wide applicability, enrofloxacin hydrochloride (EH) may enter aquatic ecosystems and cause negative effects on aquatic organisms. This study aimed to explore toxicological effects via serological changes and neurotoxicity, which were induced by EH exposure in crucian carp (Carassius auratus var. Pengze). The drug residues in brain tissue and protein content in serum were determined to analyze serological changes. Alterations in brain tissue structure and function, cerebral microvessels permeability, and the expressions of gene and protein regarding blood-brain barrier (BBB) were studied to reflect the neurotoxicity. Employing a validated high-performance liquid chromatography (HPLC) method, EH residues could be detected at various time-points throughout the experiment. Enzyme-linked immunosorbent assay (ELISA) showed that EH increased the levels of S100B, NSE and GFAP proteins in serum. Additionally, there was a significant positive correlation between serum S100B, NSE protein contents and EH residues (P < 0.05). Hematoxylin and eosin (H&E) staining revealed brain damage from EH exposure by the formation of vacuoles in brain glial cells, pyknosis of the nucleus, and a decrease in cell population density. Transmission electron microscope (TEM) revealed morphological changes in microvessels and condensation of astrocyte nucleus. Evans blue (EB) permeability test visualized an obvious increase in cerebral microvessels leakage. The real-time quantitative PCR (qPCR) results indicated that EH up-regulated the mRNA expression levels of S100B, NSE and GFAP, down-regulated the mRNA expression levels of P-gp, ZO-1, Occludin and Claudin-5. The Western blot (WB) results demonstrated increased NSE and GFAP protein expressions, decreased P-gp and Occludin protein expressions following EH exposure in brain, in consistent with the gene expressions, respectively. In conclusion, these findings indicated that EH brought about marked rise in serum biomarker levels and disrupted the central nervous system (CNS) of crucian carp. These data would help elucidate the mechanism underlying EH-induced neurotoxicological effects.
Collapse
Affiliation(s)
- Gen Wan
- College of Animal Science & Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Jianzhen Huang
- College of Animal Science & Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Runping Wang
- College of Animal Science & Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Huazhong Liu
- College of Chemistry & Environmental Science, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Lili Wei
- College of Animal Science & Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Ximei Liang
- College of Animal Science & Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Fugui Li
- College of Animal Science & Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Zhao Wang
- College of Animal Science & Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Xuechun Gu
- College of Animal Science & Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Jiming Ruan
- College of Animal Science & Technology, Jiangxi Agricultural University, Nanchang 330045, PR China.
| |
Collapse
|
5
|
Chen M, Dong J, Zhao X, Yin X, Wu K, Wang Q, Liu X, Wu Y, Gong Z. Cadmium influence on lipid metabolism in Sprague-Dawley rats through linoleic acid and glycerophospholipid metabolism pathways. J Biochem Mol Toxicol 2023; 37:e23412. [PMID: 37341456 DOI: 10.1002/jbt.23412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/03/2023] [Accepted: 06/08/2023] [Indexed: 06/22/2023]
Abstract
Cadmium (Cd) is widely distributed in the environment and easy adsorbed by living organisms with adverse effects. Exposure to Cd-contaminated food may disrupt lipid metabolism and increase human health risk. To study the perturbation effect of Cd on lipid metabolism in vivo, 24 male Sprague-Dawley (SD) rats were randomly assigned four groups and treated by Cd chloride solution (0, 1.375 mg/kg, 5.5 mg/kg, 22 mg/kg) for 14 days. The characteristic indexes of serum lipid metabolism were analyzed. Afterwards, untargeted metabolomics analysis was applied to explore the adverse effects of Cd on rats by liquid chromatography coupled with mass spectrometry (LC-MS). The results revealed that Cd exposure obviously decreased the average serum of triglycerides (TG) and low-density lipoprotein cholesterol (LDL-C) and caused an imbalance of endogenous compounds in the 22 mg/kg Cd-exposed group. Compared with the control group, 30 metabolites with significant differences were identified in the serum. Our results indicated that Cd caused lipid metabolic disorders in rats by disrupting linoleic acid and glycerophospholipid metabolism pathways. Furthermore, there were three kinds of remarkable differential metabolites-9Z,12Z-octadecadienoic acid, PC(20:4(8Z,11Z,14Z,17Z)/0:0), and PC(15:0/18:2(9Z,12Z)), which enriched the two significant metabolism pathways and could be the potential biomarkers.
Collapse
Affiliation(s)
- Mengyuan Chen
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Food Safety Research Center, Key Research Institute of Humanities and Social Sciences of Hubei Province, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Jingjing Dong
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Food Safety Research Center, Key Research Institute of Humanities and Social Sciences of Hubei Province, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Xiaole Zhao
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Food Safety Research Center, Key Research Institute of Humanities and Social Sciences of Hubei Province, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Xiaoyao Yin
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Food Safety Research Center, Key Research Institute of Humanities and Social Sciences of Hubei Province, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Kejia Wu
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Food Safety Research Center, Key Research Institute of Humanities and Social Sciences of Hubei Province, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Qiao Wang
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Food Safety Research Center, Key Research Institute of Humanities and Social Sciences of Hubei Province, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Xin Liu
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Food Safety Research Center, Key Research Institute of Humanities and Social Sciences of Hubei Province, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Yongning Wu
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Food Safety Research Center, Key Research Institute of Humanities and Social Sciences of Hubei Province, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Zhiyong Gong
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Food Safety Research Center, Key Research Institute of Humanities and Social Sciences of Hubei Province, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| |
Collapse
|
6
|
Ji H, Zhang Y, Zhao J, Zhou X, Wang C, Jin Z. The Distribution of Selected Toxic Elements in Sauced Chicken during Their Feeding, Processing, and Storage Stages. Foods 2023; 12:foods12071404. [PMID: 37048224 PMCID: PMC10094016 DOI: 10.3390/foods12071404] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Sauced chicken is popular food worldwide. However, the elemental pollution of poultry industrialization has led to an increasing health risk concern. In this study, four typical toxic elements, including chromium (Cr), arsenic (As), lead (Pb), and cadmium (Cd), were selected and detected in whole industry chains of sauced chicken preparation by inductively coupled plasma-mass spectrometry. The detection method was optimized and verified with an average recovery of 93.96% to 107.0%. Cr has the highest proportion among the elements during the three stages, while the content of Cd was the least. In the feeding stages, elements were at the highest level in the starter broiler, and the grower broiler was considered to have a good metabolic capacity of them. In addition, the elements were mainly distributed in the chicken kidney, gizzard, liver, leg, wing, and lung. In the processing stage, the elements continued to accumulate from the scalding to the sterilization process. The elements were mainly distributed in the chicken wing, leg, head, and breast. In the storage stage, the elements almost kept constant in the polyamide and polyethylene packaging, while it showed irregular small-range fluctuations in the other two packages. This study provides beneficial references for the toxic element risk management in the whole industry chain.
Collapse
Affiliation(s)
- Hangyan Ji
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Yuan Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Jianwei Zhao
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
- Correspondence:
| | - Xing Zhou
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Chenchen Wang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Zhengyu Jin
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
7
|
Chou SH, Lin HC, Chen SW, Tai YT, Jung SM, Ko FH, Pang JHS, Chu PH. Cadmium exposure induces histological damage and cytotoxicity in the cardiovascular system of mice. Food Chem Toxicol 2023; 175:113740. [PMID: 36958389 DOI: 10.1016/j.fct.2023.113740] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/08/2023] [Accepted: 03/20/2023] [Indexed: 03/25/2023]
Abstract
Epidemiological studies have reported an association between chronic cadmium (Cd) exposure and increased cardiovascular risk; however, their causal relationship remains unclear. The aim of this study is to explore the effects of Cd exposure on the cardiac and arterial systems in mice. According to the concentration of cadmium chloride in drinking water, male mice were randomly divided into control and low-dose and high-dose Cd exposure groups. The intervention duration was 12 weeks. In cardiac tissues, Cd exposure led to focal necrosis, myofibril disarray, perivascular and interstitial fibrosis, and disorganized sarcomere structures. Cd also induced the apoptosis of cardiomyocytes and increased the expression levels of matrix metalloproteinase (MMP)-2 and MMP-14 in cardiac tissues. In the arterial tissues, Cd exposure damaged the intimal and medial layers of the aorta. Cd further reduced the viability of aortic smooth muscle cells in vitro. This study provides evidence for the Cd-induced damage of the cardiovascular system, which may contribute to various cardiovascular diseases.
Collapse
Affiliation(s)
- Shing-Hsien Chou
- Division of Cardiology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hung-Chen Lin
- Department of Cardiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Shao-Wei Chen
- Division of Thoracic and Cardiovascular Surgery, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan; Center for Big Data Analytics and Statistics, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Yu-Ting Tai
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Shih-Ming Jung
- Department of Pathology, Ophthalmology, Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Taoyuan, Taiwan
| | - Fu-Hsiang Ko
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Jong-Hwei Su Pang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Pao-Hsien Chu
- Division of Cardiology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan.
| |
Collapse
|
8
|
Yi J, Liao J, Bai T, Wang B, Yangzom C, Ahmed Z, Mehmood K, Abbas RZ, Li Y, Tang Z, Zhang H. Battery wastewater induces nephrotoxicity via disordering the mitochondrial dynamics. CHEMOSPHERE 2022; 303:135018. [PMID: 35605732 DOI: 10.1016/j.chemosphere.2022.135018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
The rapid development of new energy battery enterprises manifolds the obsolete and scrapped batteries which are considered serious concern for the environment and ecology. Increasing trend of recycling batteries waste is public hazard throughout the world. The batteries wastes affect the various body systems but exact toxicological mechanism of battery wastewater is still unexplored. The present study was designed to observe the toxicological effects of batteries wastes on kidney functional dynamics. In this experiment, a total of 20 male mice were randomly divided into two groups including control and treatment (battery wastewater) group. The control group was provided the normal saline while the battery wastewater group were provided battery waste-water for a period of 21 days. The isolated kidneys were processed for histopathological analysis, biochemical assays, mRNA and protein estimation. The results showed that battery wastewater provision increased the mitochondrial division-related genes and proteins (Drp1, MFF, Fis1) and decreased the expression level of fusion-related nuclear proteins (MFN1, MFN2, OPA1) in kidneys. Moreover, the battery wastewater exposure significantly up-regulated the autophagy (PINK, Parkin, mTOR, ATG5, LC3-b, p62) and apoptosis (Bax, Cytc, APAF1, P53, Caspase3, Caspase8) related mRNA and proteins levels in kidneys. However, down-regulation of mRNA and proteins levels of Bcl2 and Beclin1 were also observed in kidneys after batteries wastes exposure. In conclusion, it is evident that the battery wastewater leads to renal apoptosis and autophagy by disrupting the mitochondrial dynamics in mice kidneys.
Collapse
Affiliation(s)
- Jiangnan Yi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Tian Bai
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Bole Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Chamba Yangzom
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, Tibet, People's Republic of China.
| | - Zulfiqar Ahmed
- Faculty of Veterinary and Animal Sciences, University of Poonch Rawalakot, Azad Jammu and Kashmir, Pakistan
| | - Khalid Mehmood
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Rao Zahid Abbas
- Department of Parasitology, Faculty of Veterinary Science, University of Agriculture Faisalabad, Pakistan
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
9
|
Das SC, Varadharajan K, Shanmugakonar M, Al-Naemi HA. Chronic Cadmium Exposure Alters Cardiac Matrix Metalloproteinases in the Heart of Sprague-Dawley Rat. Front Pharmacol 2021; 12:663048. [PMID: 34447306 PMCID: PMC8383180 DOI: 10.3389/fphar.2021.663048] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 07/23/2021] [Indexed: 12/30/2022] Open
Abstract
The aim of this study was to evaluate the role of chronic cadmium exposure in modulating cardiac matrix metalloproteinases (MMPs) in the heart of rats. Adult male Sprague-Dawley rats were exposed to 15 ppm CdCl2 in drinking water for 10 weeks followed by withdrawal of cadmium treatment for 4 weeks. Following the completion of the treatment, gene expression of inflammatory mediators (IL-1β, IL-6, IL-10, TNF-α and NF-κB), protein expression of MMP-2, MMP-9 and their respective inhibitors- TIMP-1 and TIMP-2, and gelatinolytic activity of MMP-2 and MMP-9 were determined. At the protein level, cadmium incites a differential effect on the expression and activity of gelatinases and their endogenous inhibitors in an exposure-dependent manner. Results also show that the administered cadmium dose elicits an inflammatory response until week 10 that slightly diminishes after 4 weeks. This study provides evidence of cadmium-induced imbalance in the MMP-TIMP system in the cardiac tissue. This imbalance may be mediated by cadmium-induced inflammation that could contribute to various cardiovascular pathologies.
Collapse
Affiliation(s)
- Sandra Concepcion Das
- Laboratory Animal Research Center, Qatar University, Doha, Qatar.,Department of Biological and Environmental Sciences, Qatar University, Doha, Qatar
| | | | | | - Hamda A Al-Naemi
- Laboratory Animal Research Center, Qatar University, Doha, Qatar.,Department of Biological and Environmental Sciences, Qatar University, Doha, Qatar
| |
Collapse
|
10
|
Subacute cadmium exposure promotes M1 macrophage polarization through oxidative stress-evoked inflammatory response and induces porcine adrenal fibrosis. Toxicology 2021; 461:152899. [PMID: 34416349 DOI: 10.1016/j.tox.2021.152899] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/26/2021] [Accepted: 08/13/2021] [Indexed: 12/17/2022]
Abstract
Cadmium (Cd) is a widely distributed environmental pollutant with immunotoxicity and endocrine toxicity. M1/M2 macrophages participate in the immune response and exert an essential influence on fibrosis. Nevertheless, whether Cd can induce porcineadrenal fibrosis by affecting the polarization of M1/M2 macrophages and its potential regulatory mechanism have not been explored. We added 20 mg/kg CdCl2 to the pig diet for 40 days to investigate the fibrogenic effect of subacute Cd exposure on the adrenal gland. The results indicated that the ACTH and CORT in serum were decreased by 15.26 % and 21.99 %, respectively. The contents of adrenal mineral elements Cd, Cr, Mn were increased up to 34, 1.93, 1.42 folds and Co, Zn, Sn were reduced by 21.57 %, 20.52 %, 15.75 %. Concurrently, the pro-oxidative indicators (LPO, MDA and H2O2) were increased by 1.85, 2.20, 2.77 folds and 3.60, 11.15, 4.11 folds upregulated mRNA levels of TLR4, NF-κB, NLRP3 were observed. Subsequently, the expression of M1 macrophages polarization markers (IL-6, iNOS, TNF-α, CCL2 and CXCL9) were raised by 2.03, 2.30, 2.35, 1.58, 1.56 folds, while M2 macrophages (IL-4, CCL24, Arg1, IL-10, MRC1) showed a 62.34 %, 31.88 %, 50.26 %, 74.00 %, 69.34 % downregulation. The expression levels of AMPK subunits and genes related to glycolysis, oxidative phosphorylation (OXPHOS) and fatty acid oxidation (FAO) were also markedly increased. Additionally, the expression level of TGF-β1, Smad2/3 and downstream pro-fibrotic markers was obviously upregulated. Taken together, we conclude that Cd activates the oxidative stress-mediated TLR4/NF-κB/NLRP3 inflammatory signal transduction, leading to porcine adrenal fibrosis by promoting macrophage polarization toward M1.
Collapse
|
11
|
Martins AC, Santos AAD, Lopes ACBA, Skalny AV, Aschner M, Tinkov AA, Paoliello MMB. Endothelial Dysfunction Induced by Cadmium and Mercury and its Relationship to Hypertension. Curr Hypertens Rev 2021; 17:14-26. [PMID: 33475076 DOI: 10.2174/1573402117666210121102405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/08/2020] [Accepted: 12/18/2020] [Indexed: 11/22/2022]
Abstract
Hypertension is an important public health concern that affects millions globally, leading to a large number of morbidities and fatalities. The etiology of hypertension is complex and multifactorial, and it involves environmental factors, including heavy metals. Cadmium and mercury are toxic elements commonly found in the environment, contributing to hypertension. We aimed to assess the role of cadmium and mercury-induced endothelial dysfunction in the development of hypertension. A narrative review was carried out through database searches. In this review, we discussed the critical roles of cadmium and mercury in the etiology of hypertension and provided new insights into potential mechanisms of their effect, focusing primarily on endothelial dysfunction. Although the mechanisms by which cadmium and mercury induce hypertension have yet to be completely elucidated, evidence for both implicates impaired nitric oxide signaling in their hypertensive etiology.
Collapse
Affiliation(s)
- Airton C Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Alessanda A D Santos
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Ana C B A Lopes
- Graduate Program in Public Health, Center of Health Sciences, State University of Londrina, Londrina, Brazil
| | - Anatoly V Skalny
- Medical Elementology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Alexey A Tinkov
- Medical Elementology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Monica M B Paoliello
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| |
Collapse
|
12
|
Guo K, Ge J, Zhang C, Lv MW, Zhang Q, Talukder M, Li JL. `Cadmium induced cardiac inflammation in chicken (Gallus gallus) via modulating cytochrome P450 systems and Nrf2 mediated antioxidant defense. CHEMOSPHERE 2020; 249:125858. [PMID: 32062552 DOI: 10.1016/j.chemosphere.2020.125858] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/03/2020] [Accepted: 01/05/2020] [Indexed: 06/10/2023]
Abstract
Cadmium (Cd) has been implicated in the pathogenesis of inflammation, myocardial infarction, angiocardiopathy, even cancers. However, it is unknown that Cd-induced cardiac toxicity through Nrf2-mediate antioxidant defense and Cytochrome P450 (CYP450) system. To ascertain the chemoprevention of Cd-induced cardiac toxicity, total 60 newborn chicks were fed with different doses of Cd (0 mg/kg, 35 mg/kg and 70 mg/kg) for a period of 90 days feed administration. Results indicated Cd exposure caused cardiac histopathology changed and functions abnormal, induced NOS activities raised and cardiac inflammation, triggering inflammation factors (IL-6, IL-8, TNF-α, and NF-κb) upregulation and inhabitation of IL-10. Cd caused increase of total CYP450 and Cytochrome b5 (Cyt b5) contents, while erythromycin N-demethylase (ERND), aminopyrin N-demethylase (APND), aniline-4-hydeoxylase (AH) and NADPH-cytochrome c reductase (NCR) indicated opposite situations with different degrees of reduction in microsomes. The mRNA level of most CYP450s isoforms (CYP1A1, CYP1A2, CYP1A5, CYP1B1, CYP2C18, CYP2C45, CYP3A4, CYP3A7 and CYP3A9) were significantly increase but CYP2D6 expression level changed not obvious. Furthermore, Cd treatment caused increased the peroxidation product (MDA) and H2O2 over accumulation, the decreased of T-AOC accompanied by decreased activity of antioxidant enzymes (T-SOD, GST and GPX). Over accumulation of Cd lead to oxidative stress and activated Nrf2 signal pathway through upregulating pivotal target genes (HO-1, NQO1, GCLC, GCLM and SOD). These findings suggested Cd exposure caused cardiotoxicity through CYP450s enzymes homeostasis disturbance and Nrf2-mediated oxidative stress signal pathways defense. These results may provide new evidence on molecular mechanism of Cd-induced cardiac toxicity.
Collapse
Affiliation(s)
- Kai Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Chifeng Animal Health Supervision Institute, Chifeng County, 024000, PR China.
| | - Jing Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Cong Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Mei-Wei Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Qi Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Milton Talukder
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Department of Physiology and Pharmacology, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, 8210, Bangladesh.
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
13
|
Liang Y, Young JL, Kong M, Tong Y, Qian Y, Freedman JH, Cai L. Gender Differences in Cardiac Remodeling Induced by a High-Fat Diet and Lifelong, Low-Dose Cadmium Exposure. Chem Res Toxicol 2019; 32:1070-1081. [PMID: 30912652 DOI: 10.1021/acs.chemrestox.8b00386] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Childhood obesity, which is prevalent in developed countries, is a metabolic risk factor for cardiovascular disease. Cadmium (Cd), a ubiquitous environmental toxic metal, also has deleterious effects on the cardiovascular system. However, the combined effects of a high-fat diet (HFD) and lifelong, low-dose Cd exposure on cardiac remodeling remain unclear. This study aims to determine the effects of combined HFD and Cd exposure on cardiac remodeling, as well as gender-specific differences in the response. C57BL/6J mice were exposed to Cd at a low dose (L-Cd, 0.5 ppm) or high dose (H-Cd, 5 ppm) via drinking water from conception to sacrifice. After being weaned, the offspring mice were fed with a HFD (42% kcal from fat) for an additional 10 weeks. H-Cd exposure significantly increased Cd accumulation in the hearts of both parents and their offspring; a HFD showed no added effects on cardiac Cd content. H-Cd exposure increased cardiac metallothionein protein levels only in female mice, regardless of dietary intake. Histological analysis revealed that H-Cd exposure combined with a HFD induced cardiac hypertrophy and fibrosis only in female mice. This was further supported by elevated expression of ANP and COL1A1 protein levels along with COL1A1, COL1A2, and COL3A1 mRNA levels. Profibrotic markers PAI-1, CTGF, and FN were also elevated in HFD/H-Cd-exposed female mice. Levels of the oxidative stress marker 3-NT significantly increased in the hearts of HFD-fed female mice, whereas Cd exposure showed no additional effects. Of all the antioxidant markers examined, levels of CAT significantly increased in mice fed a HFD, regardless of gender and Cd exposure. In summary, a HFD combined with lifelong, low-dose Cd exposure induces cardiac hypertrophy and fibrosis in female but not male mice, a response that is independent of oxidative stress.
Collapse
Affiliation(s)
- Yaqin Liang
- Department of Pediatrics , First Affiliated Hospital of Wenzhou Medical University , Zhejiang 325000 , China
| | | | | | | | - Yan Qian
- Department of Pediatrics , First Affiliated Hospital of Wenzhou Medical University , Zhejiang 325000 , China
| | | | | |
Collapse
|
14
|
Das SC, Al-Naemi HA. Cadmium Toxicity: Oxidative Stress, Inflammation and Tissue Injury. ACTA ACUST UNITED AC 2019. [DOI: 10.4236/odem.2019.74012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|