1
|
Raikar LG, Gandhi J, Gupta KVK, Prakash H. Degradation of Ampicillin with antibiotic activity removal using persulfate and submersible UVC LED: Kinetics, mechanism, electrical energy and cost analysis. CHEMOSPHERE 2024; 349:140831. [PMID: 38040251 DOI: 10.1016/j.chemosphere.2023.140831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/24/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
Effective water treatment to remove antibiotics and its activity from contaminated water is urgently needed to prevent antibiotic-resistant bacteria (ARB) emergence. In this study, we investigated degradation of Ampicillin (AMP), an extensively used β-lactam antibiotic, using submersible Ultraviolet C Light Emitting Diode (λmax = 276 nm) irradiation source, and Persulfate (UVC LED/PS system). Pseudo first order rate constant (kobs) for degradation of AMP (1 ppm) by UVC LED/PS system was determined to be 0.5133 min-1 (PS = 0.2 mM). kobs value at pH 2.5 (0.7259 min-1) was found to be higher than pH 6.5 (0.5133 min-1) and pH 12 (0.1745 min-1). kobs value for degradation of AMP in deionized water spiked with inorganic anions (Cl-=0.5369 min-1,SO42-=0.4545 min-1, NO3-=0.1526 min-1, HCO3-=0.0226 min-1), in real tap water (0.1182 min-1) and simulated ground water (0.0372 min-1) were presented. Radical scavenging experiment reveal involvement of sulfate radical anion and hydroxyl radical in UVC LED/PS system. EPR analysis confirms the generation of sulfate radical anion and hydroxyl radical. Importantly, 74% reduction of total organic carbon (TOC) occurred within 60 min of AMP treatment by UVC LED/PS system. Seven degradation by-products were identified by high resolution mass spectrometry, and degradation pathways were proposed. Antibacterial activity of AMP towards Bacillus subtilis and Staphylococcus aureus was completely removed after UVC LED/PS treatment. ECOSAR model predicted no very toxic degradation by-products generation by UVC LED/PS system. Electrical Energy per order (EEo) and cost of UVC LED/PS system were determined to be 0.9351 kW/m3/order and ₹ 7.91/m3 ($ 0.095/m3 or € 0.087/m3), respectively. Overall, this study highlights, UVC LED/PS system as energy efficient, low-cost, and its potential to emerge as sulfate radical anion based advanced oxidation process (AOP) to treat water with antibiotics.
Collapse
Affiliation(s)
- Laxman G Raikar
- Energy and Environmental Chemistry Laboratory, Department of Chemistry, Birla Institute of Technology and Science, K. K. Birla Goa Campus, NH17B, Zuarinagar, Goa, 403726, India
| | - Jemi Gandhi
- Energy and Environmental Chemistry Laboratory, Department of Chemistry, Birla Institute of Technology and Science, K. K. Birla Goa Campus, NH17B, Zuarinagar, Goa, 403726, India
| | - K V K Gupta
- Kwality Photonics Pvt. Ltd., Kushaiguda, Hyderabad, 500062, India
| | - Halan Prakash
- Energy and Environmental Chemistry Laboratory, Department of Chemistry, Birla Institute of Technology and Science, K. K. Birla Goa Campus, NH17B, Zuarinagar, Goa, 403726, India.
| |
Collapse
|
2
|
Zhuang Q, Guo H, Peng T, Ding E, Zhao H, Liu Q, He S, Zhao G. Advances in the detection of β-lactamase: A review. Int J Biol Macromol 2023; 251:126159. [PMID: 37549760 DOI: 10.1016/j.ijbiomac.2023.126159] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/17/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
β-lactamase, an enzyme secreted by bacteria, is the main resistant mechanism of Gram-negative bacteria to β-lactam antibiotics. The resistance of bacteria to β-lactam antibiotics can be evaluated by testing the activity of β-lactamase. Traditional phenotypic detection is a golden principle, but it is time-consuming. In recent years, many new methods have emerged, which improve the efficiency by virtue of their sensitivity, low cost, easy operation, and other advantages. In this paper, we systematically review these researches and emphasize their limits of detection, sample operation, and test duration. Noteworthily, some detection systems can identify the β-lactamase subtype conveniently. We mainly divide these tests into three categories to elaborate their characteristics and application status. Both advantages and disadvantages of these methods are discussed. Additionally, we analyze the recent 5 years published researches to predict the trend of development in this field.
Collapse
Affiliation(s)
- Qian Zhuang
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, Liaoning 110122, China; Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110122, China
| | - Huijun Guo
- General Party Branch of the Second Clinical Department, China Medical University, Shenyang, Liaoning 110122, China
| | - Tian Peng
- General Party Branch of the Second Clinical Department, China Medical University, Shenyang, Liaoning 110122, China
| | - Enjie Ding
- General Party Branch of the Second Clinical Department, China Medical University, Shenyang, Liaoning 110122, China
| | - Hui Zhao
- General Party Branch of the Second Clinical Department, China Medical University, Shenyang, Liaoning 110122, China
| | - Qiulan Liu
- General Party Branch of the Second Clinical Department, China Medical University, Shenyang, Liaoning 110122, China
| | - Shiyin He
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, Liaoning 110122, China
| | - Guojie Zhao
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, Liaoning 110122, China.
| |
Collapse
|
3
|
Božić Cvijan B, Korać Jačić J, Bajčetić M. The Impact of Copper Ions on the Activity of Antibiotic Drugs. Molecules 2023; 28:5133. [PMID: 37446795 DOI: 10.3390/molecules28135133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 07/15/2023] Open
Abstract
Copper (Cu) is an essential trace metal and its concentration in body plasma is tightly regulated. An increase in Cu concentration in body fluids is observed in numerous pathological conditions, including infections caused by microorganisms. Evidence shows that Cu ions can impact the activity of antibiotics by increasing efficiency or diminishing/neutralizing antibiotic activity, forming complexes which may lead to antibiotic structure degradation. Herein, we represent the evidence available on Cu-antibiotic interactions and their possible impact on antimicrobial therapy efficiency. So far, in vitro studies described interactions between Cu ions and the majority of antibiotics in clinical use: penicillins, cephalosporins, carbapenems, macrolides, aminoglycosides, tetracyclines, fluoroquinolones, isoniazid, metronidazole. In vitro-described degradation or lower antimicrobial activity of amoxicillin, ampicillin, cefaclor, ceftriaxone, and meropenem in the presence of Cu ions suggest caution when using prescribed antibiotics in patients with altered Cu levels. On the other hand, several Cu-dependent compounds with antibacterial activity including the drug-resistant bacteria were discovered, such as thiosemicarbazones, disulfiram, dithiocarbamates, 8-hydroxiquinoline, phenanthrolines, pyrithione. Having in mind that the development of new antibiotics is already marked as inadequate and does not meet global needs, the potential of Cu-antibiotic interactions to change the efficiency of antimicrobial therapy requires further investigation.
Collapse
Affiliation(s)
- Bojana Božić Cvijan
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Jelena Korać Jačić
- Life Sciences Department, Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11000 Belgrade, Serbia
| | - Milica Bajčetić
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Clinical Pharmacology Unit, University Children's Hospital, 11000 Belgrade, Serbia
| |
Collapse
|
4
|
Aydogdu S, Hatipoglu A. Theoretical insights into the reaction mechanism and kinetics of ampicillin degradation with hydroxyl radical. J Mol Model 2023; 29:63. [PMID: 36738349 DOI: 10.1007/s00894-023-05462-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023]
Abstract
CONTEXT Ampicillin (AMP) is a penicillin-class beta-lactam antibiotic widely used to treat infections caused by bacteria. Therefore, due to its widespread use, this antibiotic is found in wastewater, and it contains long-term risks such as toxicity to all living organisms. METHOD In this study, the degradation reaction of ampicillin with hydroxyl radical was investigated by the density functional theory (DFT) method. All the calculations were performed with B3LYP functional at 6-31G(d,p) basis set. RESULTS The thermodynamic energy values and reaction rates of all possible reaction paths were calculated. The addition of the hydroxyl radical to the carbonyl group of the beta-lactam ring is thermodynamically the most probable reaction path. The calculated overall reaction rate constant is 1.36 × 1011 M-1 s-1. To determine the effect of temperature on the reaction rate, rate constants were calculated for all reaction paths at five different temperatures. The subsequent reaction kinetics of the most preferred primary route was also examined, and the toxicity values of the intermediates were estimated. The acute toxicity of AMP and its degradation product were calculated using the Ecological Structure Activity Relationships (ECOSAR) software. The degradation product was found to be more toxic than AMP.
Collapse
Affiliation(s)
- Seyda Aydogdu
- Department of Chemistry, Yildiz Technical University, 34220, Istanbul, Turkey
| | - Arzu Hatipoglu
- Department of Chemistry, Yildiz Technical University, 34220, Istanbul, Turkey.
| |
Collapse
|
5
|
Hu W, Chen S, Hao H, Jiang H. Enhanced Photoreactivity of
MOFs
by Intercalating Interlayer Bands via Simultaneous −N=C=O and −
SCu
Modification. AIChE J 2022. [DOI: 10.1002/aic.17879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Wei‐Fei Hu
- Department of Applied Chemistry University of Science and Technology of China Hefei China
| | - Shuo Chen
- Department of Applied Chemistry University of Science and Technology of China Hefei China
| | - Hong‐Chao Hao
- Department of Applied Chemistry University of Science and Technology of China Hefei China
| | - Hong Jiang
- Department of Applied Chemistry University of Science and Technology of China Hefei China
| |
Collapse
|
6
|
Shi Z, Wang D, Gao Z, Ji X, Zhang J, Jin C. Enhanced ferrate oxidation of organic pollutants in the presence of Cu(II) Ion. JOURNAL OF HAZARDOUS MATERIALS 2022; 433:128772. [PMID: 35358813 DOI: 10.1016/j.jhazmat.2022.128772] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/21/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
In this study, we found that the introduction of Cu(II) (several μM, close to the concentration level of some real water/wastewater) in ferrate (Fe(VI)) oxidation can remarkably accelerate the abatement of various organic pollutants under slightly alkaline conditions. The results show that 5 μM sulfamethoxazole (SMX) can be completely degraded by Fe(VI) (50 μM) in the presence of 20 μM Cu(II) within 10 min at pH 8.0, which was 1.65 times higher than that by Fe(VI) alone. High-valent iron intermediates (i.e. Fe(V), Fe(IV)) and Cu(III) were generated as reactive species in the Cu(II)/Fe(VI) system, all of which contributed to the enhanced oxidation of SMX. Common water components, except for HCO3- and humic acid, exhibited no influence on SMX removal. Additionally, the enhanced removal of SMX by Cu(II)/Fe(VI) was also observed in real water with the benefit of total removal of Cu(II) by the ferrate resultant particles. Due to the presence of highly reactive and selective oxidant, the Cu(II)/Fe(VI) system could react readily with organic pollutants containing electron-rich moieties, such as phenol, olefin or amino groups. This study provided a simple, selective, and practical strategy for the abatement of organic pollutants and a simultaneous removal of Cu(II).
Collapse
Affiliation(s)
- Zhenyu Shi
- Environment Monitoring Center of Jiangsu Province, Nanjing 210036, PR China
| | - Dingxiang Wang
- College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Zhanqi Gao
- Environment Monitoring Center of Jiangsu Province, Nanjing 210036, PR China
| | - Xin Ji
- Environment Monitoring Center of Jiangsu Province, Nanjing 210036, PR China
| | - Jing Zhang
- College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Can Jin
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material of Jiangsu Province, Nanjing 210042, PR China.
| |
Collapse
|
7
|
Chaturvedi P, Giri BS, Shukla P, Gupta P. Recent advancement in remediation of synthetic organic antibiotics from environmental matrices: Challenges and perspective. BIORESOURCE TECHNOLOGY 2021; 319:124161. [PMID: 33007697 DOI: 10.1016/j.biortech.2020.124161] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
Continuous discharge and persistence of antibiotics in aquatic ecosystem is identified as emerging environment health hazard. Partial degradation and inappropriate disposal induce appearance of diverse antibiotic resistant genes (ARGs) and bacteria, hence their execution is imperative. Conventional methods including waste water treatment plants (WWTPs) are found ineffective for the removal of recalcitrant antibiotics. Therefore, constructive removal of antibiotics from environmental matrices and other alternatives have been discussed. This review summarizes present scenario and removal of micro-pollutants, antibiotics from environment. Various strategies including physicochemical, bioremediation, use of bioreactor, and biocatalysts are recognized as potent antibiotic removal strategies. Microbial Fuel Cells (MFCs) and biochar have emerged as promising biodegradation processes due to low cost, energy efficient and environmental benignity. With higher removal rate (20-50%) combined/ hybrid processes seems to be more efficient for permanent and sustainable elimination of reluctant antibiotics.
Collapse
Affiliation(s)
- Preeti Chaturvedi
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, M.G. Marg, Lucknow 226001, Uttar Pradesh, India; Department of Biotechnology, National Institute of Technology-Raipur, G.E. Road, Raipur 492010, Chhattisgarh, India.
| | - Balendu Shekher Giri
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, M.G. Marg, Lucknow 226001, Uttar Pradesh, India
| | - Parul Shukla
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, M.G. Marg, Lucknow 226001, Uttar Pradesh, India
| | - Pratima Gupta
- Department of Biotechnology, National Institute of Technology-Raipur, G.E. Road, Raipur 492010, Chhattisgarh, India
| |
Collapse
|
8
|
Sohrabnezhad S, Pourahmad A, Karimi MF. Magnetite-metal organic framework core@shell for degradation of ampicillin antibiotic in aqueous solution. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121420] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Li MH, Da Oh W, Lin KYA, Hung C, Hu C, Du Y. Development of 3-dimensional Co 3O 4 catalysts with various morphologies for activation of Oxone to degrade 5-sulfosalicylic acid in water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 724:138032. [PMID: 32408427 DOI: 10.1016/j.scitotenv.2020.138032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/12/2020] [Accepted: 03/17/2020] [Indexed: 06/11/2023]
Abstract
Since 5-sulfosalicylic acid (SFA) has been increasingly released to the environment, SO4--based oxidation processes using Oxone have been considered as useful methods to eliminate SFA. As Co3O4 has been a promising material for OX activation, the four 3D Co3O4 catalysts with distinct morphologies, including Co3O4-C (with cubes), Co3O4-P (with plates), Co3O4-N (with needles) and Co3O4-F (with floral structures), are fabricated for activating OX to degrade SFA. In particular, Co3O4-F not only exhibits the highest surface area but also possesses the abundant Co2+ and more reactive surface, making Co3O4-F the most advantageous 3D Co3O4 catalyst for OX activation to degrade SFA. The mechanism of SFA by this 3D Co3O4/OX is also investigated and the corresponding SFA degradation pathway has been elucidated. The catalytic activities of Co3O4 catalysts can be correlated to physical and chemical properties which were associated with particular morphologies to provide insights into design of 3D Co3O4-based catalysts for OX-based technology to degrade emerging contaminants, such as SFA.
Collapse
Affiliation(s)
- Mei-Hsuan Li
- Department of Environmental Engineering, Innovation and Development Center of Sustainable Agriculture, Research Center of Sustainable Energy and Nanotechnology, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan
| | - Wen Da Oh
- School of Chemical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering, Innovation and Development Center of Sustainable Agriculture, Research Center of Sustainable Energy and Nanotechnology, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan.
| | - Ching Hung
- Department of Civil Engineering, National Cheng Kung University, Tainan City, Taiwan
| | - Chechia Hu
- Department of Chemical Engineering, R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli Dist., Taoyuan City 32023, Taiwan.
| | - Yunchen Du
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China.
| |
Collapse
|
10
|
Zhang X, Guo Y, Pan Y, Yang X. Distinct effects of copper on the degradation of β-lactam antibiotics in fulvic acid solutions during light and dark cycle. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2020; 3:100051. [PMID: 36159600 PMCID: PMC9488106 DOI: 10.1016/j.ese.2020.100051] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/12/2020] [Accepted: 06/12/2020] [Indexed: 05/22/2023]
Abstract
This study revealed the dual roles of Cu(II) on the β-lactam antibiotics degradation in Suwannee River fulvic acid (SRFA) solution during day and night cycle. Amoxicillin (AMX) and ampicillin (AMP) were selected as the representative β-lactam antibiotics. Cu(II) played a key role in the dark degradation of AMX and AMP via catalytic hydrolysis and oxidation. However, Cu(II) mainly exhibited an inhibitory effect on SRFA-involved photochemical degradation of AMX and AMP. In the presence of 500 nM of Cu(II), the degradation rate of AMX and AMP in the light condition were around 5 times higher than that in the dark condition, suggesting the photodegradation of β-lactam antibiotics was much more pronounced than catalyzed hydrolysis and oxidation. The triplet excited state of SRFA (3SRFA∗) primarily contributed to AMX and AMP photodegradation. Hydroxyl radicals (•OH) and singlet oxygen (1O2) exhibited limit impacts. The redox cycle of Cu(II)/Cu(I) restricted the electron transfer pathway of 3SRFA∗ with AMX and AMP. During the day and night cycles for 48 h, Cu(II) served as a stronger inhibitor rather than a promotor. These findings highlight the interactions between Cu(II) and SRFA are distinct under day and night conditions, which could further affect the fate of β-lactam antibiotics in natural environments.
Collapse
|
11
|
Peng Y, Qin L, Liu J, Kang SZ, Li G, Li X. Facile synthesis and bi-functionality of mesoporous TiO2 implanted with AgCu alloy. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.03.057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Sun Y, Cho DW, Graham NJD, Hou D, Yip ACK, Khan E, Song H, Li Y, Tsang DCW. Degradation of antibiotics by modified vacuum-UV based processes: Mechanistic consequences of H 2O 2 and K 2S 2O 8 in the presence of halide ions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 664:312-321. [PMID: 30743124 DOI: 10.1016/j.scitotenv.2019.02.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 01/30/2019] [Accepted: 02/01/2019] [Indexed: 05/21/2023]
Abstract
In this work, the degradation of cefalexin, norfloxacin, and ofloxacin was examined via various advanced oxidation processes (AOPs). Direct photolysis by ultraviolet (UV) and vacuum ultra violet (VUV) was less effective for the degradation of fluoroquinolone antibiotics such as norfloxacin and ofloxacin than that of cefalexin. Both hydrogen peroxide (H2O2) and potassium persulfate (K2S2O8) assisted UV/VUV process remarkably enhanced fluoroquinolone degradation. The addition of K2S2O8 was superior to H2O2 under VUV irradiation, with the best removal efficiency of norfloxacin and ofloxacin being almost 100% within 3 min in the presence of VUV/K2S2O8. The ofloxacin degradation rate was accelerated as concentrations of H2O2 and K2S2O8 was increased to 3 mM, but the degradation rate was slightly decreased with excess H2O2 (>3 mM). The performance of modified VUV processes (i.e., VUV/H2O2 and VUV/K2S2O8) was inhibited at highly alkaline condition (pH 11). The co-existence of halides (Cl- and Br-) enhanced antibiotics degradation via the modified VUV processes, but the reaction was almost unaffected in the presence of single halides. This study demonstrated that modified VUV processes (especially VUV/K2S2O8) are efficient for eliminating fluoroquinolone antibiotics from water, which can be considered as a clean and green method for the treatment of antibiotics-containing industrial wastewater.
Collapse
Affiliation(s)
- Yuqing Sun
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Dong-Wan Cho
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources, Daejeon 34132, South Korea
| | - Nigel J D Graham
- Environmental and Water Resources Engineering, Department of Civil and Environmental Engineering, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Deyi Hou
- School of Environment and Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Alex C K Yip
- Department of Chemical and Process Engineering, University of Canterbury, Christchurch, New Zealand
| | - Eakalak Khan
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, NV 89154, USA
| | - Hocheol Song
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea
| | - Yaru Li
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| |
Collapse
|